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Abstract

A numerical investigation is performed addressing the optimal design of stiff structures accounting

for uncertainty in loading amplitudes. A minimum volume problem is endowed with a stochastic

compliance constraint handling normal distributions and solved adopting mathematical program-

ming. The formulation, originally conceived for a single load case, is extended to handle multiple

load cases. Numerical simulations are performed to test the proposed algorithms, pointing out

features of the numerical procedures and peculiarities of the stochastic–based optimal solutions

achieved for different values of the second order moments. Comparisons with respect to conven-

tional deterministic layouts are provided, as well.

Keywords: robust topology optimization, probabilistic loading conditions, stochastic

compliance, multiple load cases

1. Introduction

Topology optimization is a powerful design tool that distributes material on a design domain

such that an objective performance is maximized (Maxwell, 1870, Michell, 1904, Bendsøe and

Sigmund, 2003). The conventional approach is the so–called minimum compliance formulation
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that minimizes the strain energy for an available volume fraction of material (Wasiutynski, 1939,

Hemp, 1958, Rossow and Taylor, 1973, Bendsøe and Kikuchi, 1995). Coupling a finite element

solver and an optimization algorithm, the stiffest layout can be found that generally consists of a

truss–like structure. The results achieved through this original formulation can be directly used to

address the preliminary design of devices and mechanical parts, see in particular Bremicker et al.

(1991), Zhang et al. (2015), that also provide details on the further processing needed to get the

final built design (e.g. interpretation, subsequent shape optimization, detailing). The minimum

compliance formulation can be also adopted to visualize optimal stress paths to reinforce structures

and structural components, see e.g. recent applications in problems of civil engineering in Bruggi

and Taliercio (2015), Bruggi (2016a). Topology optimization is nowadays a mature area of research.

Several formulations, solutions methods and applications are available in the literature involving

many branches of engineering, see e.g. some recent and comprehensive reviews in Sigmund and

Maute (2013), Deaton and Grandhi (2014). Reference is made in particular to the adoption of

topology optimization to synthesize optimal mechanisms as investigated e.g. in Sigmund (1997),

Saxena and Ananthasuresh (2001), Yin and Ananthasuresh (2003).

Most of the optimization approaches address load, geometry and mechanical parameters as

deterministic data, notwithstanding the inherent uncertainty related to the modeling of real–life

engineering problems, see e.g. Kim et al. (2006). However, such an important issue has been

considered in structural optimization since some pioneering works addressing truss design, see in

particular Ben–Tal and Nemirovski (1997) and Marti (2005). Reference is also made to the unified

(nonprobabilistic and nonpossibilistic) approach presented in the recent work by Csébfalvi (2014),

where varying load directions are handled as uncertain–but–bounded parameters. In topology

optimization, two main approaches has been investigated to address the above mentioned sources of

uncertainty. Reliability–based optimization methods define limit states and compute the relevant

probability failure, whereas the so–called robust design method copes with the stochastic moments
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of the system response, see e.g. Schuëller and Jensen (2008) and Tsompanakis et al. (2008). The

latter approach has been demonstrated for random loads in Lógó (2007), Guest and Igusa (2008),

Lógó et al. (2009) for compliant structures and in Kogiso et al. (2008) for compliant mechanisms.

Reference is made e.g. to Lazarov et al. (2012), Chun et al. (2016), da Silva and Cardoso (2017)

for extended and up–to–date discussions on the methods available to cope with geometric and

material uncertainties.

As introduced in Lógó (2007), the automatic generation of stiff layouts under the effect of loads

with uncertain amplitude can be robustly tackled through a minimum weight formulation that en-

forces a stochastic constraint on the allowed compliance. The evaluation of this constraint is based

on the assumption that the loads are affected by uncertainties in their magnitude such that their

joint normal distribution function, mean values, and covariances are known. Following Prékopa

(1995), if the probability of the compliance value is prescribed as a minimum probability value,

the probabilistic constraint can be replaced by an equivalent deterministic one to be implemented

in the original minimum weight problem. The original implementation was driven by an ad hoc

optimality criterion and did not include any kind of constraint against mesh dependence, whereas

the secondary meshing technique was adopted to prevent checkerboard.

