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Abstract 

In April 2015, the number of operating High Speed Trains (HSTs) in the world has reached 3603. An 

efficient, effective and very reliable braking system is evidently very critical for trains running at a 

speed around 300 km/h. Failure of a highly reliable braking system is a rare event and, consequently, 

informative recorded data on fault conditions are scarce. This renders the fault detection problem a 

classification problem with highly unbalanced data. In this paper, a Support Vector Machine (SVM) 

framework, including feature selection, feature vector selection, model construction and decision 

boundary optimization, is proposed for tackling this problem. Feature vector selection can largely 

reduce the data size and, thus, the computational burden. The constructed model is a modified version 

of the least square SVM, in which a higher cost is assigned to the error of classification of faulty 

conditions than the error of classification of normal conditions. The proposed framework is 

successfully validated on a number of public unbalanced datasets. Then, it is applied for the fault 

detection of braking systems in HST: in comparison with several SVM approaches for unbalanced 

datasets, the proposed framework gives better results. 

Key words: high speed train; braking system; support vector machine; feature vector selection; 

threshold optimization; cost-sensitive models; highly imbalanced data; classification 

1. Introduction 

In recent years, the speed of the new High Speed Trains (HSTs) has increased to more than 300 km/h 

(He et al., 2013). According to the report of the International Union of Railways, the number of HSTs 

under operation in the world has reached 3603 in April 2015 (http://www.uic.org/highspeed). Safety 

and reliability in HST operation has attracted much attention (Bondell et al., 1986; Giboni, 2006; He et 

al., 2013; Fumeo et al., 2015). The braking system is a key safety-relevant component for guaranteeing 

the efficient deceleration of the train operating at high speed (Wang and Chiueh, 1998).  

http://www.uic.org/highspeed


There are different types of braking systems, e.g. air brakes, vacuum brakes, electro-pneumatic brakes, 

electronically controlled pneumatic brakes, etc. (http://www.railway-technical.com/ep-brakes.shtml). 

Figure 1 shows the block diagram of a simple electro-pneumatic braking system. Although highly 

reliable, faults in braking systems may still occur, e.g. stop cock emergency application valve closed, 

pneumatically brake stop cock closed on bogie, etc. If a fault is detected, proper mitigation actions can 

be performed timely to avoid serious damages to the train and the passengers. Thus, fault detection 

in the braking system is clearly an important issue.  

 

Fig. 1 Block diagram of an electro-pneumatic braking system (http://www.railway-technical.com/ep-

brakes.shtml). 

The increasing installation of monitoring systems on various industrial systems have increased the 

popularity of data-driven approaches applied for fault detection (Cecati et al., 2015; Gupta et al., 2015; 

Li et al., 2015). In the braking system of a HST, different variables directly or indirectly related to 

condition of the braking system are monitored, e.g. battery level in the auxiliary system, line voltage, 

mean suspension pressure, etc.  

In this paper, we propose a framework for fault detection in the braking system of a HST. The 

framework stands on a modified version of Support Vector Machine (SVM). SVM (Zhao et al., 2015; 

Zhao et al., 2013) is a powerful data-driven approach that has been already successfully used for fault 

detection and diagnosis in different applications, e.g. smart grid (Jindal et al., 2016), automobile 

hydraulic brake system (Jegadeeshwaran and Sugumaran, 2015), gasoline engine valve (Li et al., 2012), 

bearings (Liu et al., 2016; Lei et al., 2016). SVM solves nonlinear problems by mapping the data into a 

high-dimensional feature space, i.e. Reproduced Kernel Hilbert Space (RKHS), where the problem 

becomes linear. The kernel function, which represents the inner product of the mapping of two data 

points in RKHS, is an important part of a SVM model, as the mapping function is normally difficult to 

be given explicitly. 



The rest of the paper is structured as follows. Research on braking systems and SVM approaches for 

unbalanced data are reviewed in Section 2. Section 3 presents the proposed framework for fault 

detection. The application on data from a braking system of a HST are given in Section 4. The proposed 

framework is also verified and validated on a number of public unbalanced datasets in this section. 

Conclusions are drawn in Section 5, with some perspectives on research and development. 

2. Related work 

In this Section, published research work on the braking system of HSTs is reviewed and the originality 

of our development for fault detection is highlighted. SVM approaches that have been developed for 

classification of unbalanced data are reviewed, some of which are used as benchmark methods for 

comparison with the proposed framework. 

2.1 The braking system of a HST 

HSTs operates at high speed, from 210km/h of the first high speed trains to 350km/h of the new ones 

(Givoni, 2006). In the literature, there are a few research works on the braking system of a HST, which 

is a fundamental component for safety. Wang and Chiueh (1998) investigated the brake systems for 

more efficient operations. Bendell et al. (1986) analyze the reliability of the brake discs on a HST, using 

a proportional hazard model. An approach combining signal processing and information enhancement 

is proposed in He et al. (2013) for diagnosis of train bearings. In Kang (2007), a hardware-in-the-loop 

system is built to simulate the dynamics of a braking system of a HST. A modelling framework of 

magnetic braking systems is proposed in Galardi et al. (2015) to test efficiency.  

