
FAILURE-ON-DEMAND PROBABILITY AND MALFUNCTION RATE ESTIMATION IN NUCLEAR POWER 

PLANT CYBER-PHYSICAL SYSTEMS 

 

 

 

 

Wei Wang1, Francesco Di Maio1, Enrico Zio1,2 

 
1Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy  

2Chair on System Science and the Energy Challenge, Fondation Electricite’ de France (EDF), CentraleSupélec, Université 

Paris-Saclay, Grande Voie des Vignes, 92290 Chatenay-Malabry, France 

wei.wang@polimi.it, francesco.dimaio@polimi.it, enrico.zio@polimi.it 

 

 

 

        Nuclear Power Plants (NPPs) are making increasing 

use of digital Instrumentation and Control (I&C) systems, 

which makes them Cyber-Physical Systems (CPSs). In 

CPSs, cyber and physical processes are dependent and 

interact with each other: sensors, actuators, 

communication and computational units are all 

interconnected to realize real-time monitoring, dynamic 

control and decision support, for normal operation as 

well as in case of accidents. However, an emerging 

concern is that the use of computer-based technologies 

might increase the exposure to failures and accidents, 

providing new channels for their initiation and 

propagation. System integrity can be, indeed, affected by 

hardware component failures, human errors, 

communication malfunctions and software errors, but 

also compromised by security breaches and cyber attacks. 

These latter can, in practice, be misclassified as 

components failures-on-demand and malfunctions, hiding 

malicious cyber attack threats. 

In this study, we investigate and analyze the modelling of 

stochastic failures in CPSs, with the purpose of estimating 

reference values of failure-on-demand probabilities and 

malfunction rates for their components, so that any 

difference with statistical estimates from field data 

collected on the real CPS values can be used to detect 

malicious attempts at altering the safety of a NPP. A 

digital I&C system of a NPP is taken as illustrative case 

study, in which stochastic components failures resulting 

in different system responses are analyzed and Fault Tree 

(FT) analysis and Markov Chain Model (MCM) are taken 

as approaches to estimate the reference failure-on-

demand probabilities and malfunction rates. 

 

 

I. INTRODUCTION 

 

A Cyber-Physical System (CPS) features a tight 

combination of (and coordination between) the system 

computational units and physical elements. The 

integration of computational resources into physical 

processes is aimed at adding new capabilities to stand-

alone physical system and realize real-time monitoring, 

dynamic control and decision support during normal 

operation as well as in case of accidents. In CPSs, cyber 

and physical processes are dependent and interact with 

each other through feedback control loops (e.g., 

embedded cyber controllers monitor and control the 

system physical variables, whilst physical processes 

affect, at the same time, the monitoring system and the 

computation units by wired or wireless networks (Refs. 1, 

and 2)). The benefit such self-adaptive capability makes 

CPSs to be increasingly operated in transportation, 

energy, medical and health-care, and other applications 

(Refs. 2, 3, and 4). In the context of nuclear energy, 

digital Instrumentation and Control (I&C) systems of 

Nuclear Power Plants (NPPs) can be considered CPSs 

being, nowadays, strongly relying on computer-based 

functions for enhancing NPP availability. 

Cyber controllers have been shown to benefit from 

the  adequate use of information related to (1) 

environmental conditions (which plays an important role 

in affecting the system dynamics and should be measured 

and adaptively integrated into the cyber real-time 

monitoring and control in an intelligent manner (Ref. 5)), 

(2) periodically updated database of parameters (for 

keeping up-to-date the CPS settings (Ref. 6)), (3) new 

interaction modalities between human and system user 

interfaces (leading to more flexible system operability 

from the human perspective (Ref. 7)), and (4) computer-

based networks status (to enhance the network 

connectivity and remote control, communicate with 

sensing data, and coordinate over constraint environment 

(Ref. 8)). 

