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Abstract—Two key ingredients of a successful neuro-

rehabilitative intervention have been identified as intensive and 

repetitive training and subject’s active participation, which can 

be coupled in an active robot-assisted training. To exploit these 

two elements, we recorded electroencephalography, 

electromyography and kinematics signals from 9 healthy subjects 

performing a 2×2 factorial design protocol, with subject’s 

volitional intention and robotic glove assistance as factors. We 

quantitatively evaluated primary sensorimotor, premotor and 

supplementary motor areas activation during movement 

execution by computing Event-Related Desynchronization (ERD) 

patterns associated to mu and beta rhythms. ERD patterns 

showed a similar behavior for all investigated regions: 

statistically significant ERDs began earlier in conditions 

requiring subject’s volitional contribution; ERDs were prolonged 

towards the end of movement in conditions in which the robotic 

assistance was present. Our study suggests that the combination 

between subject volitional contribution and movement assistance 

provided by the robotic device (i.e., active robot-assisted 

modality) is able to provide early brain activation (i.e., earlier 

ERD) associated with stronger proprioceptive feedback (i.e., 

longer ERD). This finding might be particularly important for 

neurological patients, where movement cannot be completed 

autonomously and passive/active robot-assisted modalities are the 

only possibilities of execution. 

 
Index Terms— assistive devices, EEG, EMG, ERD/ERS, 

neurorehabilitation.  

I. INTRODUCTION 

TROKE represents a major cause of disability worldwide 

despite the advances achieved in the management of its 

acute phase. The majority of individuals affected by stroke 

manifests residual impairments in both the contralesional 

upper and lower limbs [1], [2]. Relevant limitations in daily 

life activities result from even mild impairment of the upper 

limb function, especially of the hand. This has been 

demonstrated to negatively influence the quality of life of a 

stroke survivor [3].  
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In this context, hand functional rehabilitation plays a key role. 

Even after extensive therapeutic interventions in acute phase, 

the probability of regaining functional use of the impaired 

hand is still low, estimated around 12% [4]. Therefore, 

effective rehabilitative interventions to restore hand functions 

even in the chronic phase of the disease (i.e., when the patient 

is discharged from the hospital) can have a dramatic impact on 

quality of life, improving independence, social integration, 

and work abilities. 

Different key ingredients of a successful neuro-

rehabilitative intervention have been identified in literature. 

On one side, it has been suggested to deliver high therapy 

doses performed as intensive and repetitive task practice [5]. 

Repetitive training can be easily carried out through robotic-

based rehabilitation sessions, which need low supervision and 

allow the execution of precise, safe and repeatable therapeutic 

exercises [2]. Contrasting results are reported in literature with 

respect to the clinical impact of robotic assistive therapy for 

upper limbs with respect to usual care [6], [7]. However, all 

authors agree on the beneficial effect of a high therapy dose, 

where the more is the best, and one of the key advantages of 

neurorehabilitation performed through robotic devices is the 

possibility to deliver much higher therapy doses, and to 

deliver them not only in specialized centers, but also in home 

environments. In fact nowadays, once at home, the frequency 

and intensity of training is too low to enhance neural 

reorganization and functional changes. In this context, the use 

in a domestic environment of a robotic device would 

guarantee the appropriate amount of rehabilitation therapy, 

safeguarding at the same time repeatability of the training and 

safety. 

On the other hand, subject’s active participation to the 

rehabilitative therapy has been identified as a crucial element 

to induce neural plasticity and promote motor recovery on the 

top of movement execution in itself [8], [9]. Dealing in 

particular with robotic-assisted therapy, Hu and colleagues 

demonstrated that combining the voluntary effort from stroke 

patients with a robotic-based training (active robot-assisted 

modality performed through an electromyography (EMG)-

driven robot) would result in a more significant motor 

improvement with respect to a training in which the robot 

passively moves the subject’s hand [9]. Motor improvements 

have been quantified through clinical scores and EMG 

EEG analysis during active and assisted 

repetitive movements: evidence for differences 

in neural engagement 
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parameters, but changes in cortical activity correlated with the 

training modality (active or passive robot-assisted) have not 

been assessed. When coming to neurological patients, 

involving the correct brain areas through an active 

participation to the therapy should improve motor learning 

[10], [11], even if with a certain inter-subjects variability (e.g., 

[8]), and therefore brain activity might be an effective marker 

to access patient’s involvement and to investigate the 

effectiveness of a rehabilitation process. Brain activity in 

different motor conditions can be non-invasively investigated 

with optimal time resolution with electroencephalography 

(EEG) [12]. EEG-based parameters can be used to detect the 

timing and the extent of the sensorimotor rhythms 

modulations induced by movement execution. Event-Related 

Desynchronization (ERD) quantifies the reduction in power of 

mu (8 – 13 Hz) and beta (15 – 25 Hz) rhythms, which is an 

electrophysiological correlate of activated neural networks 

when sensorimotor input are processed and motor commands 

are generated [13]. In addition, post-movement Event-Related 

Synchronization (ERS) quantifies a power enhancement of the 

sensorimotor oscillations at the end of movement execution 

[14].  