To the knowledge of the authors, this is the first time that the fault detection problem of HST braking 

systems is investigated. 

2.2 SVM approaches for unbalanced data 

The braking system of a HST is highly reliable. Field data on fault conditions are scarce, so that the fault 

detection is essentially a classification problem of highly unbalanced data whereby the number of 

instances in one class (majority class) is much larger than that in another class (minority class). 

Different SVM approaches have been proposed for tackling unbalanced data. They can be categorized 

into data-level and algorithm-level ones.  

The data-level approaches aim at balancing the data sizes in majority and minority classes. Randomly 

UnderSampling (RUS) the majority class (Japkowicz 2010) and Randomly OverSampling (ROS) the 

minority class (Batisata et al., 2004) are two of the most popular data-level approaches. Synthetic 

Minority Oversampling TEchnique (SMOTE) proposed by Chawla et al. (2002) has been proved to be 

more effective than ROS.  



The algorithm-level approaches modify SVM itself for the classification of unbalanced data. Zhang and 

Zhou (2015) introduced the Cost-Sensitive SVM (CS-SVM), which applies a relatively larger penalty cost 

to the error on the minority class and a relatively smaller cost to the error on the majority class, in the 

objective function of the primal optimization problem of SVM. Yu et al. (2015) attempted to improve 

the classification accuracy by adjusting the decision boundary, around which different classification 

decisions are taken. 

In this work, we propose a SVM framework in which features and feature vectors are selected by 

analyzing the between-class separability. In our previous work (Liu and Zio, 2016), a modified version 

of SVM is proposed with satisfactory results for regression problems. A cost-sensitive version of this 

method is developed in this paper to tackle the fault detection problem with unbalanced data. A 

decision boundary optimization method is integrated in the framework to maximize the classification 

accuracy. 

3. SVM framework for fault detection in the braking system of a HST 

In this Section, the proposed SVM framework is presented. Figure 2 shows the flowchart of the 

framework. It can be divided into 4 parts, i.e. feature selection, feature vector selection, model 

construction and decision boundary optimization.  

Suppose the data matrix 𝒙 = {𝑥𝑖,𝑗}  and the vector 𝒚 = {𝑦𝑖: 𝑦𝑖 ∈ (−1,1)} , for 𝑖 = 1,2, … , 𝑁𝑛, 𝑁𝑛 +

1, … , 𝑁𝑛 + 𝑁𝑝, 𝑗 = 1,2, … , 𝑀 are, respectively, the measured value of the 𝑀 variables (features) in the 

braking system and the corresponding fault indicator, with −1 indicating normal conditions and +1 

indicating faulty condition, and 𝑁𝑛  and 𝑁𝑝  being the number of data points in normal and faulty 

conditions, respectively. 𝑥𝑖,𝑗  is the measured value of the j-th feature in the i-th data point. In the 

dataset, the first 𝑁𝑛 data points are in normal condition and the rest are in faulty condition. In the rest 

of the paper, the vector 𝒙𝑖:𝑙,𝑗 contains the measured value of the j-th feature in the data points from i 

to l, and the vector 𝒙𝑖,: is the input row vector of the i-th data point. 



 

Fig. 2 Flowchart of the proposed SVM framework for fault detection. 

3.1 Feature selection 

In a dataset containing a large number of features, some features can be redundant or even irrelative 

to the fault detection. These features need to be identified and eliminated from the data. In the 

proposed SVM framework, the between-class separability with respect to one feature is used as the 

criterion. Its mathematical definition with respect to the j-th feature vector is presented as follows: 

𝜆𝑗 =
(𝑚𝑗,+−𝑚𝑗,−)2

𝛿𝑗,+
2 +𝛿𝑗,−

2 ,          (1) 

where 𝑚𝑗,+ and 𝛿𝑗,+
2  are the mean and variance of the vector 𝒙𝑁𝑛+1:𝑁𝑛+𝑁𝑝,𝑗, i.e. the values of the j-th 

feature of the data points in faulty condition (minority class), and 𝑚𝑗,− and 𝛿𝑗,−
2  are the mean and 

variance of the vector 𝒙1:𝑁𝑛,𝑗, i.e. the values of the j-th feature of the data points in normal condition 

(majority class). The features giving a between-class separability lower than a predefined threshold 

𝑇ℎ𝑓𝑠 are eliminated. 