It is common practice that Probabilistic Safety 

Assessment (PSA) analysts generally focus on hardware 

component failures, human errors, communication 

malfunctions and software errors to assess the 

consequences of accidental hazards. However, the 

increase of computer-based technologies calls not only to 

account in PSA for accidental hazards that may affect 

physical systems, but also for threats to system integrity, 

such as interrupted communication between the cyber 
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system and the external environment due to malicious 

attacks through networks. Such cyber threats, initiated in 

the cyber domain but only being manifested in the 

physical domain, can, in practice, be misclassified as 

component stochastic failures by risk analysts, hiding 

their malicious effects on the system security (Refs. 9, 

and 10). In this sense, malicious attempts aimed at 

altering the CPS normal operation should be detected and 

distinguished from component stochastic failures. This 

can be done either by scenario processing (i.e., modeling 

the malicious cyber events and their manifestation on the 

physical domain, affecting, in turn, both cyber and 

physical properties of the CPS), or by estimation of 

reference values of probabilistic metrics (e.g., failure-on-

demand probabilities and malfunction rates) of the CPS 

components, so that any difference with statistical 

estimates from field data collected on the real CPS values 

can be used to detect malicious attempts at altering the 

safety of a NPP. 

In this study, as well as in Refs. 11, and 12 where 

other techniques are explored, we follow the latter 

alternative and investigate, analyze and model CPSs 

failures, with the purpose of estimating reference values 

for the failure-on-demand probabilities and the 

malfunction rates. A digital I&C system of a NPP is taken 

as illustrative CPS case study, in which components 

stochastic failures resulting in different system responses 

are analyzed and Fault Tree (FT) analysis and Markov 

Chain Model (MCM) are taken as approaches to estimate 

the reference failure-on-demand probabilities and 

malfunction rates. 

The remainder of the paper is organized as follows. 

Section II clarifies the need of including security (i.e., 

cyber attacks) into risk assessment, traditionally 

considering only safety aspects (i.e., components 

stochastic failures). In Section III, failures-on-demand and 

malfunctions of a typical CPS of a NPP are described. 

Reference failures-on-demand probabilities and 

malfunctions rates are estimated for the components of 

the digital I&C CPS considered as case study in Section 

IV. Section V draws the conclusions of the work and 

provides suggestions on the benefits of such integrated 

safety and security analysis. 

 

II. RISK ANALYSIS OF CPSs: THE INTEGRATION 

OF SAFETY AND SECURITY ANALYSIS 

 

Risk is the likelihood of a hazard (or threat) to 

escalate from potential to real damage. This definition 

envelopes both safety and security aspects (Ref. 13). In 

safety analysis, the hazards generated from the 

components stochastic failures can result in unacceptable 

consequences on the system physical processes, whereas, 

security analysis focuses on malicious threats (in both 

physical and cyber domains). 

Risk analysis has, therefore, to closely address both 

safety and security aspects, being these sharing many 

interdependencies and effects on the system. The 

challenge is that, even if components stochastic failures 

and cyber threats are distinct and diverse failure 

mechanisms, they can lead to same consequences on the 

system physical processes, and, therefore, cannot be 

distinguished during the system operation by the risk 

analysts (that means, on the other hand, that a malicious 

activity might be undergoing without being effectively 

detected). The integrity of safety and security CPS risk 

analysis is expected to allow identifying both accidental 

hazards rooting in component/system and cyber-related 

threats coming from external stimuli, to distinguish them 

from each other and to design effective countermeasures 

and protections. 

 

II.A. Accidental Hazards 

 

In CPSs, integrity and functionality can be 

compromised by two alternative classes of failures (i.e., 

hardware and software) where both might be initiated by 

human errors (unintentional). 

(1) Hardware failures 

During the CPS operation, its embedded hardware 

components (i.e., sensors and actuators) can fail due to 

process and operational conditions that affect the way 

components interact with each other, aging that affects the 

process dynamics of the hardware failure behaviors, and 

degradation that generates multiple failure modes which 

affect the system response to different stimuli (Ref. 14). 

Hardware failures can lead to two types of misoperations 

of the CPSs: 

 Failure-on-demand, that consists in failing to 

trigger protections or execute proper control 

strategies (when demanded), leading the system to 

reach (unknown) accidental scenarios; 

 Malfunction, that consists in spuriously triggering 

protections (e.g., unintentional shutdown) or 

executing mistaken control strategies. 

Failure-on-demand probability and malfunction rate 

should be estimated to support the decision-maker on the 

system periodic test and maintenance strategy to be 

enforced for minimizing the occurrence of the hardware 

stochastic failures during the system operational life. 