Formaggio and colleagues [15], [16] investigated the 

topography and the time course of ERD/ERS patterns in 

healthy participants during the performance of active, 

imagined and highly standardized passive robot-assisted 

movements. They found a bilateral activation of the primary 

sensorimotor cortex (SMC) during unilateral hand movements 

for both active and passive conditions. However, they did not 

address in their experimental paradigm the issue of subject’s 

active participation to the motor training performed by the 

robotic device. Ramos-Murguialday and colleagues [17] 

investigated the effect of contingent feedback on the control of 

a Brain Computer Interface (BCI)–based neuroprosthesis. The 

subject’s intention was included in the control loop as a 

“trigger signal” derived from ERD of the sensorimotor 

rhythms due to movement imagination. Norman and 

colleagues [18] investigated for the first time the effect of an 

active robot-assisted condition on ERD/ERS patterns of 

sensorimotor rhythms within the context of a two level 

factorial design, with the robotic assistance and the motor 

activity treated as binary categorical factors. Their analysis 

focused on the pre-movement interval. The authors describe 

pre-movement ERD for active conditions, confirming what is 

known in literature for self-paced movements [12]. Moreover, 

they also show a pre-movement ERD during predictable 

passive movements, which they interpret as a cortical 

preparation for the impending somatosensory input the 

movement will produce. However, once the “trigger signal” 

(i.e., ERD due to movement imagination [17] or pre-

movement ERD before a predictable passive movement [18]) 

is produced, the activated robot performs the requested 

movement independently of whether the subject’s active 

motor engagement in the task is maintained or not. It is 

therefore fundamental to measure whether the subject remains 

engaged throughout movement execution or if his/her effort is 

only devoted to activate the robotic device. To this aim it is 

necessary to: i) evaluate modulations of the SMC activity 

(e.g., through ERD/ERS patterns) for the whole movement 

execution period, and not only during the pre-movement 

phase; and ii) check for effective voluntary contribution from 

the subject (e.g., through EMG recordings). Indeed, EMG 

measures allow to access subjects’ active participation, and 

therefore can be exploited to design and verify an active robot-

assisted therapy in which the subject’s voluntary effort is 

effectively combined with the robot activity for the whole 

movement duration.  

Our study investigates the neural correlates of subjects’ 

active participation to functional robotic-based movements 

through ERD/ERS patterns derived from EEG recordings on 

healthy volunteers. Our experimental paradigm includes four 

tasks that exploit the robotic support and the volition intention 

as the main factors of a factorial design, which has been 

shown to be a suited statistical approach by previous EEG [18] 

and fMRI studies [19], [20]. In this framework, ERD/ERS 

patterns during whole movement execution have been 

analyzed in order to investigate the effect of subject’s 

volitional effort and robotic assistance combination on SMC 

activity. We used a robotic glove for hand neuro-motor 

rehabilitation to assist functional hand movements, and we 

performed EMG recordings to check for effective voluntary 

contribution from the subject. We believe that EMG analysis 

represents an important complement of EEG investigation 

when active and passive robot-assisted modalities are 

compared. In fact, when dealing with neurological patients, it 

cannot be given from granted that active participation 

recommendations are effectively executed. Therefore, residual 

muscular activity as measured by superficial EMG signals is a 

precious accessible information to detect and quantify the 

patient effort, also when movement kinematics is affected 

[21], [22].  

II. MATERIALS AND METHODS 

A. Participants 

9 right-handed healthy subjects (7 females, 2 males, mean 

age 26.3 ± 1.9 years) with no neurological or orthopedic 

impairment volunteered for this study. All subjects gave 

informed written consent. 

