Evaluating Genomic Big Data Operations on
SciDB and Spark

Simone Cattani, Stefano Ceri, Abdulrahman Kaitoua, and Pietro Pinoli

Dip. Elettronica, Informazione e Bioingegneria - Politecnico di Milano
fistname.secondname@polimi.it

Abstract. We are developing a new, holistic data management sys-
tem for genomics, which provides high-level abstractions for querying
large genomic datasets. We designed our system so that it leverages
on data management engines for low-level data access. Such design can
be adapted to two different kinds of data engines: the family of scien-
tific databases (among them, SciDB) and the broader family of generic
platforms (among them, Spark). Trade-offs are not obvious; scientific
databases are expected to outperform generic platforms when they use
features which are embedded within their specialized design, but generic
platforms are expected to outperform scientific databases on general-
purpose operations.

In this paper, we compare our SciDB and Spark implementations at
work on genomic abstractions. We use four typical genomic operations as
benchmark, stemming from the concrete requirements of our project, and
encoded using SciDB and Spark; we discuss their common aspects and
differences, specifically discussing how genomic regions and operations
can be expressed using SciDB arrays. We comparatively evaluate the
performance and scalability of the two implementations over datasets
consisting of billions of genomic regions.

1 Introduction

Next Generation Sequencing (NGS) is a technology for reading the DNA that is
changing biological research and will change medical practice; thanks to the avail-
ability of millions of whole genome sequences, genomic data management may
soon become the biggest and most important “big data” problem of mankind,
and bringing genomics to the cloud is becoming more and more essential. In
this context, we are currently developing a new, holistic approach to genomic
data modelling and querying that uses cloud-based computing to manage het-
erogeneous data produced by NGS technology [12]'. Our approach is based on
a new, high-level query language, called GenoMetric Query Language (GMQL)
[13], which enables building new datasets from a repository of existing datasets,
using algebraic operations.

! Advanced ERC Grant, http://www.bioinformatics.deib.polimi.it/geco/

The current implementation of GMQL, described in [12], uses Flink [3] and
Spark [4]. We recently considered another target for GMQL, opting for a sci-
entific data management system. Scientific databases are known to for their
efficient support of data aggregation over several dimensions, which is crucial for
genomics. Among the various alternative systems, we selected SciDB, because it
supports an add-on specifically dedicated to tertiary data analysis for genomics
[1]; thus, it is an ideal alternative implementation framework for GMQL.

In this paper, we closely compare Spark and SciDB at work on genomic
queries. We describe four widely used genomic abstractions: region selection, ag-
gregation, histogram and mapping; by composing them, we obtain a significant
subset of domain-specific operations of GMQL and of the other tools for ge-
nomic region management. We built a big data benchmark with a large dataset
of regions and samples: the largest test compares half million regions to hun-
dred millions regions, scattered over two thousand samples, corresponding to 50
trillion potential region intersections.

This paper demonstrates that both Spark and SciDB can manage such work-
load and qualify as relevant candidates for hosting tertiary genomic data anal-
ysis. Our benchmark demonstrates the superiority of SciDB in computations
which perform selections and aggregations, but also shows that Spark outper-
forms SciDB in computations that perform genome-wise region comparisons; in
such cases, both the SciDB and Spark computations use binning, a method for
partitioning the genome into disjoint portions so as to enable parallelism.

The organization of this paper is as follows. Section 2 briefly introduces SciDB
and Spark; Section 3 explains the Genomic Data Model and its mapping to an
array database such as SciDB. Then, Section 4 provides a high-level description
of the encoding of genomic abstractions using Spark and SciDB, and Section 5
provides their benchmark. Conclusions summarize our findings.

2 Platform Features

Apache Spark [18,20,21] is a general-purpose data processing engine provid-
ing high-level data operators and making a more efficient use of memory as
compared with low-level map-reduce programming. SciDB [6,16,17] is a com-
putational multi-dimensional database engine optimized for fast data selection
and aggregations, required by most scientific applications.