3.2 Feature vector selection 

As mentioned in the introduction, SVM solves a nonlinear classification problem by mapping input 

vectors to a feature vector in RKHS where the problem becomes linear. After selecting the informative 

features, the data is rearranged by keeping only the selected features. As the data size collected by the 

monitoring system can be very large, feature vector selection aims at reducing the data size by 

extracting the informative ones. If one feature vector is to be selected, it should satisfy two criteria: 



the new feature vector contains useful information for the classification; the new feature vector brings 

additional useful information to the current selected feature vectors. 

The first criterion is measured by the between-class separability with respect to this feature vector. 

Suppose that, in SVM, the function for mapping an input vector to a feature vector in RKHS is (𝒙𝑖,:) and 

the kernel function is noted as 𝑘(𝒙𝑖,:, 𝒙𝑙,:) =< 𝜑(𝒙𝑖,:), 𝜑(𝒙𝑙,:)  >, 𝑖, 𝑙 = 1,2, … , 𝑁𝑛, 𝑁𝑛 + 1, … , 𝑁𝑛 +

𝑁𝑝, where < ∎ > means the inner production. The calculation of the between-class separability is still 

as in Equation 1, with j meaning the j-th feature vector. But 𝑚𝑗,+, 𝛿𝑗,+
2 , 𝑚𝑗,− and 𝛿𝑗,−

2  are calculated as 

below (Mao, 2002): 

𝑚𝑗,+ =  
1

𝑁𝑝
∑ 𝑘(𝒙𝑖,:, 𝒙𝑗,:)

𝑁𝑛+𝑁𝑝

𝑖= 𝑁𝑛+1
                 

𝛿𝑗,+
2 =  

1

𝑁𝑛
∑ (𝑘(𝒙𝑖,:, 𝒙𝑗,:) − 𝑚𝑗,+)2𝑁𝑛+𝑁𝑝

𝑖=𝑁𝑛+1

𝑚𝑗,− =  
1

𝑁𝑛
∑ 𝑘(𝒙𝑖,:, 𝒙𝑗,:)

𝑁𝑛
𝑖= 1                         

𝛿𝑗,−
2 =

1

𝑁𝑛
∑ (𝑘(𝒙𝑖,:, 𝒙𝑗,:) − 𝑚𝑗,−)2𝑁𝑛

𝑖=1         

       (2) 

If the between-class separability of all the data points with respect to the feature vector of one data 

point is larger than a predefined threshold 𝑇ℎ𝑓𝑣𝑠, this data point contains useful information for the 

classification of the unbalanced data. Otherwise, it is not useful as it fails to distinguish the two classes. 

The second criterion is characterized by the variable Local Fitness (LF) proposed by Baudat and Anouar 

(2003). Suppose that the current selected feature vectors are 𝒔 = {𝜑(𝒙1,:), 𝜑(𝒙2,:), … , 𝜑(𝒙𝑀,:)} and 

one needs to know if a new data point 𝒙𝑖,: carries additional information to 𝒔; we attempt to verify if 

the feature vector 𝜑(𝒙𝑖,:) of 𝒙𝑖,:  can be expressed as a linear combination of the current feature 

vectors in 𝒔, as expressed as the below equation: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝛽𝑗
  𝛾(𝒙) =

‖𝜑(𝒙𝒊,:)−∑ 𝛽𝑗𝜑(𝒙𝑗,:)
𝑀
𝑗=1 ‖

2

‖𝜑(𝒙𝒊,:)‖
2 .       (3) 

The minimum of Equation (3) is given by  

𝜷 =  𝐾𝑺,𝑥
𝑡 𝐾𝑺,𝑺

−1,            (4) 

with 𝜷 = {𝛽𝑗}, 𝑖 = 1,2, … , 𝑀. 

The LF is defined as  

𝐿𝐹(𝒙𝒊,:) = |1 −
𝐾𝑺,𝒙𝒊,:

𝑡 𝐾𝑺,𝑺
−1𝐾𝑺,𝒙𝒊,:

𝑘(𝒙𝒊,:,𝒙𝒊,:)
|,         (5) 



with 𝐾𝒔,𝒔  being the kernel matrix of 𝑺 , ∎𝑡  being the transpose of matrix ∎  and 𝐾𝑺,𝒙𝒊,:
=

{𝑘(𝒙𝑖,:, 𝒙𝑗,:)}, 𝑗 = 1,2, … , 𝑀. If 𝐿𝐹(𝒙𝒊,:) > 0, 𝜑(𝒙𝑖,:) is a new feature vector, as it can not be expressed 

as a combination of the current selected feature vectors, i.e. it brings additional information to 𝒔; 

otherwise, 𝜑(𝒙𝑖,:) is not a new feature vector, as 𝜑(𝒙𝑖,:) = ∑ 𝛽𝑗𝝋(𝒙𝑗,:)
𝑀
𝑗=1 . 

The pseudo-code of the feedforward feature vector selection process is shown in Figure 3. 