B. Experimental set-up 

Electroencephalographic (EEG), electromyographic (EMG) 

and kinematic signals were recorded while using the robotic 

glove Gloreha (GLOve REhabilitation HAnd, 

www.gloreha.com), developed and produced by Idrogenet Srl 

(Lumezzane, BS, Italy). A picture of a volunteer wearing the 

complete equipment is shown in Figure 1. Gloreha is a device 

for neuromotor rehabilitation of the hand composed by two 

main elements: a comfortable and light glove, and a chassis 

containing electric actuators and an electronic board. 
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The device allows the execution of all the combinations of 

fingers joints flexo-extension. Specifically, fingers movement 

is performed thanks to 5 electric actuators and an electronic 

board, placed in the chassis, not accessible to the operator. 

Each actuator is linked to a wire. In a compartment of the 

chassis the operator can adjust the length of the 5 cables that 

generate the fingers movement to set the starting position of 

the hand, which is also the maximum level of extension the 

glove will reach during the therapy. 

EMG signals were recorded with a multi-channel signal 

amplifier system (Porti™, Twente Medical System 

International). The sampling frequency was set to 2048 Hz. 10 

superficial self-adhesive electrodes arranged in a bipolar 

configuration have been placed on the forearm in a circular 

configuration, placed 2-3 cm under the elbow [23]–[27]. 

Indeed, in this configuration electrodes are not placed 

specifically on a single muscle, instead the information 

recorded from electrodes is rather global, and the overall 

signal is processed to retain the patient muscular activation. 

The ground electrode was placed on the opposite wrist, and a 

Velcro band was placed over the 10 electrodes (Figure 1, B). 

Design of EMG electrodes set-up was driven by the priority of 

the easy use and donning, allowing at the same time to record 

the muscular activity from a variety of muscles that control 

hand movements. 

An electrogoniometer was placed on the index finger to 

track the kinematics of the performed movement. The 

electrogoniometer signal was acquired at 2048 Hz sampling 

frequency with the same multi-channel signal amplifier system 

used for EMG signals acquisition. 

EEG signals were recorded by means of a Sam32 amplifier 

(MICROMED, Mogliano Veneto, Italy). 19 Ag/AgCl surface 

electrodes were placed on the scalp according to the 10-20 

International System (i.e. Fp1, Fp2, F7, F3, Fz, F4, F8, T7, 

C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, O2) [28]. The 

impedance of every electrode was kept below 5kΩ. The 

ground electrode was placed on the right earlobe; all channels 

were offline re-referenced using CAR procedure (Common 

Average Reference). To allow an offline synchronization 

between Porti system and the Sam32 amplifier, 2 additional 

superficial self-adhesive electrodes were connected to the 

Sam32 amplifier to simultaneously record an EMG signal. 

These electrodes were arranged in a bipolar configuration and 

were placed on the forearm close to the previously described 

EMG electrodes (Figure 1, B). The sampling frequency was 

set to 256 Hz for both EEG and EMG data acquired with the 

Sam32 amplifier. An antialiasing low-pass filter and a notch 

filter were set at 120 Hz and 50 Hz respectively. 

C. Experimental protocol and tasks description 

Subjects were comfortably seated in front of a computer 

screen with their right arm resting on a table. The 

experimental protocol was composed by 4 tasks conceived 

according to a 2×2 factorial design. In particular, the first 

factor was the robotic glove support [with levels L1 = glove 

and L2 = NO glove] and the second factor was the volitional 

intention [with levels L1 = active movement and L2 = NO 

active movement]. The selected motor task was a complete 

right Hand Close/Open movement (HCO).  

According to the factorial design, the four tasks were 

structured as follows: 

- task A (glove/active movement) = HCO supported by the 

robotic glove concurrently with voluntary movement 

contribution by the subject; 

- task B (glove/NO active movement) = HCO supported by 

the robotic glove while the subject remains relaxed, resulting 

in a purely passive movement; 

- task C (NO glove/active movement) = voluntary HCO 

movement without using the robotic glove; 

- task D (NO glove/NO active movement) = no movements 

executed by the subject. 

In tasks A, B and C subjects performed 20 movements, 

alternating 10 hand closing movements and 10 hand opening 

movements. A rest phase of 10 s was inserted between each 

hand closing and the following hand opening movement. The 

duration of both movements was set through the Gloreha 

software, and was proportional to the time required to perform 

the hand movement based on single-subject anatomy, given a 

fixed motor velocity (around 5 s for all subjects). Gloreha 

motors were specifically set for each subject in order to 

achieve a comfortable movement. Between tasks A and B, the 

glove was not removed from the hand of the subject in order 

to guarantee the maximum of movement repeatability. The 

beginning of close/open movements was triggered by the 

glove in both tasks A and B, while auditory cues were used for 

task C (brief 1000 Hz tone). While performing task C, each 

subject was instructed to execute a slow HCO movement 

attempting to reproduce the movement timing in terms of 

 
 

Fig. 1. Volunteer wearing the complete equipment for the experiment. 

