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1 Introduction and problem statement

In recent years, approaches providing robust schedules have been increasing their im-
portance in the production scheduling research area. The pursued objective is to obtain
schedules being insensitive - as much as possible - to disturbing factors, protecting the
decision-maker against the impact of unfavorable uncertain events. In this paper we ad-
dress the scheduling of a set of jobs J in a paced assembly line in presence of uncertainty
affecting the availability of production resources. The proposed approach takes inspiration
from the assembly process in the aircraft manufacturing industry. Each job j has to be
processed in the assembly line made up of M stations. Being paced, the line is characterized
by a cycle time, i.e., at a given time, all the parts move to the next station simultaneously.
Hence, within the cycle time, a given deterministic amount of work has to be accomplished
in each station. The availability of production resources, i.e., the available working hours
of the workers during each cycle time, is modeled as a stochastic variable. The manufac-
turing system described is a permutation flow-shop with no-wait property (Emmons and
Vairaktarakis (2013)). The proposed approach address the definition of a robust schedul-
ing for the assembly line aiming at minimizing the conditional value-at-risk (CVaR) of the
residual work content, i.e. the amount of workload that cannot be completed during the
cycle time in the stations, due to a lack of available resources. A branch & bound approach
is developed to solve the described problem to optimality. The objective function used, the
CVaR is a measure of risk widely used in the financial research, e.g. in portfolio optimiza-
tion (Rockafellar and Uryasev (1999), Rockafellar and Uryasev (2002)). This class of risk
measure has been already taken into consideration for scheduling approaches (Tolio, T. et
al. (2011), Sarin, S. C. et al. (2014)). Specifically, the permutation flow-shop scheduling
problem (with or without no-wait property) has been addressed in a considerably large
number of papers, e.g., a branch & bound approach is developed by (Kim (1995)) with
the objective of minimizing total tardiness, whereas several mixed integer formulations and
an implicit enumeration approach are proposed in (Samarghandi and Behroozi 2017) and
(Samarghandi and Behroozi (2016)). Nevertheless, the proposed scheduling problem has
not been addressed in previous researches.

2 Description of the approach

The proposed branch & bound framework relies on a sequential definition of the sched-
ule. At each level [ of the associated tree [ € J, a partial solution provides the sequence of
the first [ jobs scheduled, while the remaining J —1 € J \ S jobs are the candidates to be
scheduled next in the sequence. Hence, each node of the tree has as many child nodes as
the jobs to schedule, each of them representing a partial solution where a different jobs is
added to the partial sequence. The solution tree is explored adopting a depth-first strategy
selecting the most promising branches in terms of the best lower bound. At each node,



a lower and an upper bound on the target performance (the residual work content) are
calculated to determine the most promising branches and prune the dominated ones. The
contribution to the objective function of already scheduled jobs is easily calculated. Being
the system a permutation flow-shop, once a job is scheduled in the first station, the cycle
times where it will be processed by the following stations are automatically determined.
Then, considering a single resource with availability A. for each cycle time period ¢, the
sequencing of that job j also entails a resource consumption Rj.. If a job j is scheduled to
enter the first station of the line in period p, its contribution to the objective function is:

RWCSU{J‘}Z*(AC*RJ',C), 4 ]EJ\S, c=p,...p+M-1 (1)

where * is the convolution operator.

The lower bound distribution of the residual work content caused by an unscheduled
jobi € J\S+{j} can be estimated through the scheduling of a dummy job 4;, having the
lowest resource request among the ones of the J — [ unscheduled jobs. This contribution
can be estimated according to Eq. 2.
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In an dual way, the upper bound distribution of the residual work content caused by
an unscheduled job i € J\ S+ {j} can be estimated scheduling a dummy job i having
highest among the resource request of the J — I unscheduled jobs (Eq. 3).
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Finally, the lower and upper bounds of the considered node can be calculated as:

RWCHP = %« RWCEP jy; + % RWCsugyy, VieS\T,ieS+{j}\J (4)
% J
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v J

Grounding on these calculations, the lower and upper bounding distributions for the
residual work content can be calculated in each node. Furthermore, these distributions can
also support the calculation of the lower and upper bound of a function of the risk associated
to the resource consumption, e.g., the CVaR, with the aim at assessing the robustness of
the solution. Notice that, Eq. 4 and 5 provides effective bounds for the CVaR only in
case the resource requirements of the jobs are deterministic. In this particular case, the
convolution operator merely shifts the availability distributions without re-shaping it. This
ensures the conditional value-at-risk of residual work content being a regular objective
function.