Initialization: 

Training dataset: 𝑻 = {(𝒙𝑖,:, 𝑦𝑖)}, for 𝑖 = 1,  2,  … ,  𝑁𝑛 + 𝑁𝑝 

Feature space: S = [ ] 

Threshold of LF: 𝑇ℎ𝑙𝑓 (a small positive value) 

FVS: 

Step 1: First feature vector in S: 

For i = 1 to 𝑁𝑛 + 𝑁𝑝  

𝑺 = {𝒙𝑖,:}, compute the separability of all training data points with respect to the present 𝑺, 

following Equations 1 and 2.  

End for. 

Select the point which gives the maximal separability as the first feature vector and add it to S as the 

first FV. 𝑻 is reduced to the complement of E in 𝑻 i.e. 𝑻 = 𝑻\E, with E={(𝒙𝑖,:, 𝑦𝑖): 𝐿𝐹(𝒙𝑖,:) ≤ 𝑇ℎ𝑙𝑓 }. 

Step 2: Second and following feature vectors: 

 If T is not empty 

Select the data point k from 𝑻 which gives the maximal separability of all the data 

points as the next feature vector candidate; 

If the separability of the all the data points with respect to this data point, i.e. 𝜆𝑘 is 

bigger than 𝑇ℎ𝑓𝑣𝑠 , add it to S and reduce the dataset 𝑻 = 𝑻\E, with E={(𝒙𝑖,:, 𝑦𝑖): 

𝐿𝐹(𝒙𝑖,:) ≤ 𝑇ℎ𝑙𝑓 }; 

Otherwise, exit the feature vector selection process. 

End if 

Fig. 3 Pseudo-code of the feature vector selection process. 

The selected feature vector should satisfy two requirements: it carries additional information, i.e. 

𝐿𝐹(𝒙𝑖,:) > 𝑇ℎ𝑙𝑓; it gives largest separabilty of all the data points among the ones that satisfy the first 

requirement, and its separability should be large than the predefined threshold 𝑇ℎ𝑓𝑣𝑠. 

The threshold for LF, i.e. 𝑇ℎ𝑙𝑓 is a small positive value to reduce the influence of the noise on the 

feature vector selection process. 



3.3 Model construction 

Liu and Zio (2016a) propose a modified version of the least squared SVM (named Feature Vector 

Regression (FVR)) based on the feature vector selection method proposed in Baudat and Anouar (2003). 

The estimate function in FVR is a kernel expansion on the selected feature vectors and the objective is 

to minimize the prediction error on the whole dataset. It exhibits a good generalizability, accuracy and 

efficiency in the experiments.  

In this paper, based on the new feature vector selection method proposed in Section 3.2 for 

classification, FVR is extended to a cost-sensitive version for the classification of unbalanced data.  

Suppose that the feature vectors selected by the method proposed in Section 3.2 are noted as 

(𝒙𝑗,:, 𝒚𝑗), 𝑗 = 1, … , 𝑀; the primal optimization problem is formulated as 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦̂𝑗,𝑏        𝑊 =  ∑ (𝑔(𝒙𝒊,:) − 𝑦𝑖)
2𝑁𝑛

𝑖=1 + 𝜔 ∑ (𝑔(𝒙𝒊,:) − 𝑦𝑖)
2𝑁𝑛+𝑁𝑝

𝑖=𝑁𝑛+1
  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜         𝑔(𝒙𝑖,:) = ∑ 𝛽𝑗(𝒙𝑖,:)(𝑦̂𝑗 − 𝑏) + 𝑏𝑀
𝑗=1 , 𝑖 = 1, 2, … , 𝑁𝑛 + 𝑁𝑝    (6) 

with 𝑦̂𝑗 , 𝑗 = 1, 2, … , 𝑀 being the predicted value of the selected feature vectors, 𝛽𝑗(𝒙𝒊), 𝑗 = 1, … , 𝑀 

calculated with Equation 4, 𝑏 a constant value and 𝜔 > 1 the cost assigned to the classification error 

on the positive (minority) class. The estimate function of FVR is 𝑔(𝒙𝑖,:) = ∑ 𝛽𝑗(𝒙𝑖,:)(𝑦̂𝑗 − 𝑏) + 𝑏𝑀
𝑗=1 , 

with 𝑦̂𝑗 , 𝑗 = 1, 2, … , 𝑀 and 𝑏 the unknown values. 