Gloreha device is composed by a glove (A) and a chassis (E) containing 

electric actuators and an electronic board. Signals from EMG electrodes (B) 

and from the electrogoniometer (G) are acquired through a multi-channel 

signal amplifier system (Porti™, Twente Medical System International) (D). 

EEG signals are recorded through 19 Ag/AgCl electrodes (C) by using a 

Sam32 amplifier (MICROMED). A support for the wrist/forearm (F) is used 

while executing the experimental protocol.   
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movement duration similar to that defined by the glove. 

Accordingly, the time interval between consecutive auditory 

cues was set equal to 15 s, reproducing approximately 5 s of 

movement followed by 10 s of rest. The same auditory cues 

were used in task D to verify that EEG power modulations 

were not induced by the auditory stimuli, and to obtain an 

epoch definition comparable with the other tasks, despite no 

movements were executed in task D. All subjects were 

instructed to remain completely relaxed during tasks B and D 

and to equally voluntarily contribute in terms of muscles 

activity during tasks A and C. For synchronization purposes, 

two complete voluntary right hand close/open movements 

were executed prior to each task. Before starting the effective 

acquisition, each subject practiced the protocol until 

comfortable with the tasks. 

D. Kinematic data processing 

Kinematic signals were processed to identify movement 

onsets and offsets. The electrogoniometer signal was low-pass 

filtered to obtain a smooth signal through a 5th order 

Butterworth filter (5 Hz cut-off frequency). Movement onsets 

and offsets were identified by means of a dedicated software 

designed and implemented in MATLAB (Version R2015b; 

Mathworks Inc., Natick, MA), taking advantage of signal 

shape. Two thresholds (th) have been defined separately on 

filtered electrogoniometric signal (EG) for each subject and 

task as: 

th = min{𝐸𝐺𝑖} ± 0.3 ∗ [max{𝐸𝐺𝑖} − min{𝐸𝐺𝑖}]  (1) 

where i represents EG samples within the considered 

subject/task. Electrogoniometric signal portions which 

overcome the high threshold include open movement offsets 

and close movement onsets, determined as local maxima 

derived respectively from the beginning and the end of the 

signal portion. In turn, signal portions below the low threshold 

include close movement offsets and open movement onsets, 

determined as local minima derived respectively from the 

beginning and the end of the signal portion (Figure 2).  

E. EMG data processing 

EMG signals of all 5 channels acquired by the Porti system 

were separately high-pass filtered with a 5th order Butterworth 

filter to remove the offset (10 Hz cut-off frequency), rectified 

and low-pass filtered by using a 5th order Butterworth filter (1 

Hz cut-off frequency) to obtain 5 pre-processed EMG signals 

(pEMG). Given that EMG electrodes are disposed following a 

spatial criteria, and not directly on measured muscles, it is 

possible that only some channels bring information about 

muscles contraction. Therefore, separately for each subject, 

we considered only those pre-processed signals that met the 

following inclusion criterion: 

𝑚𝑎𝑥{𝑝𝐸𝑀𝐺} − 𝑚𝑖𝑛{𝑝𝐸𝑀𝐺} > 10 ∗ 𝑚𝑖𝑛{𝑝𝐸𝑀𝐺}  (2) 

Since in this configuration electrodes are not placed 

specifically on a single muscle, instead the information 

recorded from electrodes is rather global, all considered pre-

processed EMG signals were averaged together to obtain an 

overall EMG signal [25]–[27]. Overall EMG signal was then 

windowed with respect to EG derived movement onsets and 

offsets, and the signal of each window was resampled to 

obtain the same number of samples for each movement to 

allow EMG features comparison. 

Literature offers many indices, both in time and in 

frequency, to evaluate the EMG measurement quality and 

reproducibility [29]. In this work, the following EMG features 

were chosen to compare the four experimental conditions: i) 

area under the overall EMG curve; ii) overall EMG peak 

amplitude; iii) overall EMG Root Mean Square (RMS).  

The area under the EMG curve has been calculated as the 

sum of the resampled overall rectified EMG signal within the 

time window between movement onsets and offsets. The EMG 

peak amplitude was computed as the maximum value of the 

overall EMG signal obtained in a single movement window. 

Finally, the RMS was calculated as follows: 

𝑅𝑀𝑆 = √
1

𝑁
∗ ∑ 𝐸𝑀𝐺𝑖

2𝑁
𝑖=1   (3) 

where N represents the number of samples of each task 

repetition, and EMGi the overall EMG value assumed in 

correspondence of the ith sample. 