(2) Software errors 

In CPS, computational units connect actuators with 

sensors and can take self-adaptive and coordinative 

control decisions, based on the predefined logics and 

algorithms (Ref. 15). The therein embedded software, for 

example, Proportional-Integral-Derivative (PID) used as 

feedback controller in CPSs can retroact to actuators the 

actions to be undertaken for responding to the changes of 

physical parameters. Software errors (generated from the 

inadequate specification, incomplete testing scope and 

algorithm/logic failures) are latent and hidden in the 



software design and triggered only when context 

modifications are to be met. For example, the PID 

inadaptability to vary its parameters to variable physical 

parameters can affect the robustness of CPS control rules, 

but cannot be disclosed unless the physical parameters are 

met during the PID operation. 

In further detail, also software failures can be 

classified as passive failures (failure-on-demand) and 

active failures with spurious actuations (malfunction) 

(Ref. 16). Failure-on-demand probabilities and 

malfunction rates of software have gained increasing 

attentions in risk community in latest years (Refs. 11, and 

17). 

 

II.B. Cyber Threats 

 

The CPSs connections with internet might increase 

the exposure of CPSs to accidents, such as cyber attacks 

to cyber controllers, databases, networks and human-

system interfaces that can result in the interruption of 

system integrity. Malicious activities can be categorized 

into Denial of Service (DoS) attacks, false data injection 

attacks (e.g., packet/data modification), network scan & 

sniffing attacks, integrity attack (e.g., through malware 

contagion) and, illegal command execution (Refs. 10, 12, 

and 18). They are usually initiated in the cyber domain 

through local or remote accesses, mimicking the 

components stochastic failures but isolating the 

connectivity between cyber and physical systems, to leave 

the physical process uncontrolled toward severe 

consequences. Indeed, despite distinct properties and 

different occurrence frequencies, a component stochastic 

failure and a cyber attack can lead to same consequences 

on the system integrity. For example, under a certain 

emergent condition when the system shutdown is 

demanded, both the actuator failing to trigger and the 

attacker intercepting the shutdown command to replace 

with normal information result in the same system 

accidental consequences, such that risk analysts can 

neither well detect the causes of the failures nor take right 

decisions to respond to the system accidents. In this sense, 

malicious attempts at altering the normal operation and in 

case of emergency, if neglected, can be misclassified as 

component misoperations, i.e., failure-on-demand and 

malfunction. 

In practice, the fact that mechanisms and properties 

of the cyber threats are different from those of the 

accidental hazards might result to be of help for 

distinguishing them. Components stochastic failures can 

be detected by comparing the field data collected from the 

deployed redundancies of sensors or functional 

relationships among correlated quantities (Ref. 19); 

whereas, malicious cyber attacks are usually intermittent 

and some originally correlated physical variables might 

be found to be surprisingly non-correlated owing the 

attack (Ref. 10).  

In what follows, instead of resorting to such scenario 

processing approach, we propose to estimate reference 

values (prior beliefs) for the failure-on-demand 

probabilities and the malfunction rates of a CPS, only 

based on hardware stochastic failures, to be used to detect 

any difference with statistical estimates from field data 

continuously collected on the real CPS and, finally, to 

distinguish malicious cyber attacks from components 

stochastic failures. 

 

III. CASE STUDY 

 

As shown in Fig. 1, the digital I&C system of a NPP 

as illustrative CPS case study is composed of two 

independent sensors (i.e., S-A and S-B), two channels of 

the cyber controller and one actuator (i.e., Reactor Trip 

Breaker (RTB)). Each channel of the cyber controller 

consists of the computational units of one independent 

Bistable Processor Logic (BPL, i.e., BPL-A and BPL-B) 

and one Local Coincidence Logic (LCL, i.e., LCL-A and 

LCL-B). If any of the two redundant measured signals 

exceeds a safety threshold value Vthreshold, a Partial 

Tripping Signal (PTS) is measured from the 

corresponding BPL, e.g. a PTS from BPL-A is measured 

because S-A exceeds the tripping value. The signal 

processing proceeds only if both channels produce the 

PTS: each PTS from a BPL is sent to both LCL-A and 

LCL-B, which process information by an “AND” gate. In 

other words, an Emergency Shutdown Signal (ESS) is 

produced only when receiving two PTSs from different 

BPLs; ESSs, then, activates the RTB, when at least one 

ESS is triggered, i.e., the information is processed by an 

“OR” gate. Once the RTB is activated, the supported 

systems connected with RTB in the physical domain (e.g., 

power supply system, control rod drive mechanism, etc.) 

come into use to shutdown the reactor (Ref. 14). 