The unknown values can be calculated analytically by exploiting the Karush–Kuhn–Tucker (KKT) 

conditions of the dual problem of Equation 6. The dual problem of Equation 6 is  

𝑊 =  ∑ (∑ 𝛽𝑗(𝒙𝑖,:)(𝑦̂𝑗 − 𝑏) + 𝑏𝑀
𝑗=1 − 𝑦𝑖)

2𝑁𝑛
𝑖=1 + 𝜔 ∑ (∑ 𝛽𝑗(𝒙𝑖,:)(𝑦̂𝑗 − 𝑏) + 𝑏𝑀

𝑗=1 − 𝑦𝑖)
2𝑁𝑛+𝑁𝑝

𝑖=𝑁𝑛+1
  (7) 

Supposing 𝜌𝑖 = 1 − ∑ 𝛽𝑗(𝒙𝒊)𝑀
𝑗=1 , the KKT conditions of Equation 7 give 

𝜕𝑊

𝜕𝑦̂𝑗0

= ∑ (∑ 𝛽𝑗0
(𝒙𝒊)

𝑁𝑛
𝑖=1 ∗ 𝛽𝑗(𝒙𝒊) + 𝜔 ∑ 𝛽𝑗0

(𝒙𝒊)
𝑁𝑛+𝑁𝑝

𝑖=𝑁𝑛+1
∗ 𝛽𝑗(𝒙𝒊)) ∗ 𝑦̂𝑗

𝑀
𝑗=1 + 𝑏 ∗ (∑ 𝛽𝑗0

(𝒙𝒊) ∗ 𝜌𝑖
𝑁𝑛
𝑖=1 +

𝜔 ∑ 𝛽𝑗0
(𝒙𝒊) ∗ 𝜌𝑖

𝑁𝑛+𝑁𝑝

𝑖=𝑁𝑛+1
) − (∑ 𝛽𝑗0

(𝒙𝒊) ∗ 𝑦𝑖
𝑁𝑛
𝑖=1 + 𝜔 ∑ 𝛽𝑗0

(𝒙𝒊) ∗ 𝑦𝑖
𝑁𝑛+𝑁𝑝

𝑖=𝑁𝑛+1
) = 0 , for 𝑗0 = 1, … , 𝑀,  (8) 

𝜕𝑊

𝜕𝑏
= ∑ (∑ 𝛽𝑗(𝒙𝒊) ∗ 𝜌𝑖

𝑁𝑛
𝑖=1 + 𝜔 ∑ 𝛽𝑗(𝒙𝒊) ∗ 𝜌𝑖

𝑁𝑛+𝑁𝑝

𝑖=𝑁𝑛+1
) ∗𝑀

𝑗=1 𝑦̂𝑗 + 𝑏 ∗ (∑ 𝜌𝑖
2𝑁𝑛

𝑖=1 + 𝜔 ∑ 𝜌𝑖
2𝑁𝑛+𝑁𝑝

𝑖=𝑁𝑛+1
) −

(∑ 𝜌𝑖 ∗ 𝑦𝑖
𝑁𝑛
𝑖=1 + 𝜔 ∑ 𝜌𝑖 ∗ 𝑦𝑖

𝑁𝑛+𝑁𝑝

𝑖=𝑁𝑛+1
) = 0.        (9) 

The unknown values, i.e. 𝑦̂𝑗 , 𝑗 = 1, 2, … , 𝑀 and 𝑏, are calculated with 

[
𝛀 𝚮
𝚪𝑇 𝑐

] [
𝒚̂
𝑏

] = [
𝚸
𝑙

],           (10) 



where 𝛀 is a 𝑀 × 𝑀 matrix with 𝛀𝑚𝑛 = ∑ 𝛽𝑚(𝒙𝒊)
𝑁𝑛
𝑖=1 ∗ 𝛽𝑛(𝒙𝒊) + 𝜔 ∑ 𝛽𝑚(𝒙𝒊)

𝑁𝑛+𝑁𝑝

𝑖=𝑁𝑛+1
∗ 𝛽𝑛(𝒙𝒊), 𝚮 is a 

𝑀 × 1 vector with 𝚮𝑚 = ∑ 𝛽𝑚(𝒙𝒊) ∗ 𝜌𝑖
𝑁𝑛
𝑖=1 + 𝜔 ∑ 𝛽𝑚(𝒙𝒊) ∗ 𝜌𝑖

𝑁𝑛+𝑁𝑝

𝑖=𝑁𝑛+1
, 𝚪 is a 𝑀 × 1 vector with 𝚪𝑚 =

∑ 𝛽𝑚(𝒙𝒊) ∗ 𝜌𝑖
𝑁𝑛
𝑖=1 + 𝜔 ∑ 𝛽𝑚(𝒙𝒊) ∗ 𝜌𝑖

𝑁𝑛+𝑁𝑝

𝑖=𝑁𝑛+1
, 𝑐  is a constant and 𝑐 = ∑ 𝜌𝑖

2𝑁𝑛
𝑖=1 + 𝜔 ∑ 𝜌𝑖

2𝑁𝑛+𝑁𝑝

𝑖=𝑁𝑛+1
; 𝒚̂ =

(𝑦̂𝑗), 𝑗 = 1,2, … , 𝑀  and 𝑏  are the unknown values in Equation 6, 𝚸  is a 𝑀 × 1  vector with 𝚸𝑚 =