All EMG features were then compared between tasks by 

using generalized linear models with EMG features as 

dependent variables, Gloreha (G) and volitional intention (V) 

as predictive factors, and subjects as covariate. Statistical 

analysis has been performed in SPSS, version 22.0, and p-

values < 0.05 were considered as statistically significant. 

F. EEG data processing 

EEG data were exported in MATLAB environment. 

EEGLAB toolbox [30] and custom scripts were used for an 

offline processing of the recorded signals. Data were band-

pass filtered in the range 2 - 40 Hz by means of a finite 

impulse response filter of order 2000. Then a down-sampling 

to 128 Hz was performed. Stereotyped artefacts in the EEG 

recordings (i.e. eye blinks and movements, cardiac activity 

and scalp muscle contraction) were identified and removed 

 
 

Fig. 2. Electrogoniometric signal processing for the detection of movement 

onsets/offsets using two thresholds (horizontal dashed lines). 

Electrogoniometric signal portions which overcome the high threshold 

include open movement offsets and close movement onsets, determined as 

local maxima derived respectively from the beginning and the end of the 

signal portion (grey rectangle). Signal portions below the low threshold 

include close movement offsets and open movement onsets, determined as 

local minima derived respectively from the beginning and the end of the 

signal portion (black rectangle).  
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using infomax independent component analysis from 

EEGLAB toolbox.  

Recordings from 1 subject were discarded due to a large 

number of EEG segments highly corrupted by movement 

artifacts. Therefore, the subsequent analyses were performed 

on the recordings of the remaining 8 subjects (7 females and 1 

male). Due to the temporal window going from muscles 

activation to kinematic effective movement (i.e., 

electromechanical delay [31]), EEG analysis for the active 

conditions (i.e., tasks A, C) was performed using overall EMG 

derived onsets/offsets rather than movement timing 

determined by kinematic measurements. Muscular activity 

onsets and offsets were detected from the overall EMG signal 

as relative minima/maxima of the signal envelope obtained 

with a 1st order low-pass Butterworth filter application [25], 

[27]. Overall EMG derived onsets/offsets were synchronized 

with EEG measurements by means of the two voluntary 

contractions performed prior every task. The synchronization 

process was based on alignment of muscular contraction 

onsets as derived by EMG signals measured with the two 

devices (i.e., Porti and Sam32). Synchronization procedure 

was carried out for each subject and task, and carefully 

visually checked. Movement onsets and offsets from 

kinematics were imported on EEG signals recorded during 

task B (i.e., glove/NO active movement). Hand closing 

movements were not considered for the subsequent analyses. 

This was due to the fact that the resting position of the hand 

for closing movements is with the hand open, thus a muscular 

contraction is intrinsically necessary to maintain the resting 

position. 

Large inter-individual differences in the frequency bands of 

mu and beta rhythms have been reported in literature [12]. We 

used Event-Related Spectral Perturbation (ERSP) maps to 

identify subject-specific frequency bands reactive to 

movement execution in order to determine the upper and 

lower limits of the bandpass filters to be used for ERD/ERS 

computation [32]. To this purpose, we computed ERSP maps 

for electrode C3 and for tasks A, B, C. ERSP maps provide a 

time-frequency representation of mean event-related changes 

in spectral power with respect to a reference period (baseline). 