The aim of this work is providing a numerical investigation adopting the formulation originally

presented in Lógó (2007), which is herein implemented in conjunction with a density filter approach

and solved through mathematical programming. Additionally, the formulation is extended to

the case of multiple load cases accounting for load conditions that can be either correlated or

uncorrelated. Details on the robust and efficient implementation are given, focusing especially on

the sensitivity computation. Numerical results point out the effect of uncertainties on the optimal

design, showing that load variance has a remarkable effect on the achieved stochastic–based optimal

solutions.

The layout of the paper is as follows. Section 2 reviews the original optimization problem
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accounting for random forces that all belong to a single load case. It also provides details on the

sensitivity analysis performed to feed the minimization algorithm, the Method of Moving Asymp-

totes (MMA), see Svanberg (1987). Section 3 presents the extension of the original formulation

to multiple load cases. Section 4 discusses numerical results comparing the achieved solutions

accounting for uncertainty with standard optimal layouts found for deterministic loads. Section 5

resumes the main findings of this contribution, outlining ongoing extensions.

2. The compliance–constrained design problem: single load case

A set of n probabilistic point loads defining a single load case is considered. The i–th force

fi is a random variable with normal distribution and mean value f̄i. The covariance matrix is

denoted as Kov, whose components are ki,j. In case of uncorrelated loads, Kov is a diagonal matrix

whose terms are the variances of the random variables, i.e. ki,i = σ2
i . If the loads are correlated,

off-diagonal terms arise to account for the (non–zero) covariances, i.e. ki,j = σij for i 6= j.

The design domain is discretized using a mesh of N displacement–based finite elements. A

topology optimization approach is implemented, based on the Solid Isotropic Material with Pe-

nalization, see e.g. Bendsøe and Kikuchi (1995). Indeed, a penalization of the material stiffness

is provided depending on the value of the minimization unknown, the density field. Denoting

by xe the element–wise constant density entering the conventional SIMP model in the e–th finite

element, one has that the element stiffness matrix of the e–th element reads Ke(xe) = xp
e Ke0,

where Ke0 element stiffness matrix in case of full material and p = 3. According to Lógó (2007),
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stiff truss–like models can be generated resorting to the following discrete statement:































min
xmin≤xe≤ 1

W =
N
∑

e=1

xeAe

s.t. K(x)Ū = F(f̄i),

∑N
e=1 Ū

T
e Ke(xe) Ūe − αC0 + 2Φ−1(q)(YTKovY)1/2 ≤ 0.

(1)

In the above equation, the objective function is the weight W, which is computed multiplying the

element density xe for the relevant area Ae over the N elements in the mesh. The first constraint

enforces the discrete equilibrium of the body when acted upon by the average value of the proba-

bilistic load: K is the global stiffness matrix, Ū the global displacement vector computed for the

mean values f̄i and F(f̄i) the relevant r.h.s. vector.

Following Prékopa (1995), the second enforcement in Eqn. (1) is used to prescribe the compli-

ance constraint in case of probabilistic loads. It enforces a user–defined lower bound 0 < q < 1 to

the probability that the compliance C computed for the mean values of the probabilistic loads is

lower than a prescribed limit αC0, i.e.:

P

(

N
∑

e=1

UT
e Ke(xe) Ue − αC0 ≤ 0

)

≥ q, (2)

where C0 is herein assumed as the overall compliance found for the full domain made of virgin

material (xe = 1 everywhere) enforcing fi = f̄i, whereas α is a user–defined parameter. The

compliance is computed considering the element–wise contributions depending on the element

stiffness matrices Ke(xe) and the element displacement vectors Ūe.