Spark. The programming model of Spark is based on an abstraction called
resilient distributed datasets (RDDs); a RDD is a distributed, fault tolerant data
collection which can be processed on large servers or clusters. RDDs empower
Spark with the support for in-memory data processing by allowing the state of
the memory to be shared across different jobs. On contrary, for conventional
MapReduce systems, sharing of intermediate data is only possible through write
and read on persistent storage (e.g., the distributed file system), incurring sig-
nificant cost for loading the data and writing it back at each stage.

Spark includes a rich set of operators, including map, flatMap, mapPartition,
reduce, repartition, filter, union, cartesian, coGroup, sortByKey, countByKey,

the above operations are also denoted as transformations, as they produce RDDs
from either RDDs or input files, whereas other operations are denoted as actions,
as they do not produce RDDs, but instead they either pass a result set to the
embedding program or write data to the disk We opted for RDDs over Spark’s
DataFrame so as to keep the Spark and Flink deploys similar, as Flink operators
are similar to RDD operators.

SciDB. The database engine of SciDB is based on a native array data model.
Each array is described by a list of dimensions and a list of attributes. Dimen-
sions have the integer type and each combination of them defines a cell in the
array; attributes have arbitrary types, and consequently each cell is an vector
of correspondingly typed values. Each array is implemented as a specific data
structure, managed by the SciDB engine. Arrays are divided into chunks, where
the chuck size is an important parameter under the control of the database de-
signer. An hash function uses the dimension values associated to each chunk in
order to assign it to a specific node of the cluster; by using this method, called
Multidimensional Array Clustering, every query processing operation is mapped
to specific chunks and executed in parallel at the nodes where such chunks are
allocated.

SciDB queries are programmed using the Array Functional Language (AFL),
a query language where each operation is defined as a function that receives as
input either one or two arrays and produces as output one array; operations
can be nested. The operations of AFL include: filter for selecting the array
elements that satisfy a Boolean condition, between for extracting a rectangular
region of the array, cross_join for pairing arrays (using equi-join on dimensions
to speed up the computation), redimension to promote attributes to dimensions
or to deprecate dimensions to attributes.

3 SciDB representation of the Genomic Data Model

The Genomic Data Model (GDM), biologically motivated in [14], is based on
the notions of datasets and samples. Datasets are collections of samples carrying
the same region schema. Each sample consists of two parts, the region data,
which describe portions of the DNA and their features, and the metadata, which
describe general properties of the sample.

GDM Model. A genomic region r is a portion of the genome defined by the
quadruple of values (chr,left,right, strand), called region coordinates, where
chr is the chromosome, left and right are the two ends of the region along
the DNA coordinates; strand is encoded as either + or —, and can be missing.
Formally, a sample s is a triple (id, R, M) where:

— id is the sample identifier of type long.

— R is the set of regions of the sample, built as pairs (¢, f) of coordinates
¢ and features f.Coordinates are arrays of four fixed attributes chr, left,
right, strand which are respectively typed string, long, long, string. Features
are arrays of typed attributes; we assume attribute names of features to be
different, and their types to be arbitrary. The region schema of s is the list

of attribute names and types used for the identifier, the coordinates and the
features.

— M is the set of metadata of the sample, built as attribute-value pairs (a, v),
where we assume the type of each value v to be string.

A dataset is a collection of samples with the same region schema and with fea-
tures having the same types; sample identifiers are unique within each dataset.

SciDB Representation of GDM. We store metadata into a cube where
the three dimensions are: attribute name, value and sample id. Given that SciDB
does not permit string as dimension type, we introduced hashing for attribute
name and value as dimensions. As the hashing of strings into 64-bit integers
(standard dimension type in SciDB) introduces a high risk of collision errors, we
opted for a double hashing, i.e. we used both for attribute name and value two
different hashing functions, specifically selecting two orthogonal hash functions
[9]. In conclusion, metadata are stored into a single 5-dimensional array.

