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ABSTRACT: Traditional Probabilistic Risk Assessment (PRA) is based on techniques like Event Tree 
Analysis (ETA) and Fault Tree Analysis (FTA), which are considered static, i.e., the failure probabilities 
of the safety barriers do not take into account the system evolution in time, e.g., due to various degrada-
tion mechanisms, like fatigue, wear, corrosion, etc. On the other hand, condition-monitoring data are 
available in practice and can be used, possibly even for real-time updating. In this paper, we develop 
an integrated framework for condition-informed risk analysis. A conventional event tree model is used, 
in which some safety barriers are subject to degradation mechanisms and their failure probabilities are 
treated as time-dependent. Particle Filtering (PF) is used to update the failure probabilities of the safety 
barriers in real-time, based on the collected condition-monitoring data. The updated failure probabilities 
are, then, used in the event tree model. The developed framework also allows predicting the scenario 
probabilities in the future. To do this, the failure probabilities are updated and predicted by PF and, then 
integrated in the event tree. The developed framework is applied for condition-informed risk assessment 
of a high-level alarm equipment from literature.

the probabilities of the initial events in a bow-tie 
model using a physical reliability model. In Podo-
fillini et al. (2010), a possibility clustering approach 
has been used to generate the stochastic scenarios 
of the potential system states for DRA. The Go-
flow method has been used by Yang et al. (2014) 
for real-time calculation of risk indexes. However, 
most of the existing works only consider statistical 
failure counting data, which come from a popula-
tion of similar systems and do not fully reflect the 
degradation conditions of the system of interest.

Condition-monitoring data have been used 
by Kim et al. (2015) for DRA to capture system-
specific degradation behaviors. However, their 
work does not consider the noise in the observed 
degradation data. Particle filtering (PF) has been 
applied by Wang et al. (2016) to filter the process 
noise and estimate the true degradation states in 
DRA. However, their work has not considered 
consequence analysis models, e.g. Event Tree (ET), 
Bayesian Network (BN), etc. for risk calcula-
tions. Rather, the risk indexes have been assessed 
directly from the monitored degradation variables 
by considering the affected performance due to the 

1 INTRODUCTION

Safety barriers of industrial plants are frequently 
subject to degradation processes, such as wear 
(Compare et  al. 2016, Zeng et  al. 2016), fatigue 
(Zeng et al. 2014, Chiacío et al. 2016), crack growth 
(Kim et al. 2015), material degradation (Zeng et al. 
2013), etc. As a result, the reliability of safety bar-
riers degrades over time. Besides, as a system lives, 
its operating environment is subject to changes, 
which might affect its time-dependent behavior 
with respect to risk (Liu et al. 2015).

Traditional Probabilistic Risk Assessment 
(PRA) techniques do not consider these time-de-
pendent aspects (Khan et al. 2015, Siu, 1994). To 
deal with this, Dynamic Risk Assessment (DRA) 
methods are being developed. For example, a 
dynamic event tree has been proposed to model 
dynamic scenarios (Swaminathan & Smidts 1999). 
Bayesian network has been used by Khakzad & 
Amyotte (2013) to make use of observed statisti-
cal failure counting evidence and updating the fail-
ure probability of the basic events. Khakzad et al. 
(2012) has developed a DRA method by updating 
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degradation. Besides, prediction of future risk is 
not considered in these works.

In this paper, we develop an integrated frame-
work to update and predict the system risk 
based on observed degradation data subject to 
noise. For this, ET is combined with PF for risk 
updating and risk prognostics. The remainder of 
the paper is organized as follows. In section  2, 
the developed framework is presented. In sec-
tion  3, we apply the developed framework to a 
safety system from literature. The paper is con-
cluded with some discussions of  future works in 
Section 4.

2 METHODS

2.1 Problem description

We  consider a generic ET in Figure 1 (for illustration, 
we just consider two safety barriers), where IE rep-
resents the initial event, SB i n ni , , , , ( )= =1 2 2�  rep-
resent the safety barriers and C C C mm1 2 3, , , ( )� =  
represent the consequences caused by IE. To inte-
grate condition monitoring data in the event tree 
analysis, the following assumptions are made:

1 At time t, the i-th safety barrier fails with prob-
ability 1 1 2− ( ) =R t i nSB i, , , , , ,� where R tSB i, ( ) is 
the reliability of SBi  at t.