It must be remarked that equivalence of Eqn. (2) with the second constraint of Eqn. (1)

holds only in case of normal distribution of the load amplitude, as assumed throughout the paper.
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However, if a non–Gaussian distribution is given or the data set is probabilistic, an approximation

technique could be applied at first. Indeed, the non–Gaussian distribution could be replaced by a

surrogate Gaussian model by means of a transformation, see e.g. Bacharoglou (2010).

The second constraint in Eqn. (1) requires the computation of the vector Y = [ū1 ... ūn] that

collects, for each one of the n probabilistic loads, the displacement component of the loaded point

along the direction of the applied force. For the i–th load, this can be computed as ūi = LT
i Ū,

being Li a vector made of null entries except for the degrees of freedom of the loaded node. A

horizontal or vertical load requires a unitary value for the degree of freedom corresponding to

the displacement along the x-axis or the y-axis, respectively. In case of a load having a general

inclination with respect to the reference axes, both degrees of freedom should be equal to one.

Φ−1(q) is the inverse cumulative distribution function of the normal distribution (probit function),

evaluated at q.

2.1. Problem implementation

The statement in Eqn. (1) is solved through the gradient–based minimizer MMA (Svanberg,

1987), calling for the computation of the sensitivity at each iteration of the minimization algo-

rithm. The initial guess is the full material domain, that means xe = 1 in each element.

The derivatives of the l.h.s. of the second constraint in Eqn. (1) with respect to the element–

wise constant material density xk read:

−

N
∑

e=1

ŪT
e

∂Ke(xe)

∂xk
Ūe + Φ−1(q)

∂YT

∂xk

KovY +YTKov
∂Y
∂xk

(YTKovY)1/2
, (3)

where the first part is the well–known derivative of the compliance computed for mean values

of the forces. In the above equation, the sensitivity of the components of the vector Y can be

efficiently computed through the adjoint method. The term ūi = LT
i Ū does not change if one adds
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at the right hand side of this equation a zero function that involves the discrete linear equilibrium

reported in the first constraint of Eqn. (1), i.e.:

ūi = LT
i Ū− λ

T
(

K(x)Ū − F(f̄i)
)

, (4)

where λ is any arbitrary but fixed vector. After rearrangement of terms and remembering that

an element–wise density discretization is adopted, the derivative of ūi with respect to the k-th

unknown may be computed as:
∂ūi

∂xk
= −λ

T ∂Ke(xe)

∂xk
Ūe, (5)

where λ satisfies the adjoint equation Kλ = Li.

Four–node Serendipity finite elements are used along with an element–wise constant approxi-

mation of the density variables. This discrete scheme is well–known to be affected by numerical

instabilities such as the arising of undesired checkerboard patterns and mesh dependence, see e.g.

Bendsøe and Sigmund (2003), Sigmund and Petersson (1998), Guest et al. (2004). A density filter

approach (Bourdin, 2001) is herein adopted instead of applying the filter to the objective function

and its sensitivities, as done in most cases. The original design variables xe are transformed in

new sets of physical unknowns x̃e reading:

x̃e =
1

∑

N Hel

∑

N

Helxl, Hel =
∑

N

max(0, rmin − dist(e, l)). (6)

In the above equation dist(e, l) is the distance between the centroid of the e–th and l–th element,

whereas rmin > dm is the filter radius, being dm the reference size of the finite elements. The

assumption rmin = 1.5dm is done for all the simulations presented in Section 4 to avoid the arising

of checkerboard patterns and to prescribe a minimum thickness to the arising bars. The adopted

density–based approach is well–suited to implement, with some modification, recent procedures to
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include manufacturing constraints, see in particular Zhou et al. (2015).

3. The compliance–constrained design problem: multiple load cases

This section provides and extension of the formulation in Eqn. (1), assuming not one but n load

cases, see Bendsøe et al. (1995). Hence the force fi is a random variable with normal distribution

and mean value f̄i assigned to the i–th load case. The covariance matrix of the random forces is

denoted as Kov. The modified formulation for multiple load cases reads:































min
xmin≤xe≤ 1

W =
N
∑

e=1

xeAe

s.t. K(x)Ūi = Fi(f̄i), for i = 1...n

∑n
i=1

∑N
e=1 Ū

T
i,e Ke(xe) Ūi,e − αC0 + 2Φ−1(q)(YTKovY)1/2 ≤ 0.