DS_MD = <name:String,value:String>[sid, nid_1, nid_2, vid_1, vid_2]

where sid is the sample id and (nid-1,nid-2) and (vid-1,vid_-2) are produced
by the double hashing for attribute name and value. The schema of metadata
arrays is identical for all the GDM datasets imported into SciDB.

Regions of a dataset are also stored into a single array; they are organized
according to the relative sample id and genomic coordinate. In order to use
region coordinates as dimensions for the SciDB data model, it is required to cast
to integers the chromosome and strand values. For chromosomes, we defined a
global codification map table that provides chromosome ids shared among all
the datasets. This indexing operation is natively supported by SciDB through
uniq and index_lookup operators. For strand, we applied a static conversion.
Using these transformations, regions data are mapped to a 6-dimensional array,
where attribute fields are based on the specific dataset feature schema provided
by the user. The x dimension is an enumeration value, required because each
GDM sample could have more than one region with the same coordinates.

DS_RD = < feature_schema > [sid, chr, left, right, strand, x]

Fig. 1 shows the representation of the two arrays DS_MD and DS_RD; hash values
are truncated for a better visualization. The physical arrays were designed using
columnar storage with respect to each attribute, algebraic indexing (built by us-
ing a combination of hashing as well as lookup structures that are automatically
maintained as the data sizes grow), and clustering of logically contiguous regions.
This makes slice or between queries very efficient. Arrays are stored within fixed-
size rectilinear chunks that partition the multidimensional space. Each chunk is
then assigned to a computational node, using a hash function over the chunk’s
coordinates; the usage of region ends as coordinates allows their storage based
on real region proximity, a fundamental property in order to speed up domain
specific operations that use range intersection or range selection. According to
[2], the optimal size for a chunk should be between 5MB and 50MB. In our
example, with a single attribute (and a size of about 8 Bytes), chunks with a
million of regions have size of about 8-10 MB.

DS_MD DS_RD

{sid,nid_1,nid_2,vid_1,vid_2} name, value {sid, chr, left, right, strand, x} score

{1, 1020, 6526, 8844, 3474} ‘avg’, ‘0.0’ {1, 4, 1129, 3425, 1, 1} 0.5867

{1, 5139, 2589, 8864, 6221} ‘type’, ‘chiapet’ {1, 3, 5120, 9253, 1, 2} 0.7632

{2, 5139, 2589, 7534, 3123} ‘type’, ‘chipseq’ {1, 4, 3342, 3544, 0, 3} 0.3324

{1, 2984, 8763, 1123, 8232} ‘cell’, ‘hela-s3’ {2, 1, 4212, 7676, 1, 1} 0.9981
{2, 2, 1112, 1745, 1, 2} 0.7783
{2, 2, 1112, 1745, 1, 3} 0.7783
{2, 3, 5142, 7435, 1, 4} 0.5741

Fig. 1. Metadata and regions arrays imported into SciDB.

4 Genomic Operations

We next present four basic abstractions which are composed in several ways
within GMQL operations; given that regions are several orders of magnitude
greater than metadata, we focus on the operations which apply to regions.

4.1 Region Filtering

We consider three selection predicates: (a) by chromosome (coordinate), (b) by
a region attribute and (c) by a conjunctive expression on both chromosome and
score. Both implementations are straightforward.

A. Spark In the Spark implementation, regardless of the condition type, we
just need to filter the RDD of the regions:

regionsRDD.filter(predicate)

B. SciDB The SciDB implementation is based on a simple AFL selection. In the
SciDB model, chromosome is a dimension while the region attribute is placed
within a cell. Therefore, case (a) is implemented simply as a dimension lookup
and case (¢) as a dimension lookup followed by a filter. The query of case (b)
requires instead to scan all the chunks and then test the condition.

4.2 Region Aggregation

We consider an aggregate operation, such as COUNT, AVG, which is applied to all
the regions of each sample of a dataset; the operation returns pairs <SampleId,
Value>.