The time-frequency decomposition was performed through 

EEGLAB toolbox using three-cycle Morlet wavelets, as seen 

in literature [33]. A correct identification of the baseline is 

crucial for estimating meaningful ERSP maps. Therefore, as 

suggested in [12], for each subject we identified the best 

baseline interval as the 1-s-long segment before movement 

onset showing a clear peak in the power spectrum associated 

to mu rhythm. The identification of this spectral peak in the 

signal power spectrum indicates that the SMC is not engaged 

in either sensorimotor information processing nor in motor 

commands generation. Indeed, this spectral peak disappears 

during movement planning and execution. ERSP maps were 

computed on 8-s-long epochs (from -2 s to 6 s with respect to 

onset events), containing the whole movement. EEG power 

values were calculated for 195 linearly spaced frequencies 

(from 1.5 Hz to 50 Hz) and along 200 time bins. The subject-

specific frequency bands reactive to movement were identified 

as those bands showing statistically significant changes in 

power values during the complete execution of the movement 

with respect to the baseline. The statistical analysis was 

performed using a two-tailed permutation test (alpha level was 

set to 0.05). For each ERSP map, the False Discovery Rate 

method was used to correct the vector of p-values for multiple 

comparisons (i.e., 195 frequency values x 200 time bins). The 

time course of ERD/ERS was computed using the band power 

method [12], [13]. For each subject and task, EEG signals 

were separately band-pass filtered within the previously 

identified subject-specific frequency bands. Filtered signals 

were then squared in order to obtain power values as function 

of time. For those tasks in which a movement was executed 

(i.e., tasks A, B and C) we identified the segments of the 

squared signals that were included between onset and offset 

events. To allow a comparison between movements and 

subjects, we normalized the time scale of each segment, 

without affecting frequency domain properties. Accordingly, 

all segments were stretched or shrunk in order to overlap all 

the onset and all the offset times, thus all the movements were 

represented with the same duration in time, which was fixed 

equal to 5 s. Effective onset and offset events are not available 

for task D, as any movement is executed in this task. 

Therefore, each auditory cue and the 5th second after it were 

considered as onset and offset events respectively. Then, 

separately for each task, the processed squared signals were 

cut into epochs defined between 0.5 s before and 8 s after 

onset events. Within each epoch, the time instants t = 0 s and t 

= 5 s always identify the onset and the offset events 

respectively. Epochs were then averaged across trials. As in 

[12], relative ERD/ERS were expressed as the percent change 

of the signal power relative to the mean power in the baseline 

period. 

We subdivided each averaged epoch into consecutive and 

not overlapping 0.5-s-long time windows and we computed 

the mean ERD/ERS value for each window. Topographical 

maps of ERD/ERS patterns for all time windows and for both 

mu and beta bands were computed for all subjects and tasks. 

ERD/ERS time course analysis was restricted to C3, F3 and 

Cz electrodes as they record neural activity respectively from 

contralateral (i.e., left) SMC and Premotor Cortex (PM), and 

from bilateral Supplementary Motor Area (SMA) within the 

10-20 montage [34]. As seen in literature [15], [16], [18], for 

each task we performed a paired sample two-tailed t-test to 

verify whether the mean ERD/ERS values computed in each 

window were significantly statistically different with respect 

to the baseline condition. Furthermore, mean ERD/ERS values 

were compared between tasks in each time window by using 

generalized linear models with ERD/ERS features as 

dependent variables, Gloreha (G) and volitional intention (V) 

as predictive factors, and subjects as covariate. All statistical 

analyses have been performed in SPSS, version 22.0, and p-

values < 0.05 were considered as statistically significant. 
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III. RESULTS 

A. Kinematic and EMG data analysis 

All subjects were able to perform the required tasks, and the 

algorithms applied to kinematic measures and to the overall 

EMG signal were able to correctly detect movement and 

muscular contraction onsets/offsets, which were carefully 

visually checked.  

The EMG features (i.e. area under the overall EMG curve, 

overall EMG peak amplitude, overall EMG RMS) were 

analyzed to verify the hypothesis that, from a muscular 

activation point of view, tasks where subjects’ contribution 

was required (i.e. tasks A, C) were significantly different in 

terms of muscular contraction from those where subjects were 

asked to relax (i.e. tasks B, D). As expected, only the 

volitional intention factor (V) resulted to be statistically 

significant for all features. Specifically, volitional intention 

factor (V) generalized linear model associated p-values 

resulted to be minor than 0.001 for all EMG features, while 

glove factor (G) generalized linear model associated p-values 

resulted to be equal to 0.431, 0.871, and 0.993 respectively for 

area under the overall EMG curve, overall EMG peak 

amplitude, and overall EMG RMS. In other words, on a 

statistical base, muscular activity was modified when the 

subjects were asked to voluntary contribute to the movement 

with respect to when the subjects were required to remain 

relaxed, independently by the fact of wearing/non-wearing the 

robotic glove. 

B. EEG data analysis 

The subject-specific frequency bands reactive to movement 

for mu and beta rhythms, as obtained from ERSP maps, are 

reported in Table 1. The mu rhythm fell within the range 7 - 

14 Hz with a predominance in the range of upper alpha 

frequencies (i.e., 10 – 13 Hz). The beta rhythm fell within the 

range 16 - 28 Hz with a predominance in the range of low beta 

frequencies (i.e., 16 – 24 Hz). The baseline intervals 

specifically determined for each subject and used for the 

computation of ERSP maps and ERD/ERS time course are 

also reported in Table 1. ERSP maps from a representative 

subject obtained for electrode C3 and for all tasks are shown 

in Figure 3. In the tasks in which a movement was executed 

(i.e., tasks A, B and C), two distinct frequency bands, which 

correspond to mu and beta rhythms, showed reactivity to 

movement execution. Indeed, the signal power within these 

bands was significantly smaller with respect to baseline 

interval. In the subsequent paragraphs all time values are 

expressed relative to movement onset instant (t = 0 s). 