2 Time-dependent R tSB i, ( ) , i n= 1 2, , ,�  are esti-
mated based on condition monitoring data on 
their degradation while R tSB i, ( ) , i q n= +1,� , 
are constant and estimated based on historical 
data;

3 Degradation of SB SB SBq1 2, , ,�  is monitored 
at no predefined observation times, t t tno1 2, , ,� .  
The condition monitoring data collected are 
z i q k t t tk i n, , , , , , , , , .= =1 2 1 2 0

� �

We consider the conditional probability of each 
scenario consequence, given IE:

p C IE i mC ii
= { } =Pr | , , , ,1 2�  (1)

This probability is determined by the reli-
abilities of the safety barriers. The vector, 
pC C C Ct p t p t p t

m
( ) = ( ) ( ) ( ) 1 2

, , ,… , contains 
the conditional probabilities of all possible 
consequences.

In conventional ETA, the probabilities 
are estimated before the system comes into 
operation, based on an initial estimate of the 
R t i nSB i, , , , ,( ) = 1 2�  from historical data or 
expert judgments. When condition monitoring 
data become available, these estimates should be 
updated to reflect the actual condition of the SBi. 
Here, we extend the conventional ETA to make use 
of the condition monitoring data. In particular, 
two tasks are considered:

1 Update: suppose new condition monitoring 
data are collected at time to. Update the esti-
mated conditional probabilities at the current 
time, i.e., pC ot( ), based on the condition moni-
toring data z i q k t t tk i o, , , , , , , , , ;= =1 2 1 2� �

2 Prognostics: suppose we have the condi-
tion monitoring data up to time to. Pre-
dict the values of pC ft( )  at a future time 
tf, based on the condition monitoring data 
z i q k t t tk i o, , , , , , , , , .= =1 2 1 2� �

2.2 Update

PF is used in this paper for updating. For this, it is 
assumed that the degradation of the safety barriers 
can be described by a state space model:

x x
z x

k i k i

k i k i

g
h

, ,

, ,

= ( ) +
= ( ) +






−1 ε

σ
 (2)

where g ⋅( )  and h ⋅( )  are the state and observa-
tion equations, respectively, and are determined 
based on knowledge on the associated degrada-
tion processes; e is the process noise and s is 
the observation noise. Furthermore, the failure 
threshold for SBi  is zth i, , i.e., SBi  fails when 
h zk i th ix , ,( ) ≤ .

Suppose we have the degradation monitor-
ing data z k t t tk i o, , , , ,= −1 2 1�  and at t to= ,  a new 
observation becomes available. PF recursively esti-
mates the posterior density of the true degradation 
states based on sequential Monte Carlo simulation 
and Bayesian theorem, as shown in Algorithm 1. 
For details of Algorithm 1, readers might refer to 
Arulampalam et  al. (2002) and Hu et  al. (2016). 
The posterior density function (PDF) of zk i, , can, 
then, be approximated using the particles and their 
weights:

p k k k
i

k

N

k k
i

s

( ) ( ):x z x x1
1

≈ −
=

∑ω δ  (3)
Figure 1. An illustrative ET model.
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where p k k( ):x z1  is the estimated PDF of xk, d is 
the Dirac Delta function, x j Nk

j
s, , , ,= 1 2�  are the 

particles used to approximate the posterior distri-
bution, and Ns is the number of particles. 

where p x zt
i

t tk k
( ):1 1−

 is determined by the output of 
PF at t to= −1,  L z xk k

i( )  is the likelihood of meas-
urement zk  given the particle xk

j , which can be 
obtained from the measurement equation in (2).  
Ne can be estimated by

Ne k
j

j

Ns

≈
=

∑1 2

1

/ ( )ω  (4)

At each to, the reliability of the safety barriers 
can be updated:

R t h x zSB i o k i
j

m i
j

th i
j

Ns

, , , ,( )( ) = ≥⋅ ( )
=

∑ω 1
1

 (5)

where R tSB i o, ( )  is the reliability of  SBi  at t to=  
and 1 h x zm i

j
th i( ), ,≥( )  is an indicator function, 

which equals to 1 when h x zm i
j

th i( ), ,≥  and 0 
otherwise.