A. Spark The Spark implementation is based on grouping samples based on
SampleID and then calculate the aggregation for each sample separately. To
calculate the count, we use the following code:

DS_RDD. groupBy (x=>x.sampleld) .mapValues (x=>x.size)

B. SciDB The AFL language of SciDB provides the aggregate operator which
takes as input a SciDB array, a list of aggregate functions and (optionally) a list
of dimensions along which to compute the aggregates. The mapping of Region

Aggregation to aggregate is straightforward, where the dimension corresponds
to the sample ID. As an example, the AFL code for computing the count aggre-
gate looks like:

aggregate(dataset_array, count(*),SamplelD);

where the first argument of the aggregate is the input dataset, the second is
the aggregation function and the last one is the aggregation dimension.

4.3 Region Histogram

A classic operation in genomics is to compute the accumulation index, i.e. for
each position in the genome the number of regions which overlap with that
position; the operation applies to all the samples of a dataset. Note that the
regions of the three input samples S1, 82, S3 have several overlaps, and the
accumulation index ranges between 1 and 3, as shown in Fig. 2.

o D - ¢ v cc e m— - [nput
------- LK KXXXERREE
............................ I - - - - Samp|es

e I * .-+ Histogram
1 2 1 3 2

Fig. 2. Genomic histogram: computation of an accumulation index

A sequential algorithm for solving this problem consists of scanning the
genome from left to right and maintain the accumulation count. Every time
we meet the start of a region, we increment the count; conversely, every time
we meet the stop of a region, we decrement the count. The result is made of all
the consecutive couples of region ends (either starts or stops) between which the
accumulation count is positive and does not change.

A. Spark A parallel and distributed Spark implementation for computing the
histogram is described in detail in [5]. The implementation of histogram (and
of most operations on genomic regions) is based on mono-dimensional bin-
ning, consisting in partitioning the genome into equal size, disjoint and con-
secutive segments, called bins, originally introduced for fast genome viewing
on a browser (https://genome.ucsc.edu/). For each chromosome, the i-th bin
spans from i*BIN_SIZE to (i+1)*BIN_SIZE. Then the histogram is computed in
parallel for each bin, through a functional style algorithm based on the reduce
operation; results of all the bins are merged in order to produce the histogram
of the whole genome.

B. SciDB The computation of histograms by a SciDB program is complex and
requires a good understanding of AFL primitives We provide a high-level descrip-
tion of the algorithm used for aggregating regions and of how such algorithm
takes advantage of an array representation. Figure 3(a) shows that each INPUT

is represented as 6-dimensional arrays (recall Section 3); for the purpose of his-
togram evaluation we do not consider strands, therefore each region within a
sample is characterized by chromosome, right end, left end, and x value. Thanks
to suitable redimension and apply operations, we build two 2D matrixes, respec-
tively called LEFT and RIGHT, illustrated in Fig. 3(b), where one dimension is the
chromosome and the other dimension is a projection of the region respectively
on the left and right end; the tables contain +M at every region’s left end and
-N at every region’s right end, where M and N respectively denote the number
of regions starting and ending at each base.

chr . C“;
M 3 eltaAcc P
5

(a) Input (b) Slicing (c) Accumulatlon (d) Delta (e) Output

&

Left

Base

Right
Base

Fig. 3. Schematic representation of the steps for histogram computation in SciDB

Then, we merge the two matrixes into a 3D matrix, called ACCUMULATION,
with a fictitious dimension valued (0,1), that pairs the two 2D matrixes (see
Fig. 3(c)); at this point, the cells of the 3D matrix are collapsed by applying
the sum aggregation on colliding cells, followed by a redimension; the output
matrix, called DELTA, is shown in Fig. 3(d); its cell at a place (c,r) is an integer
representing a count of regions starting or ending at position r of chromosome c
(it can be a positive or negative value).