(7)

In the above statement, the first constraint enforces the discrete equilibrium of the body when

acted upon by each one of the n probabilistic load cases. Remembering that each load case con-

tains one force only, Ūi is the global displacement vector computed for the mean value of the i–th

force f̄i, whereas Fi(f̄i) is the relevant r.h.s. vector, both addressing the i–th load case.

The second constraint of Eqn. (7) enforces a user–defined lower bound 0 < q < 1 to the

probability that the sum of the compliances computed for the mean values of each one of the n

probabilistic load cases is lower than a prescribed limit αC0., i.e.:

P

(

n
∑

i=1

N
∑

e=1

UT
i,e Ke(xe) Ui,e − αC0 ≤ 0

)

≥ q, (8)

where α is that introduced in the second constraint of Eqn. (1), whereas C0 is assumed as the

sum over the n load cases of the relevant compliances found when the full domain made of virgin
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material (xe = 1 everywhere) is loaded by f̄i. For each load case, the compliance is computed

considering the element–wise contributions depending on the element stiffness matrices Ke(xe)

and the relevant element displacement vectors Ūi,e.

The second constraint in Eqn. (7) requires the computation of the vector Y = [ū1 ... ūn] that

collects, for each one of the n probabilistic loads, the displacement component of the loaded point

along the direction of the applied force in the relevant load case. For the i–th (point) load, this

can be equivalently written as ūi =
1

f̄i
FT

i Ūi. This form will be exploited next in the sensitivity

computation.

3.1. Problem implementation

The same implementation described in Section 2.1 will be used. The derivatives of the l.h.s.

of the second constraint in Eqn. (7) with respect to the element–wise constant material density

xk read:

−

n
∑

i=1

N
∑

e=1

ŪT
i,e

∂Ke(xe)

∂xk
Ūi,e + Φ−1(q)

∂YT

∂xk

KovY +YTKov
∂Y
∂xk

(YTKovY)1/2
, (9)

where the sensitivity of the components of the vector Y can be computed through the adjoint

method. The term ūi does not change if one adds at the right hand side of its statement a zero

function that involves the discrete linear equilibrium reported in the first constraint of Eqn. (7),

i.e.:

ūi =
1

f̄i
FT

i Ūi − λ
T
(

K(x)Ūi − Fi(f̄i)
)

, (10)

where λ is any arbitrary but fixed vector. After rearrangement of terms and remembering that

an element–wise density discretization is adopted, the derivative of ūi with respect to the k-th

unknown may be computed as:

∂ūi

∂xk

= −λ
T ∂Ke(xe)

∂xk

Ūi,e = −
1

f̄i
ŪT

i,e

∂Ke(xe)

∂xk

Ūi,e, (11)
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where λ satisfies the adjoint equation Kλ =
1

f̄i
Fi, that means λ =

1

f̄i
Ūi,e. Differently from Eqn.

(5), no additional system of equations must be solved, due to the arising of a self–adjoint problem.

Indeed, Eqn. (5) turns out to be a self–adjoint problem only if a single point force is considered

in the optimization.

It is finally remarked that both problems in Eqn. (1) and Eqn. (7) are conceived to handle load

cases including point forces only. However, introducing some simplifications, distributed loads with

uncertainty in loading amplitude could be handled as well. For instance, a uniformly distributed

load could be implemented in the discrete framework as a set of equivalent point forces that share

a normal distribution with equal mean value and variance, being part of the same i–th load or load

case in Eqn. (1) or in Eqn. (7), respectively. The computation of the overall compliance would not

be affected by this change, whereas the vector Y should collect, for each one of the probabilistic

distributed loads, the displacement components of the loaded points along the direction of the

relevant equivalent point force. Of course, the matrix Kov should be populated with variances and

covariances of the distributed loads accordingly.