The system functionality can be affected by sensors 

stochastic performance degradations and failures, RTB 

failures and the intermediate processor design errors. 

Besides these failures resulting in the system failures-on-

demand and malfunctions, potential cyber attacks can 

threaten the system functionality with the same 

consequences of stochastic failures. Without loss of 

generality, two potential cyber threats scenarios are 

mentioned: 

 False data injection: measured signals of both S-A 

and S-B exceeding Vthreshold requiring the RTB 

trigger are replaced with a string of normal 

information manipulated through contagion of 

malware, resulting in (intentional and malicious) 

RTB failure-on-demand. PTS cannot be measured 

from BPL-A and, as a result, the RTB will not be 

activated.  

 Illegal command execution: a spurious command 

is injected into an intermediate processor (e.g., the 

LCL-A spuriously generates an ESS) resulting in 



an altered control logic and a (intentional and 

malicious) RTB malfunction.  
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eA(t) eB(t)
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Fig. 1. The digital I&C system. 

 

IV. ESTIMATION OF REFERENCE FAILURE-ON-

DEMAND PROBABILITY AND MALFUNCTION 

RATE 

 

Reference values of the failure-on-demand 

probability and the malfunction rate of the digital I&C 

system, are estimated based on the modeling of the 

hardware stochastic failures, to be used, in security 

analysis, to detect any difference with statistical estimates 

from field data collected on the system operation. The 

control scheme of Fig. 1 is designed without any time-

dependent logic and dynamic feedback, so conventional 

modeling approaches are, herein, used for the illustrative 

identification of component stochastic failures, despite 

more comprehensive insights of accidental evolution 

obtained from dynamic modeling approaches. 

 

IV.A. Estimation of the Failure-on-demand 

Probability 

 

FT analysis is taken as the approach to estimate the 

reference failure-on-demand probability, in which the 

event “No shutdown signal is sent from the digital I&C 

system when demanded” as the top event. The fault tree is 

shown in Fig. 2, where common-cause failure between the 

LCLs is considered (β is equal to 0.1). Failure data of the 

basic events are taken from a public database (Ref. 20) 

and reported in TABLE I. 
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Fig. 2. FT for the system failure-on-demand probability 

estimation. 

 

TABLE I. Components Failure Data (Ref. 20) 

ID Failure probability (/d) 

S-A-S 
5.85E-05 

S-B-S 

S-A-D 
5.85E-05 

S-B-D 

BPL-A-S 
5.44E-04 

BPL-B-S 

LCL-A-S 
1.60E-04 

LCL-B-S 

RTB 1.54E-05 

 



Based on Boolean logic quantification, the reference 

failure-on-demand probability (i.e., top event probability) 

results to be equal to 1.562E-6/d. 

 

IV.B. Estimation of the Malfunction Rate 

 

A hybrid FT and MCM approach is used to estimate 

the malfunction rate. Minimal Cut Sets (MCSs) are 

obtained from the system malfunction FT, to present the 

system intrinsic properties and malfunction logics. Then, 

each of the obtained MCSs is modeled by a MCM, to 

estimate the MCSs time-dependent absorption state 

probabilities. 

As shown in Fig. 3, the event “Shutdown signal is 

spuriously sent out from the digital I&C system” is 

identified as the top event, and the malfunction FT is built 

from top event to basic events according to the system 

configuration. 

 

Table II. Estimation of the Malfunction Rates of the 

MCSs 

Type MCS Malfunction 

rate/hr 

1 {LCL-A-S} 4.450E-06 

{LCL-B-S} 4.450E-06 

{RTB} 1.169E-07 

2 LCLs-common cause 4.994E-07 

3 {S-A-S, S-B-S} 8.388E-10 

{S-A-D, S-B-D} 8.388E-10 

{BPL-A-S, BPL-B-S} 4.951E-09 

4 {S-A-S, S-B-D} 8.388E-10 

{S-A-D, S-B-S} 8.388E-10 

{S-A-S, BPL-B-S} 2.038E-09 

{BPL-A-S, S-B-S} 2.038E-09 

{S-A-D, BPL-B-S} 2.038E-09 

{BPL-A-S, S-B-D} 2.038E-09 

 

TABLE II lists the MCSs of the FT of Fig. 3. The 

malfunction rate, ω, for each MCS can be estimated by 

resorting to the system failure intensity quantification 

(Ref. 21): 
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where, S is the set of success states of the MCM; F is the 

set of malfunction states; pi(t) is the probability of the 

system being in the success state i at time t; i F  is the 

transition rate of leaving success state i towards any 

failure state. TABLE III lists the transition rates i F  

taken from a public database (Refs. 20, and 22). 