Mu frequency band 

As expected, ERD for task D (i.e., NO glove/NO active 

movement) was not statistically different from the baseline for 

all the considered electrodes along the whole movement 

duration. On the contrary, for the tasks requiring movement 

execution, whether active (tasks A, C) or passive (task B), 

ERD was statistically significantly different from the baseline 

for nearly the whole movement duration (Figure 4, A). The 

four tasks present different ERD timing (Table 2).  

TABLE I 

SUBJECT-SPECIFIC FREQUENCY BANDS REACTIVE TO MOVEMENT EXECUTION 

AND BASELINE INTERVALS USED FOR ERD/ERS COMPUTATION. 

Subject 

ID 

mu band 

[Hz] 

beta band 

[Hz] 

Baseline interval (s)  

with respect to onset 

time 

  

S1 8 - 13 16 - 22 [-3 -2]   

S2 10 - 14 18 - 25 [-3 -2]   

S3 12 - 14 16 - 22 [-3 -2]   

S4 9 - 13 19 - 24 [-3 -2]   

S5 11 - 14 17 - 22 [-2 -1]   

S6 7 - 11 16 - 21 [-1.5 -0.5]   

S7 9 - 13 21 - 26 [-2 -1]   

S8 7 - 9 23 - 28 [-2 -1]   

 

 
Fig. 3. ERSP maps obtained from a representative subject (S2) and used to identify subject-specific frequency bands associated to mu and beta rhythms that 

showed reactivity to movement execution. ERPS maps are represented for electrode C3 and for all tasks (A, B, C and D). Spectral power values are converted in 

logarithmic units and then expressed in dB, ranging from -5 to 5 dB. The pink dashed line represents onset event (Mon), which corresponds to the time instant t = 

0 s. The offset event is labelled as Moff. Statistically significant differences in power values with respect to the baseline are represented in red and blue colors for 

positive and negative deviations from the baseline activity, respectively.  
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Fig. 4. Average across subjects of ERD/ERS time course (panels A and B) and ERD/ERS topographical maps (panel C) for the four tasks (i.e., task A: 

glove/active movement; task B: glove/NO active movement; task C: NO glove/active movement; task D: NO glove/NO active movement). ERD/ERS time 

course in the mu (panel A) and in the beta (panel B) frequency bands is displayed for electrodes C3, F3 (i.e., SMC and Premotor Cortex contralateral to 
movement) and Cz (SMA). Vertical pink dashed lines indicate movement onset and offset (time instants t = 0 s and t = 5 s respectively). Horizontal bars with the 

same color schema of the tasks represent the 0.5-s-long time windows in which ERDs achieved statistical significance relative to baseline. Topographical maps 

of beta ERD/ERS (panel C) display the mean ERD/ERS values computed within five consecutive 0.5-s-long time windows after movement onset (i.e., from 0 to 

0.5s; from 0.5 to 1s; from 1 to 1.5s; from 1.5 to 2s; from 2 to 2.5s). 
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In particular, the four conditions differ in terms of the first 

time window in which ERD becomes statistically significantly 

different from baseline. Indeed, in primary sensorimotor and 

premotor cortices (i.e., C3 and F3 electrodes), power decrease 

in the mu frequency band (i.e., ERD) associated to conditions 

requiring subject’s active contribution to the movement (i.e., 

tasks A, C) was found earlier in terms of timing with respect 

to power decrease associated to the condition where only 

robotic assistance was present (i.e., task B). As for 

supplementary motor area (i.e., Cz electrode), ERD associated 

to the task involving both volitional intention and robotic 

assistance (i.e., task A) shows the earlier statistically 

significant power decrease. For all considered electrodes, a 

statistically significant ERD was maintained throughout the 

end of movement execution (time instant t = 5 s) when the 

robotic assistance was present (i.e., tasks A, B). 

Beta frequency band 

The ERD/ERS time course in the beta frequency band 

(Figure 4, B) during movement execution period (from 0 to 5 

s) is similar to that observed in the mu band, but more evident 

and relevant differences among tasks in terms of timing of the 

first statistically significant ERD were detected. As reported in 

Table 2 for C3 electrode, a statistically significant ERD in the 

conditions requiring subject’s active contribution (i.e., tasks A, 

C) began when the movement started (time instant t = 0 s). On 

the contrary, a statistically significant ERD began at 1.5 s 

when only robotic assistance was present (i.e., task B). A 

similar behavior was observed for electrodes F3 and Cz. 