4. Numerical simulations

A numerical investigation is performed in this section to assess the formulation for single load

case in Eqn. (1) and that for multiple load cases in Eqn. (7), pointing out peculiar features of the

optimal layouts achieved accounting for uncertainty in loading amplitudes.

Geometry and boundary conditions of the considered examples are those represented in Figure

1. Non–dimensional parameters are used to feed the algorithm. A unitary Young modulus is used,

whereas the Poisson’s ratio reads ν = 0.2. Unitary thickness is assumed for the specimens. A

mesh with 8192 bi–linear square elements is adopted for Example 1, whereas the L–shaped corbel

of Example 2 is handled by means of 12288 elements.
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Figure 1: Geometry and boundary conditions. Example 1 (a) and Example 2 (b).

Figure 2: Example 1. Single load case. Optimal design in case of deterministic loads (W = 22.87).
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(a)

(b)

Figure 3: Example 1. Single load case. Optimal design in case of probabilistic uncorrelated loads with σ
2

1
= σ

2

2
=

σ
2

3
= 1: q = 0.95 (a - W = 27.22) and q = 0.9999 (b - W = 33.35).
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Figure 4: Example 1. Single load case. History plot of the objective function for the considered optimization
problems.
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Figure 5: Example 1. Single load case. CPU time (seconds) to run the considered optimization problems.

4.1. Example 1 - single load case

The example originally presented in Lógó (2007) is considered to test the formulation in Eqn.

(1). The design domain is a lamina with aspect ratio 4:2 that is fixed at the ground through two

hinges located at the corners of the lower side, see Figure 1(a). Three vertical forces are considered

acting simultaneously (within the same load case) with average values f̄1 = f̄2 = f̄3 = 10, being

n = 3.

At first, a conventional compliance-constrained minimum weight design is investigated, assum-

ing that the force amplitude is deterministic (with prescribed value equal to the average one).

The compliance constraint is used to distribute the minimum amount of material such that the

strain energy stored by the optimal structure is not larger than α times the energy stored in the

whole design domain acted upon by the same load case. The prescription α = 2.5 holds for all the

numerical examples investigated in this section. The achieved optimal design is shown in Figure 2,

whose caption reports the relevant weight, being W = 100 the weight of the whole design domain.

The achieved result is in good agreement with the analytical solution originally derived in Chan
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(1963), as already observed in Lógó (2007).

The same example is then investigated accounting for uncertainty in loading amplitudes and

assuming uncorrelated loads with variance equal to 10% of the average value, i.e. σ2
1 = σ2

2 = σ2
3 = 1.

A first numerical investigation is performed to enforce that the compliance C computed for the mean

values does not exceed the prescribed limit αC0 with, at least, probability q = 0.95. The achieved

result is shown in Figure 3(a). As already observed in Lógó (2007) for q = 0.91, the stochastic

constraint requires additional material and some modification in the optimal layout, if compared

to the conventional design achieved in case of deterministic loads. In the stochastic–based design

the arch is thicker to match any variation of the funicular polygon due to the uncertainty in the

uncorrelated values of the amplitude of the three forces and preserve the required stiffness. Also,

the sub–structure hanging the central load is larger and heavier. Allowing for a probability of

failure equal to 5% calls for an additional 20% of material with respect to the deterministic case.

Figure 3(b) shows the optimal design achieved for q = 0.9999, that means that the probability

that a failure of the compliance constraint occurs is now reduced to 10−4. The comments already

formulated for Figure 3(a) are emphasized when addressing the optimal design achieved for the

stricter probabilistic constraint. This design calls for an additional 45% of material with respect

to the deterministic case.

Figure 4 shows history plots of the objective function of the formulation in Eqn. (1), referring

to the three simulations presented above. A convergence criterion was used to stop the algorithm

for a maximum relative difference of the density unknowns between two subsequent iterations

equal to 0.001, enforcing a minimum number of iterations equal to 100. As shown in the graph,

the two curves referring to the stochastic approach are as smooth as that of the conventional

deterministic optimization. Both of them converge to an horizontal plateau after a few tens of

steps, independently on the value of the prescribed probability q.