Figure 1 further depicts the branching scheme adopted, as well as the computation of
the bounds for the CVaR. Blue and black cumulative distribution functions represent the
lower and upper bound distributions respectively. Nodes with a lower bound of the CVaR
higher than the incumbent C'VaR are pruned.

3 Testing and Industrial Application

The developed branch-and-bound approach has been implemented in C++ using the
BoB+-+ library. Computational experiments have been performed on 8 parallel threads
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Fig. 1. Branching scheme and bounds computation

on an Intel Four-Core i7 Processor 7700-HQ@3.4GHz and 16 GB of DDR4 SDRAM. The
performance of the algorithm has been analyzed in terms of the time to find an optimal
solution and the fraction of nodes explored solving 9-jobs instances sampled from a pool
of 68 real orders. The testing instances have been constructed as follows:

1. the resource requirement of a job j in station m is deterministic. In fact, at the time
the assembling of an aircraft is scheduled, order specifications are known and fixed;

2. the resource availability in station m in time cycle c is a discrete triangular distribution,
whose maximum value matches the planned ideal amount of workforce while minimum
and the mode model the variability caused by absenteeism or other lacks of personnel;

3. the risk level used for the CVaR is set to 10%, this value depends on the risk aversion
of the planner, since it defines the quantile of the tail whose expected value must be
minimized.

The algorithm was able to find the optimal solution in 8264.15 seconds on average,
ranging from a minimum of 7803.20 to a maximum of 8819.61. The average number of
evaluated nodes was 280721 over a total of 623547, with an average pruning efficiency of
about 55%. The main cause of the relatively long computational times is due to the modest
variability in terms of workload requirements among the considered orders, because their
assembly process is composed of more or less 90% of mounting and testing operations for
structural components that are common to all the orders, while customization activities
have a lower impact in terms of equivalent man hours. Nevertheless this is partially due
to the oversimplification of the assembly process to a single type of resource and, hence,
reducing the impact of the uncertainty affecting the availability of specific resources. More-
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Fig. 2. Distribution of the residual work content obtained with the minimization of the CVaR
(right) and the expected value (left).

over, due to the convolution operations, the amplitude of the support of the distributions
has a strong influence on the time needed to accomplish calculations within a single node.

An additional analysis was carried out to compare the proposed approach against
scheduling to minimize the expected value fo the residual work content (RW(C'). An example
is provided in Figure 2 showing the histogram of the RW (' in the case of the minimization
of the expected value (left) and the CVaR (right). Although the expected value in both the
cases is almost identical, the CVaR is rather different (0.73 against 0.70) clearly showing
that minimizing the CVaR actually reduce its value in the optimal solution. Moreover the
distribution on the right shows a low occurrence probability for the highest values of the
RWC, thus demonstrating the capability of the approach to protect the schedule against
the worst cases.

4 Acknowledgments

This research was supported by the EU projects ProRegio (Grant agreement No.
636966) and ReCaM (Grant agreement No: 680759) funded by the European Commission
in the Horizon 2020 programme.

References

Emmons, H. and Vairaktarakis, G., 2013, Flow Shop Scheduling: Theoretical Results, Algorithms,
and Applications, International Series in Operations Research & Management Science, Vol.
182, Springer.

Rockafellar, R. T. and Uryasev, S. 2002, Conditional value-at-risk for general loss distributions,
Journal of Banking € Finance, Vol. 26, pp. 1443-1471.

Rockafellar, R. T. and Uryasev, S. 1999, Optimization of Conditional Value-at-Risk, Journal of
Risk, Vol. 2, pp. 21-41.

Tolio, T., Urgo, M., and Vancza, J., 2011, Robust production control against propagation of
disruptions, CIRP Annals - Manufacturing Technology, Vol. 60, pp. 489-492.

Sarin, S. C., Sherali, H. D. and Liao, L., 2014, Minimizing conditional-value-at-risk for stochastic
scheduling problems, Journal of Scheuling, Vol. 17, pp. 5-15.

Kim, Y.-D., 1995, Minimizing total tardiness in permutation flowshops, Furopean Journal of Op-
erational Research, Vol. 85, pp. 541-555.

Samarghandi, H and Behroozi, M., 2016, An Enumeration Algorithm for the No-Wait Flow Shop
Problem with Due Date Constraints, IFAC - PapersOnLine, Vol. 49-12, pp. 1803-1808.

Samarghandi, H and Behroozi, M., 2017, On the exact solution of the no-wait flow shop problem
with due date constraints, Computers and Operations Research, Vol. 81, pp. 141-159.