The updated reliabilities are, then, combined 
with the reliabilities for SB SB SBq q n+ +1 2, , ,�  to 
update the risk index pC mt( ).  Algorithm 2  sum-
marizes the procedures for updating pC mt( ) :

2.3 Prognostics

To predict pc at a future time tf, the reliabilities of 
SB SB SBq1 2, , ,�  at time tf are predicted first using 
PF, as shown in Algorithm 3.

The predicted reliabilities are, then, used in the 
ET to predict pc. We define Remaining Time to 
Critical Event (RTCE) as an index for risk prog-
nostics: RTCE is defined as the remaining time 
before a critical event occurs. This occurrence is 
determined by comparing with predefined thresh-
old values. For example, the system safe opera-
tion dropping below a predefined threshold can 
define a critical event. Also, a certain consequence 
exceeding a predefined threshold can define a criti-
cal event.

Suppose we consider a critical event defined by 
p pC th ii

< , .  Then, its RTCE can be calculated by

RTCE = ( ) <{ } −inf | , , , ,,t C t t t th i op t z z z p t
i n1 2

�  (6)

where t to1, ,�  are observed points and the predic-
tion is made at tf. Equation (6) can be solved based 
on Algorithm 4.

3 CASE STUDY

3.1 System description

In this section, we apply the developed methods 
to a tank safety system from literature (Kalantar-
nia et al. 2009), as shown in Figure 2. The safety 
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system is intended to protect the tank system from 
the initial event of overflow. There are five safety 
barriers in the safety system: Basic process control 
(BPC), Bypass line, High level alarm (HLA), Pres-
sure safety valve (PSV) and Manual Valve (MV).

In theory, overflow entering the system should 
be detected by BPC, which could in turn open the 
bypass valve and release the overflow. If  the BPC 
fails to operate, the HLA will be triggered and 
alarm the operator to close the manual valve to 
prevent more flow from entering the tank. If, for 
some reasons, the operator fails to close the man-

ual valve, the PSV will be activated and the excess 
flow will be released through it. The worst sce-
nario is that if  the PSV fails to operate, high pres-
sure gas will be present in the tank, which might 
cause severe consequences, such as fire or explo-
sion. ET depicts the possible scenarios, as shown 
in Figure 3.

Occurrence probabilities of different scenarios 
are given in Table 1. According to the impact of 
each scenario, the consequences are grouped into 
3 classes: C1 represents that the initial event occurs, 
but does not affect the normal operation of the 
system; C2 represents that there are material losses 
but not severe; C3 is the most serious consequence, 
which represents that all safety barriers fail and 
large amounts of hazardous materials are released.

3.2 Condition-monitoring data

For illustrative purposes, we consider monitor-
ing of the degradation of only one component: 
the HLA. It is supposed that the degradation of 
the HLA is caused by the Lithium battery, which 
provides the electricity needed for its operation. 
According to Hu et al. (2016), the degradation of 
Lithium batteries can be described by a state-space 
model:

x x
x x
x x
x x

k k

k k

k k

k k

, ,

, ,

, ,

, ,

1 1 1

2 1 2

3 1 3

4 1 4

1

2

3

4

= +
= +
= +
= +





−

−

−

−

ε
ε
ε
ε








 (7)

z x x x xk k k k k= + +, , , ,exp( ) exp( )1 2 3 4 σ  (8)

where x ik i, , , , ,= 1 2 3 4  are state variables; zk is the 
capacity of the Lithium battery at time k, which 
determines its degradation state; ε i i, , , ,= 1 2 3 4  

Figure 2. Tank safety system (Kalantarnia, 2009).

Figure 3. Event tree for tank overflow scenarios.