Realistically, for any component, a periodic testing 

interval is chosen equal to TI = 1 year and mean 

maintenance time to TR = 8h, resulting in a repair rate μ 

for all equal to: 

1
2.28 4

2
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R

E hr
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Fig. 3. FT for the system malfunction rate estimation. 

 

We take the MCM of the MCS {S-A-S, BPL-B-S} as 

an illustrative example, to estimate the MCS malfunction 

rate. Fig. 4 shows the MCM of the MCS {S-A-S, BPL-B-

S}, which consists of two different basic events. Four 

nodes are identified in the MCM, i.e., the functioning 

state “0”, the failure state “F”, and the intermediate states 



“1SS” and “1BS” denoting S-A and BPL-A fails, 

respectively. 
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1SS

1BS
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0 1SS
 

0 1SS
 

0 1BS
 

0 1BS
 

 
 

Fig. 4. Malfunction Markov chain model of the MCS {S-

A-S, BPL-B-S}. 

 

TABLE III. Transition Rates (Refs. 20, and 22) 

Symbol ID Failure Mode Failure Rate 

(/hr) 

0 1SS
   S-A-S S-A measurement 

error failure rate 

4.11E-07 

S-B-S S-B measurement 

error failure rate 

0 1SD
   S-A-D S-A wrong digital 

output failure rate 

4.11E-07 

S-B-D S-B wrong digital 

output failure rate 

0 1BS
   BPL-A-S BPL-A malfunction 

failure rate 

1.00E-06 

BPL-B-S BPL-B malfunction 

failure rate 

0 1LS
   LCL-A-S LCL-A malfunction 

failure rate 

5.00E-06 

LCL-B-S LCL-B malfunction 

failure rate 

0 LCLs 
 LCL-A-D 

& -B-D 

LCLs common 

cause factor 

1.00E-01 

0 1R
   RTB RTB malfunction 

failure rate 

1.17E-07 

μ - Repair rate 2.28E-04 

 

Then, the malfunction rate during one periodic 

testing interval is, 
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and results for all the MCSs are as shown in TABLE II 

(last column). 

The calculated reference malfunction rate (that 

accounts for all MCSs of the digital I&C system) turns to 

be equal to 9.533E-6/hr. This enables analysts to compare 

the field data with the calculated reference malfunction 

rate: assume that numerous RTB failures-on-demand are 

recorded in a short period of time (e.g., one month), that 

makes the failure-on-demand probability largely 

exceeding the reference value of 1.562E-6/d, and/or 

unexcepted shutdown occurrence making the malfunction 

rate largely exceeding the reference value of 9.533E-6/hr, 

these evidences should raise the analyst attention with 

respect to false data injected into S-A and S-B sensors 

databases and external illegal command attacks, 

respectively.  

 

V. CONCLUSIONS 

 

In this study, the twofold characteristics of CPS risk 

assessment has been pointed out. In particular, the 

necessity of investigating CPS risk with respect to both 

components stochastic failures and cyber threats has been 

highlighted. Concerns have been raised regarding the 

possibility of misclassification of cyber attacks as 

component failures-on-demand and malfunctions. To 

avoid the misclassification, malicious attempts aimed at 

altering the CPS normal operation should be detected and 

distinguished from components stochastic failures. 

A probabilistic approach is here undertaken to 

address the problem. We propose to estimate reference 

values (prior beliefs) for the failure-on-demand 

probabilities and the malfunction rates of a CPS, only 

based on hardware stochastic failures, to be used to detect 

any difference with statistical estimates from field data 

continuously collected on the real CPS and, finally, to 

distinguish malicious cyber attacks from components 

stochastic failures. 

The approach has been tested on a digital I&C system 

of a NPP. FT analysis and MCM are taken as approaches 

to estimate the reference failure-on-demand probability 

and malfunction rate of the system. Quantitative estimates 

allow for the detection of anomalous frequencies of 

system misoperations that would be initiated from the 

malicious attempts at altering the safety of the NPP. 
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