∑ 𝛽𝑚(𝒙𝒊) ∗ 𝑦𝑖
𝑁𝑛
𝑖=1 + 𝜔 ∑ 𝛽𝑚(𝒙𝒊) ∗ 𝑦𝑖

𝑁𝑛+𝑁𝑝

𝑖=𝑁𝑛+1
, 𝑙 = ∑ 𝜌𝑖 ∗ 𝑦𝑖

𝑁𝑛
𝑖=1 + 𝜔 ∑ 𝜌𝑖 ∗ 𝑦𝑖

𝑁𝑛+𝑁𝑝

𝑖=𝑁𝑛+1
. 

3.4 Decision boundary optimization 

For the constructed model, the predicted value of a new data point 𝒙𝑖,:  is given by 𝑔(𝒙𝑖,:) =

∑ 𝛽𝑗(𝒙𝑖,:)(𝑦̂𝑗 − 𝑏) + 𝑏𝑀
𝑗=1 . In general, a decision boundary 𝜏 is predefined and if 𝑔(𝒙𝑖,:) ≥ 𝜏, the class 

label of the new data point is positive (the minority class); otherwise, its class label is negative (the 

majority class). As in Yu et al. (2015), the decision boundary can be optimized during the training 

process by maximizing the classification accuracy. With 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 𝐹𝑁 representing the number of 

true positive, true negative, fault positive and fault negative, respectively, two of the most popularly 

used classification measures are  

F-measure =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
        (11) 

and 

G-mean =  √𝑇𝑃𝑅 ∗ 𝑇𝑁𝑅,          (12) 

where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) and 𝑇𝑁𝑅 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃). 

In many papers, G-mean is used as the classification measure for optimizing the decision boundary. G-

mean characterizes the classification accuracy on the positive and negative classes. For unbalanced 

data, especially the highly unbalanced case, a high G-mean normally implies a high false alarm rate, as 

the number of FP is much larger than that of the TP. In industrial practice, a high fault detection rate 

and a low false alarm rate are both very important. Thus, in this paper, the sum of F-measure and G-

mean is used as the classification accuracy metric to optimize the decision boundary of the constructed 

model. 

4. Application results 

In this section, the proposed SVM framework is firstly validated on 15 public datasets from KEEL-

dataset repository (Alcala-Fdez et al., 2009) and, then, the results of fault detection of a braking system 

in a HST are presented.  



4.1 Model validation 

Fifteen KEEl datasets with different Imbalance Ratio (IR) are used to verify the effectiveness of the 

model proposed in Sections 3.2, 3.3 and 3.4. The characteristics of the KEEL datasets are shown in 

Table 1. 

Table 1. Characteristics of the KEEL datasets for verifying the effectiveness of the proposed model. 

Dataset Number of instances Number of attributes Imbalance Ratio (IR) 

glass1 214 9 1.82 

haberman 306 3 2.78 

new-thyroid1 215 5 5.14 

yeast3 1484 8 8.1 

ecoli3 336 7 8.6 

ecoli-0-6-7_vs_5 220 6 10 

yeast-1_vs_7 459 7 14.3 

ecoli4 336 7 15.8 

abalone-9_vs_18 731 8 16.4 

shuttle-6_vs_2-3 230 9 22 

yeast4 1484 8 28.1 

yeast5 1484 8 32.73 

poker-8-9_vs_5 2075 10 82 

poker-8_vs_6 1477 10 85.88 

abalone19 4174 8 129.44 

 

Comparisons are carried out with three of the most popular SVM approaches for unbalanced data: 

SVM-RUS, SVM-SMOTE and CS-SVM. Ten-folds cross validation is used to train the models. Grid search 

is used to tune the SVM hyperparameters in each model. Each dataset is divided into ten equal-size 

folds, where one fold is selected as test dataset and the rest nine folds form the training dataset. This 

is repeated ten times and Table 2 reports the mean values of the F-measure and G-mean on the test 

datasets. The bolded value shows the best results obtained by the four approaches. In the experiment, 

the proposed framework outperforms the other three benchmark methods for respectively 12 and 9 

out of the 15 datasets with respect to F-measure and G-mean. Friedman test and Bonferroni-Dunn test  

for the experiment results (Liu and Zio, 2016b) show that the proposed framework gives significantly 

better results than the benchmark methods. One can observe that for the dataset glass1, with respect 

to F-measure and G-mean the proposed approach gives worse results than all the benchmark methods. 

This is due to the FVS process, which causes loss of information by reducing drastically the size of the 

dataset with a small IR (i.e. 1.82 for dataset glass1: the dataset is nearly a balanced one); on the 



contrary, the size of the balanced training dataset using RUS, SMOTE is much larger than that using 

FVS for the dataset glass1. 