Figure 5 provides a comparison of the computational effort needed to perform the three op-
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timization routines discussed above. At each iteration, the objective function, the compliance

constraint and its sensitivity are evaluated based on the current value of the minimization un-

knowns. The gradient–based minimizer processes this information and provides an updated set of

density variables. The plots in Figure 5 present the evolution of the CPU time (seconds) spent

in the sensitivity computation performed according to Eqn. (3) and in the update of the density

unknowns through the optimization algorithm (MMA). The values read on the curves for the last

iteration provide the total amount of time spent to handle the sensitivity computation and to

perform MMA.

The deterministic compliance constraint gives rise to a self–adjoint problem, see e.g. Bendsøe

and Sigmund (2003), meaning that at each iteration of the optimization algorithm a single solution

of the state equation is needed to compute both the current value of the compliance and its

sensitivity. When dealing with the stochastic constraint in case of the single load case formulation,

the solution of additional n adjoint problems of the type in Eqn. (5) is needed, calling for an

increased computational cost. However, since all of them share the same stiffness matrix governing

the state equation, see Eqn. (3), the factorization of K(x) is performed at each step to speed up

the computation. For the considered example the additional time required for the sensitivity

computation by the stochastic formulation is approximately 30% higher than the deterministic

one, no matter the value of q.

Looking at the CPU time spent in the minimization algorithm, it can be observed that a slight

increase is paid in case of the stochastic constraint, especially for q = 0.9999. This is essentially

due to the constant Φ−1(q) that scales the last term of the l.h.s. in the second constraint of Eqn.

(1). Indeed, for big values of q the left hand side of the inequality tends to blow up, depending on

the inverse cumulative distribution function of the normal distribution.
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4.2. Example 1 - multiple load cases

The example presented in Section 4.1 is herein investigated to assess the formulation for multiple

load cases in Eqn. (7). A single load case is defined for each one of three vertical forces shown in

Figure 1(a) (n = 3). As before, the average values of the forces are f̄1 = f̄2 = f̄3 = 10.

At first, the force amplitude is assumed to be deterministic. The optimization problem has

the aim of distributing the minimum amount of material such that the sum of the strain energies

stored by the optimal structure for each force (herein load case) is not larger than α times the sum

of the energies computed for the whole design domain. This approach is fully along the lines of the

volume–constrained minimization of the weighted sum of the compliances that is conventionally

used to deal with more than one load case, see e.g. Bendsøe and Sigmund (2003). The achieved

result is a stiff topology that can support not only the loads acting separately, but also any

combination of them, see Figure 6.

Then, the same example is investigated accounting for uncorrelated loads with variance equal

to 10% of the average value, i.e. σ2
1 = σ2

2 = σ2
3 = 1. A first numerical investigation is performed

to enforce that the weighted compliance C computed for the mean values of the loads does not

exceed the prescribed limit αC0 with, at least, probability q = 0.95. The achieved result is shown

in Figure 7(a). As expected, the weight of the optimal solution increases (about 15%) with respect

to the deterministic case. All the members are thicker, especially the central part of the arch that

has a different design.

Reducing to 10−4 the maximum probability of failure allowed by the stochastic compliance

constraint, i.e. enforcing q = 0.9999 in the second constraint of Eqn. (7), the optimal design

presented in Figure 7(b) arises. This solution is remarkably different from the layout shown

in Figure 7(a). Contrary to expectations after the results achieved in Section 4.1 on the same

example, a uniform thickening of all the members is not enough to cope with the stricter stochastic

constraint. The central part of the layout in Figure 7(b) resembles that of Figure 7(a), but the
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Figure 6: Example 1. Multiple load cases. Optimal design in case of deterministic loads (W = 30.77).

outer parts are much stiffer since no hole is allowed in the massive element. The increase in terms

of material with respect to the deterministic case is around 30%.