Table 1. The probabilities of the scenarios.

Scenarios Probability Consequence Description

S1, S2, S7 p Rhf BPC
p R R Rhf BPC HLA MAV( )1−
p R R R Rhf BPC BYP HLA MAV( )1−

C1 High level occurring,  
no lost (near miss)

S3, S5, S8, S10 p R R R R Rhf BPC BYP HLA MAV PSV( ) ( )1 1− −
p R R R Rhf BPC BYP HLA PSV( )1−
p R R R Rhf ( )1− BPC HLA MAV PSV
p R Rhf ( )( )1 1− −BPC HLA

C2 Little amount of  
materials loss

S4, S6, S9, S11 p R R R R Rhf BPC BYP HLA MAV PSV( ) ( )( )1 1 1− − −
 p R R R Rhf BPC BYP HLA PSV( )( )1 1− −

p R R R Rhf ( ) ( )1 1− −BPC HLA MAV PSV
p R R Rhf ( )( )( )1 1 1− − −BYP HLA PSV

C3 Large amount of  
materials loss
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and σ  are the process and observation noises, 
respectively.

In this paper, we generate the degradation path 
of the HLA using (7) and (8), with the parameters 
values in Tables  2–3. The generated degradation 
path is given in Figure 3. The failure threshold of 
the HLA is assumed to be 0.7.

The true degradation state of the HLA is esti-
mated by PF using Algorithm 1. The result is also 
given in Figure 3. It can be observed that, in gen-
eral, PF can estimate and predict the degradation 
of HLA rather satisfactorily.

3.3 Updating

Algorithm 2 is used for updating. The failure 
probabilities of the other components are given in 
Table 2. Each time new monitoring data is avail-

able, the reliability of HLA is updated using Algo-
rithm 1. Then, pci

 can be updated using Algorithm 
2, with the data in Table 4.

For illustrative purposes, we present the update 
at three time points, t t t= = =124 127 130, ,  in arbi-
trary units of time (Figures  4–6). It can be seen 
that the probabilities of occurrence of the different 
consequences are changing with the degradation 
in time of the HLA. Also, as shown in Figure 3, 

Table 2. Parameters of normal distribution.

Parameter Mean Variance

e1 0 1e - 4
e2 0 1e - 5
e3 0 1e - 5
e4 0 1e - 4
s 0 5e - 3

Table  3. Initial values of state model 
parameters.

Parameter Value

x11  8.87e-1
x12 -8.86e-4
x13 -2.32e-4
x14  4.58e-2

Figure 3. Trajectory of the HLA degradation.

Table  4. Failure probabilities of different safety 
measures.

Safety barrier Failure probability

Basic process control (BPC) fBPC = 0.025
Bypass line (BYP) fRYP = 0.150
High level alarm (HLA) Updated using PF
Manual valve (MV) fMAV = 0.015
Pressure safety valve (PSV) fPSV = 0.045

Figure  4. Probability of consequences C1, C2, C3 at  
t = 124.

Figure  5. Probability of consequences C1, C2, C3 at  
t = 127.
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the failure time of the HLA is TTF = 130 , which 
causes the big change in the probabilities in Fig-
ure 6. Figures 4 and 5 show that by using the con-
dition monitoring data, we can be alerted before 
such changes take place.

3.4 Prognostics

In this section, we use Algorithms 3 and 4 for prog-
nostics. As an illustration, we consider the predic-
tion of the RTCE when C1 reaches a critical value. 
We assume that the pth, .1 0 9= , which means that 
a critical event is defined by p pC th1 1 0 9≤ =, . .  The 
RTCE of C1 predicted at different time points is 
illustrated in Figure 7. It can be seen that as moni-
toring data become available, the predicted RTCE 
is more and more accurate, as expected.

4 CONCLUSION

In this paper, we propose an integrated framework 
for DRA. Event tree and particle filtering are inte-
grated for online updating and prediction based on 
condition-monitoring data. A case study on a tank 
safety system is carried out for demonstration pro-
poses. The results show that the developed frame-
work can support a condition-informed DRA.
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