Table 2. Comparison of the experiment results. 

 F-measure G-mean 

 proposed 

approach 

SVM-

RUS 

SVM-

SMOTE 

CS-SVM proposed 

approach 

SVM-

RUS 

SVM-

SMOTE 

CS-SVM 

glass1 0.590 0.637 0.641 0.623 0.664 0.714 0.716 0.706 

haberman 0.428 0.424 0.405 0.423 0.586 0.533 0.568 0.525 

new-thyroid1 0.958 0.881 0.910 0.912 0.980 0.958 0.957 0.955 

yeast3 0.773 0.633 0.702 0.668 0.898 0.841 0.866 0.870 

ecoli3 0.600 0.522 0.598 0.564 0.760 0.840 0.780 0.793 

ecoli-0-6-7_vs_5 0.825 0.495 0.648 0.723 0.859 0.830 0.761 0.808 

yeast-1_vs_7 0.391 0.189 0.231 0.291 0.717 0.631 0.539 0.624 

ecoli4 0.765 0.594 0.750 0.705 0.884 0.916 0.807 0.790 

abalone-9_vs_18 0.667 0.251 0.343 0.349 0.864 0.732 0.593 0.597 

shuttle-6_vs_2-3 1.000 0.558 0.877 0.820 1.000 0.751 0.887 0.831 

yeast4 0.370 0.196 0.316 0.352 0.727 0.776 0.683 0.678 

yeast5 0.635 0.466 0.691 0.695 0.904 0.943 0.881 0.877 

poker-8-9_vs_5 0.118 0.035 0.092 0.079 0.669 0.219 0.595 0.511 

poker-8_vs_6 0.530 0.251 0.646 0.451 0.619 0.425 0.669 0.489 

abalone19 0.071 0.031 0.039 0.046 0.644 0.644 0.346 0.253 

 

4.2 Fault detection of the braking system in a HST 

There are totally 43 monitored variables related to the braking system faults. They include train-level 

conditions, e.g. GPS position, speed, operation mode, external power supply, operation hours, line 

voltage, line current, and braking system-level conditions, e.g. internal temperature, battery voltage, 

detected slip or slide, ED brake state, TCL brake state, achieved brake effort. For confidentiality reasons, 

they are not explicitly listed and are named as Var1, Var2, …, Var43. As kernel methods can only tackle 

numeric data, the nominal variables are firstly transformed to numeric ones. All the numeric variables 

are eventually normalized to [0.1 0.9]. 

In the braking system of a HST, different faults may occur, e.g. stop cock emergency application valve 

closed, pneumatically brake stop cock closed on bogie, MTB isolated, stop cock closed, etc. In this 

paper, the different faults are not distinguished (diagnosed) and the label marks only if the brake 

system is undergoing a fault (+1) or not (-1). 



Not all the monitored variables are useful for the fault detection task. Separability, as introduced in 

Section 3.1, is used to verify the usefulness of each variable in differentiating the faulty and normal 

conditions of the braking system, as shown in Table 3. 

Table 3. Separability of the faulty and normal conditions with respect to each variable. 

Variable name Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 

Separability 0.0749 0.0948 0.0306 0.0023 0.0191 0.0332 0.0030 0.0733 0.0134 

Variable name Var10 Var11 Var12 Var13 Var14 Var15 Var16 Var17 Var18 

Separability 0.0111 0.0110 0.0216 0.0073 0.0120 2.4e-6 0.0128 0.0642 0.0079 

Variable name Var19 Var20 Var21 Var22 Var23 Var24 Var25 Var26 Var27 

Separability 0.0072 0.0078 0.0002 0.0003 0.0083 0.0995 0.9775 0.0101 0.0099 

Variable name Var28 Var29 Var30 Var31 Var32 Var33 Var34 Var35 Var36 

Separability 0.0096 0.0012 0.0135 0.0209 0.0225 0.0254 0.0284 0.0677 0.0349 

Variable name Var37 Var38 Var39 Var40 Var41 Var42 Var43 -------- -------- 

Separability 0.2768 0.082 0.1175 0.0000 0.0000 0.0000 0.0000 -------- -------- 

 

From Table 3, one observes that separabilities of the faulty and normal conditions with respect to 

Var40-43 are zero. The threshold 𝑇ℎ𝑓𝑠  for feature selection is set to be 0.1 and, thus, only three 

variables are selected, i.e. Var25, Var37 and Var39. There are totally 28837 data points in normal 

conditions and only 159 in faulty conditions. The IR is 181.4, i.e. the data is highly unbalanced. 