As already done in Section 4.1, history plots of the objective function referring to the above

simulations are compared in Figure 8. The same convergence criterion was used to perform the

numerical investigations, except for the minimum number of iterations that was increased to 150.

Smooth curves suggest that the adoption of the stochastic constraint does not introduce any

numerical issue, independently on the value of q.

A final comparison is provided in terms of CPU times needed to run the algorithm, as reported

in Figure 9. Differently from Eqn. (5), no additional system of equations must be solved, due to the

arising of a self–adjoint problem in Eqn. (11). However, the handling of the stochastic constraint

calls for an extra–time to perform the sensitivity computation with respect to the deterministic

case. Again, a slight increase in the CPU time spent in the minimization algorithm is observed

for q = 0.9999 because of the probit function.

4.3. Example 2 - multiple load cases

A final set of investigations is performed addressing the L–shaped corbel shown in Figure 1(b).

Two load cases are defined, i.e. n = 2: the first includes a vertical force whereas the second a

horizontal one. Their average values are f̄1 = f̄2 = 10.
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(a)

(b)

Figure 7: Example 1. Multiple load cases. Optimal design in case of probabilistic uncorrelated loads with σ
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Figure 8: Example 1. Multiple load cases. History plot of the objective function for the considered optimization
problems.

18



50 100 150

Iteration

0

5

10

15

20

25

30

35

40

T
im

e

deterministic

MMA
Sensitivity

50 100 150

Iteration

0

5

10

15

20

25

30

35

40

T
im

e

probabilistic (q=0.95)

MMA
Sensitivity

50 100 150

Iteration

0

5

10

15

20

25

30

35

40

T
im

e

probabilistic (q=0.9999)

MMA
Sensitivity

Figure 9: Example 1. Multiple load cases. CPU time (seconds) to run the considered optimization problems.

(a) (b) (c)

Figure 10: Example 2. Multiple load cases. Optimal design in case of deterministic loads with: α = 2.5 (a -
W = 37.68), α = 2.0 (a - W = 45.04) and α = 1.5 (c - W = 58.66).
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(a) (b) (c)

Figure 11: Example 2. Multiple load cases. Optimal design in case of probabilistic uncorrelated loads with σ
2

1
= 1

σ
2

2
= 1 (α = 2.5): q = 0.95 (a - W = 46.54), q = 0.9999 (b - W = 56.48) and q = 0.999999 (c - W = 61.44).

(a) (b) (c)

Figure 12: Example 2. Multiple load cases. Optimal design in case of probabilistic uncorrelated loads (α = 2.5,
q = 0.95): σ2

1
= 10 σ

2

2
= 10 (a - W = 63.61), σ2

1
= 1 σ

2

2
= 10 (b - W = 51.32) and σ

2

1
= 10 σ

2

2
= 1 (c - W = 61.35).

(a) (b)

Figure 13: Example 2. Multiple load cases. Optimal design in case of probabilistic correlated loads with σ
2

1
= 1

σ
2

2
= 1 (α = 2.5, q = 0.95): covariance σ12 = σ21 = 1 (a - W = 48.97) and covariance σ12 = σ21 = −1 (b -

W = 42.09).
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Figure 10 shows the optimal layouts achieved in case of deterministic loads for different values of

the parameter α governing the compliance constraint. For lower values of α an increased stiffness is

required, thus calling for heavier optimal layouts. Figure 10(a) shows the light truss–like structure

arising for α = 2.5, whereas Figure 10(c) refers to the more branched design of the Michell–like

solution found for α = 1.5.

The formulation in Eqn. (7) is adopted to enforce the stochastic compliance constraint ac-

counting for σ2
1 = σ2

2 = 1 and different values of the allowed probability of failure. The parameter

α = 2.5 is assigned. For q = 0.95, the same topology found for the deterministic design shown

in Figure 10(a) arises whereas the thickness of the members grows, see Figure 11(a). For larger

values of q, heavier optimal layouts arise that also resort to an increased number of members, see

Figure 11(b–c). These stochastic–based solutions preserve a cross–shaped reinforcing structure in

the lower part of the corbel that is remarkably different with respect to a deterministic design of

similar weight, see Figure 10(c). Indeed, this allows handling effectively the expected variations in

the amplitude of the uncorrelated loads independently on the value of q.