At this point, the actual histogram can be extracted for each chromosome
and cell by applying the cumulate operation of SciDB to the DELTA matrix
(it adds to each value within an array the sum of all its predecessors, e.g.
cumulate([4,-2,1,-2,2]1=[4,2,3,1,3]); results are positive numbers reflect-
ing the organization of regions in the genome; a final application of apply and
redimension returns the result as 6-dimensional array (Fig. 3(e)), where regions
are characterized by a new attribute ACCUMULATION storing their accumulation
index.

4.4 Region Mapping

A region mapping operation applies to two datasets, called Reference and
Experiment respectively. This operation performs the intersection of Experiment
samples over each Reference and then computes an aggregate over such intersec-
tion. This behavior is explained in Figure 4, where we show a simple case consist-
ing of one sample of Reference and one sample of Experiment with overlapping
regions, where we count the number of experiment regions which intersect with
each reference region (e.g., the third region of the Reference intersects with 2
regions of Experiment and therefore its count is 2). Region mapping requires
the computation of a particular kind of join between regions, which is satisfied

when two regions intersect. Joins with arbitrary distal conditions are discussed
in [12].

[I T EEEEEEEREE R
........ Ry e Exp
ol s ccceeescetatacctnasenenand =B
T e R s - - Ref
. XEETETRS L TEETRTE —2 MAP(count)
3 0

Fig. 4. Mapping experiments to references in genomics.

A. Spark The Spark implementation consists of two main steps: (a) binning and
(b) checking for intersection. In the binning phase, the genome is divided into
bins and every region of both the Reference and the Experiment datasets is
assigned to all the bins it overlaps. Then, the datasets are left-joined on the key:
(id,bin, chromosome). The cross product of the regions within the same bin is
then computed and the intersection condition is checked, consisting of testing for
overlap (by considering the start and the stop of both regions) and then testing
if one of the regions starts on the current bin, thus creating just one result for
each matching pair. This condition generalizes a binning method presented in
[8]. Finally, adjacent regions on contiguous bins are aggregated using a reduce
phase, producing the final result.

B. SciDB In the SciDB implementation we adopt the above binning approach,
but with an important difference. In SciDB it is not possible to dynamically split
a region and distribute its replicas to an arbitrary number of adjacent bins, as
we must apply identical operations to every cell in the array which stores the
regions; thus, in order to apply a binning strategy, we must replicate all the
regions an identical number of times. Such number is a function of the length M
of the longest region in the Reference and Experiment datasets. In general, for
given M and bin size 8, each region will span to at most R bins, with: R = [M/S]+1.
This is a limitation w.r.t. Spark, which can manage variable region replication;
region replication in Spark occurs only when the region spans across two or more
contiguous bins.

[Dataset[Size (MByte)[Regions (Million)[Samples|

[REF | 23] 0.506 | 1]
DS_1 38 1.012 20
DS2 375 10.120 200
DS_3 3832 101.2 2000
DS_4 38232 1012 20000

Table 1. Features of the datasets used in the filtering operation.

5 Benchmark

We performed our experiments on the Amazon Web Services (AWS) cloud, using
a configuration with r3.4xlarge machine, 16 cores, 122 GB of RAM and 320GB
of SDD. For the experiments reported in this Section, we use synthetic data,
so that we can trace performance scaling with controlled, growing data sizes
(In Section 6 we also show experiments over real genomic datasets); synthetic
datasets are similar to Encode peak datasets [10].

— The schema includes just a Score attribute. Chromosomes are 22, and each
chromosome has 1 million bases.

— Regions in each chromosome are 2300, randomly distributed over the chro-
mosome space; length is randomly distributed between 20 and 500 bases.

We then generate 4 datasets with an increasing number of samples (up to 20K)
and regions (up to 1 billion); see Table 1.