The data points for normal and faulty conditions with the selected variables are plotted in Figure 3. It 

is shown that there is a large overlapping of the two conditions and it is difficult to have both high F-

measure and G-mean values, i.e. both high precision and recall values, simultaneously. For a relatively 

high recall, the FP number is high, thus, precision is low, whereas for a relatively high precision, TP is 

small, i.e. the recall value is low. Simply maximizing the G-mean as in many reported work gives a high 

recall value but a low precision, i.e. a high false alarm rate, and this is unacceptable for practitioners. 

In order to have a compromised results, the sum of F-measure and G-mean is used as the classification 

metric for optimizing the decision boundary, as explained in Section 3.4. 



 

Fig. 3 plot of the normal and faulty data points with respect to the selected features. 

Ten-fold cross validation is applied on the dataset. Radial basis kernel function, i.e. 𝑘(𝒙𝑖,:, 𝒙𝑙,:) =

𝑒‖𝒙𝑖,:− 𝒙𝑙,:‖
2

/𝜎2
 is used in the proposed framework. The thresholds, i.e. 𝑇ℎ𝑓𝑣𝑠  and  𝑇ℎ𝑙𝑓  for feature 

vector selection and the parameter in the kernel function 𝜎 are tuned by grid search method (Liu et 

al., 2013). The best results are given by the combination 𝑇ℎ𝑓𝑣𝑠 = 0.5, 𝑇ℎ𝑙𝑓 =  10−8 and 𝜎 = 0.9. All 

the selected feature vectors give a separability between the normal and faulty conditions bigger than 

𝑇ℎ𝑓𝑣𝑠 = 0.5. In comparison with Table 3, one can see that the proposed SVM framework increases the 

between-class separability than the original features. At the end, only 67 feature vectors are selected, 

and, thus, the computation is much simplified in comparison with SVM using all the data points. 

The classification results with respect to F-measure and G-mean are shown in Table 4. It shows that 

the proposed framework give a much higher F-measure value and a little lower G-mean value in 

comparison with the benchmark methods.  

Table 4. Classification results of the fault detection system in HST with respect to F-measure and G-

mean. 

Proposed framework SVM-RUS SVM-SMOTE CS-SVM 

F-measure G-mean F-measure G-mean F-measure G-mean F-measure G-mean 

0.2711 0.8561 0.0457 0.8874 0.0876 0.9092 0.0901 0.9109 

 

For comparison, the precision and recall values obtained by different methods are listed in Table 5. 

Two values for precision and recall are listed for the proposed framework, because if the decision 



boundary is not calculated as the optimized one during the training process, as in Section 3.4, by 

varying the decision boundary, different pairs of precision and recall values can be obtained (as shown 

in Figure 4). With the same recall values (0.9874 or 0.9245), the proposed method can give a larger 

value for the precision, i.e. low false alarm rate. The result given by the proposed framework is more 

acceptable by the practitioners, as the false alarm rate is relatively low. 

Table 5. Classification results of the fault detection system in HST with respect to precision and recall 

values. 

Proposed framework SVM-RUS SVM-SMOTE CS-SVM 

Precision Recall Precision Recall Precision Recall Precision Recall 

0.0496 
0.0604 

0.9874 
0.9245 

0.0234 0.9874 0.0460 0.9245 0.0473 0.9245 

 

 

Fig. 4 Precision and recall values for the training dataset with respect to different decision boundaries. 

If the decision boundary optimization is optimized according to multiple objectives, with the different 

pairs of recall and precision values, the decision maker can choose the one that is acceptable for 

him/her. 



5. Conclusions and perspectives 

The HST is experiencing a high development period, especially in Asia. The braking system is a critical 

element for safety and, for this reason, it is highly reliable but may still undergo different types of faults. 

An efficient fault detection system can be very useful for operators and maintainers. Given the high 

reliability of the braking system, monitored data on fault conditions is far less than on normal 

conditions. Then, fault detection becomes a classification problem of highly unbalanced data.  

A SVM framework is proposed in this paper for fault detection. The proposed framework includes 

feature selection, feature vector selection, model construction and decision boundary. It is validated 

on 15 public datasets, in comparison with three of the most popular SVM models for unbalanced data. 

The proposed framework outperforms the three benchmark methods for most of the datasets 

considering the F-measure and G-mean as the performance metrics. The results of application for the 

fault detection of the braking system show that the proposed method can give a higher precision value 

than the three benchmark methods, with the same recall value.  

Because of the overlapping of the monitored values under normal conditions and faulty conditions, 

high F-measure and G-mean values can not be achieved simultaneously. If the decision boundary with 

multi-objective optimization is integrated in the framework, by varying the decision boundary, 

different choices of precision and recall values (F-measure and G-mean values) can be available for the 

decision maker to choose, as shown in Figure 4.  

The accuracy metric used in this paper is the sum of F-measure and G-mean. Other metrics are 

available, e.g. Area Under the Curve (AUC). Future work will focus on the investigation of other metrics 

for characterizing the classification of unbalanced data.  
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