An additional set of numerical investigations is performed assuming α = 2.5, q = 0.95 and

different values of the variance of the loads. Figure 12(a) refers to the case σ2
1 = σ2

2 = 10, for

which an optimal design arises that is very similar to that found for lower variance but larger q,

see Figure 11(c). Figures 12(b–c) show that the optimal design is sensitive to the assumption of

unequal variances of the loads. An ad hoc cross–shaped reinforcing structure handles the prevailing

variance of the horizontal force, see Figure 12(b), whereas the optimal layout in Figure 12(c) is

conceived to handle the main uncertainty affecting the vertical load.

The algorithm presented in Section 3 can handle correlated loads, as well. Again, the variances

are such that σ2
1 = σ2

2 = 1, whereas α = 2.5 and q = 0.95. A positive covariance, e.g. σ12 = σ21 = 1,

means that greater values of the vertical force mainly correspond to the greater values of the

horizontal force. Conversely, for a negative covariance, e.g. σ12 = σ21 = −1, greater values of
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the vertical load mainly correspond with the lesser values of the horizontal load. For positive

covariance, a slightly heavier version of the design found in Figure 11(a) for uncorrelated loads

is achieved, see Figure 13(a). For negative covariance, a different and lighter design arises that

consists of a reduced number of trusses, see Figure 13(b).

5. Conclusions and perspectives

A numerical method has been adopted to cope with the optimal design of stiff structures ac-

counting for uncertainty in loading amplitudes. The compliance–constrained minimum volume

approach proposed by Lógó (2007) has been implemented adopting mathematical programming

along with a density filter to control mesh dependence and checkerboard. Additionally, the for-

mulation has been extended to handle multiple load cases. The sensitivity computation has been

provided for the single load case formulation and the multiple load cases approach. According to

Prékopa (1995), the proposed numerical methods hold for loads whose amplitude can be described

by a normal distribution.

Numerical simulations have been performed to test both the algorithms, pointing out features

of the numerical procedures and peculiarities of the stochastic–based optimal layouts. Referring to

numerical issues, smooth convergence is reported along with an acceptable increase of CPU times

with respect to the conventional deterministic approach. Optimal results are pure 0–1 solutions and

no grey region is found at convergence, except that arising at the boundary of the optimal design

because of the adopted density filter. The implemented algorithms are robust with respect to the

enforced maximum probability of failure assigned through the compliance constraint. Simulations

refer to the range 0.05 - 10−6.

As already found in Lógó (2007) for uncorrelated loads with variance equal to ten percent of

their average value, stochastic–based design are, in general, heavier variations of the deterministic

layouts. The same outcome arises from the results presented in Section 4.1 for the single load
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case formulation, which has been herein investigated for different values of the enforced maximum

probability of failure.

With respect to the single load case formulation, the layouts achieved through the formulation

for multiple load cases can be more sensitive to the stochastic constraint even for moderate values

of the variance of the loads, see Section 4.2. Section 4.3 assesses the role played by the parameters

involved in the herein considered stochastic–based formulation, pointing out peculiarities of the

probabilistic layouts with respect to deterministic topologies achieved upon request of increased

stiffness. In particular, it is shown that the topology of the optimal stochastic–based design can

be remarkably affected by the enforced probability of failure for the compliance constraint and the

handling of loads with big variances or unequal variances. Also, the effect of positive and negative

correlation has been shown to affect at least the weight of the optimal layouts.

The proposed investigations are intended as a numerical study assessing the stochastic compli-

ance constraint within a minimum weight formulation. The ongoing research is mainly devoted to

the extension of the proposed formulation to handle stress constraints under the effect of proba-

bilistic loads, see e.g. the multi–constrained minimum weight formulation implemented in Bruggi

(2016b).
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