5.1 Regions Filtering

Test [DS_1]DS_2][DS_3[DS4 |

o |

ime(
PN
s 3

execution time(s)
n
S

2
8 .o
ou-

Spark Q1

4.391

6.063

9.403

43.645

SciDB Q1

0.110

0.136

0.385

4.515

Spark Q2

4.640

6.447

10.299

46.049

SciDB Q2

0.161

0.581

5.673

58.137

Spark Q38

4.478

6.145

9.813

44.015

SciDB @3

0.123

0.140

0.284

2.035

2
S

N
S

\
Y

)
1
1
1
]
1
1
1
1
1
[
|
1
1
1
1

1
1
[

dataset size

Fig. 5. Execution times (in seconds) for the filter operation.

We start comparing how Spark and SciDB execute the filtering operations
discussed in Section 3.1. We consider three selection predicates: Q1: chr=’chril’,
Q2: score>0.9, Q3: (chr=’chrl’) and (score>0.9). Execution times of the
operations in Spark and SciDB are reported in Fig. 5. We note that execution
times for SciDB on Q1 and Q3 are much smaller than on Q2; in the former cases
SciDB exploits the between operator and outperforms Spark. In Q2, instead,
SciDB must read each single cell in order to apply the filtering operation, and in
such case the execution time is similar to Spark, and it actually becomes worse
with increasing data sizes.

10

5.2 Region Aggregation

Execution times of region aggregation Q4: aggregate(count) in Spark and
SciDB are reported in Fig. 6. In this case we observe a huge difference between
the two platforms performance: SciDB exploits the possibility to run in parallel
the aggregation function in each chunk, and thus SciDB outperforms Spark.

. | Test [DS1][DS2[DS3] DSA4 |

—-Sp_ark
100 // Spark @4[10.667|18.730(29.094|133.938
H ol SciDB @4| 0.155 | 0.169 | 0.307 | 1.747

e o o o e

dataset size

Fig. 6. Execution times (in seconds) for the aggregation operation.

5.3 Region Histogram

Execution times of region histogram Q5 in Spark and SciDB are reported in Fig.
7. In spite of rather different algorithms used in SciDB and Spark for computing
the histogram, their overall performance is similar, especially considering the
dataset DSy and the scale-up. However, for the small datasets DS; and DSs,
SciDB has better performance (respectively by factors 6 and 4).

[Test [DS.1[DS2[DS3] DSA |

o Spark Q5[8.005[32.234[85.841[260.332
/ SciDB Q5]1.520 8.667 |69.275(222.767

300

-
-
e
=

10° 10° 107 108
Dataset size (# of regions)

Fig. 7. Execution times (in seconds) for the histogram operation.

5.4 Region Mapping

Execution times of region mapping Q6 in Spark and SciDB are reported in Fig. 8.
Region mapping is an operation of quadratic complexity, similar to the join;

11

hence, execution times are much higher (expressed in minutes). In this case, we
note that Spark outperforms SciDB, whose performance rises to about 1.5 hr
when comparing .5 million regions of the reference with 101 million regions of
2000 experiments (note that this is a big data operation, as it potentially requires
50 trillion comparisons).

6 Conclusions

Although a large number of benchmarks exist for comparing general purpose
cloud-based engines such as Spark and Flink, including academic articles ([5]
and [15]) and several posts?, we are not aware of benchmarks comparing these
engines with array-based scientific databases, such as SciDB. Our paper shows
that this benchmark has no clear winner; as expected, SciDB performs better
when it benefits from the array-based database organization (hence, on region
filtering and aggregation), while Spark performs better on massive region map-
ping operations (similar to joins). The histogram operation, which does not fall
in either categories, has very close performance in SciDB and Spark.

The best performances of Spark in massive operations (map) hints to prefer-
ring it over SciDB in the management of applications with billions of regions.
However, consider that our design matches regions to arrays using a general pur-
pose data design, that serves general data integration requirements; we expect
that specific array-based data designs could perform very well in SciDB; among
them, cases of variant analysis, gene expression mining and high-throughput
screening are described in [1].

Our GMQL architecture, which includes three GMQL implementations to
SciDB, Spark and Flink, appears even more strongly motivated after this bench-
mark; by supporting various implementation engines we will be able to match
application requirements to the best target system and to closely follow the
evolution of cloud-based platforms during the ERC project timeframe.

[Test [DS_1]DS_2[DS.3]

Spark 6]0.12|0.57 | 3.82
SciDB @6] 0.28 | 3.29 |95.33

w— - Spark

time(s)

——

0 == T

10° 108 10
dataset size

Fig. 8. Execution times (in minutes) for the mapping operation.

2 See: http://sparkbigdata.com/102-spark-blog-slim-baltagi/14-results-of-a~
benchmark-between-apache-flink-and-apache-spark.

12

Acknowledgment

The authors would like to thank the SciDB support team for help during Simone
Cattani’s thesis and for comments at his seminar, given at SciDB on July 19,
2016. This work is supported by the ERC Advanced Grant GeCo (Data-Driven
Genomic Computing).

References

1. Anonymous paper, Accelerating bioinformatics research with new software for big

data to knowledge (BD2K), Paradigm4, 2015.

Anonymous paper, SciDB MAC Storage Explained, Paradigm4, 2015.

Apache Flink. http://flink.apache.org/ .

Apache Spark. http://spark.apache.org/ .

M. Bertoni, S. Ceri, A. Kaitoua, P. Pinoli Evaluating cloud frameworks on genomic

applications. In IEEE-Big Data Conference, 193-202, 2015.

6. P. G. Brown, Overview of SciDB: large scale array storage, processing and analysis.
In Proc. ACM-SIGMOD, 963-968, 2010.

7. S. Cattani, Genomic Computing with SciDB, a Data Management System for Sci-
entific Computations, Master Thesis, Politecnico di Milano, July 2016.

8. B. Chawda et al. Processing Interval Joins On Map-Reduce. In Proc. EDBT, 463-
474, 2014.

9. S. Edelkamp, D. Sulewski, C. Yucel, Perfect hashing for state sparce exploration on
the gpu. In Proc. ICAPS, 57-64, 2010.

10. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in
the human genome. Nature, 489(7414):57-74, 2012.

11. Hadoop 2. http://hadoop.apache.org/docs/stable/

12. A. Kaitoua, S. Ceri, M. Bertoni, P. Pinoli Framework for Supporting Genomic
Operations IEEE-TC, 2016, DOI 10.1109/TC.2016.2603980.

13. M. Masseroli, et al. GenoMetric Query Language: A novel approach to large-
scale genomic data management. Bioinformatics, 2015, doi: 10.1093/bioinformat-
ics/btv048.

14. M. Masseroli, A. Kaitoua, P. Pinoli, S. Ceri. Modeling and interoperability of
heterogeneous genomic big data for integrative processing and querying. Methods,
2016. DOI: 10.1016/j.ymeth.2016.09.002.

15. N. Spangelberg et al. Evaluating New Approaches for Big Data Analytics Frame-
works, BIS 2015, LNBIP 18, Springer-Verlag, June 25, 2015.

16. M. Stonebraker et al. The architecture of SciDB. in Proc. Scientific and Statistical
Database Management, 1-16, Springer-Verlag, 2011.

17. M. Stonebraker et al. SciDB: A database management syatem for applications with
complex analytics. in Computing in Science & Engineering, 15(3), 54-62, 2013.

18. R. Xin et al. Shark: SQL and Rich Analytics at Scale. In Proc. ACM-SIGMOD,
June 2013.

19. M. S. Weiwiorka et al. SparkSeq: Fast, scalable and cloud-ready tool for the inter-
active genomic data analysis with nucleotide precision. Bioinformatics, 30(18):2652-
2653, 2014.

20. M. Zaharia et al. Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proc. NSDI, 15-28, 2012.

21. M. Zaharia et al. Discretized Streams: Fault-Tolerant Streaming Computation at
Scale. In Proc. SOSP, November 2013.

G Wi