Moreover, the volitional intention factor (V) resulted to be 

statistically significant in the time interval between 0 and 1 s 

for C3 electrode (p-value = 0.006) and during the time interval 

between 0 and 0.5 s for electrodes F3 and Cz (p-value = 0.011 

and p-value = 0.015 respectively). In other words, ERD 

behavior in terms of timing is influenced by subject’s active 

contribution to the movement at the beginning of the executed 

movement. The differences in terms of ERD timing among the 

four tasks can also be visually appreciated on the 

topographical maps of ERD/ERS patterns (Figure 4, C). 

Indeed, especially during the 0 - 0.5 s time interval, SMC and 

PM contralateral to movement, and the bilateral SMA show a 

statistically significant ERD only for tasks involving subject’s 

active contribution to the movement (i.e., tasks A, C). In 

agreement with previous reported findings [12], [15], [16], the 

topographical maps highlight a bilateral ERD highly focused 

over the SMC contralateral and ipsilateral to the movement 

(i.e., C3 and C4 electrodes respectively). This bilateral ERD 

began at 0.5 s for tasks A and C, while it began at 1.5 s for 

task B. 

IV. DISCUSSION 

The aim of this study was to describe brain activity 

implications in primary sensorimotor, premotor and 

supplementary motor areas when considering active 

participation to a robotic assisted movement. In particular, the 

influence of the two factors on neural activity has been 

investigated by means of a 2 x 2 factorial design, which 

combines volitional contribution of the subject to the 

movement and robotic assistance as factors. The effective 

volitional contribution of the subject during movement 

execution has been monitored with superficial EMG, 

confirming a significantly higher muscular activity in 

conditions where volitional contribution of the subject was 

requested (i.e., tasks A, C). In addition, the muscular 

activation analysis demonstrated that the volitional 

contribution of the subjects in terms of muscular activations 

was comparable in tasks where volitional effort was required. 

Therefore, any differences in terms of brain activity have to be 

linked to motor control loop perturbation rather than a 

muscular performance difference. 

A. Neural correlates of subjects’ active participation to 

functional robotic-based movements 

We observed neural activity (i.e., ERD) in correspondence 

of the analyzed electrodes during movement execution for 

both active (i.e., tasks A, C) and passive (i.e., task B) 

conditions, as previously observed in EEG [15], [16], and 

fMRI literature [19]. However, ERD patterns observed in the 

present study differed among experimental conditions mainly 

in terms of timing. 

ERD patterns observed in beta and mu frequency bands 

show a similar behavior for primary sensorimotor and 

premotor cortices, and supplementary motor area, and namely 

a statistically significant ERD in the conditions requiring 

subject’s active contribution (i.e., tasks A: glove/active 

TABLE II 

BEGINNING INSTANT [S] OF THE FIRST 0.5-S-LONG TIME WINDOW, STARTING FROM MOVEMENT ONSET (T = 0 S), IN WHICH ERD ACHIEVED STATISTICAL 

SIGNIFICANCE (P-VALUE < 0.05) RELATIVE TO BASELINE. 

 
Mu band Beta band 

 
time [s] ERD [%] time [s] ERD [%] 

Task C3 F3 Cz C3 F3 Cz C3 F3 Cz C3 F3 Cz 

A (glove/active movement) 1,5 1,5 0,5 -38 -25 -25 0 0 0 -34 -22 -21 

B (glove/NO active movement) 2 2 1,5 -33 -28 -26 1,5 2 1 -40 -20 -30 

C (NO glove/active movement) 1 1 1,5 -29 -23 -33 0 0,5 0 -34 -19 -23 

D (NO glove/NO active movement) - - - - - - - - - - - - 

The mean ERD value, expressed as percentage unit, is reported for each time window and for all electrodes (i.e., C3, F3 and Cz) and tasks (i.e., A, B, C and D). 
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movement and task C: NO glove/active movement) began 

earlier with respect to the condition where only robotic 

assistance was present (i.e., task B: glove/NO active 

movement). Given that ERD has been proven to be a 

physiological correlate of activated brain areas, our results 

demonstrate that the activation of SMC, PM and SMA begins 

earlier in time when the volitional intention factor is present 

(i.e., tasks A, C) with respect to when only robotic assistance 

is present (i.e., task B). Although presenting the same behavior 

(i.e., ERD starting earlier in time for conditions where 

volitional intention is present), beta and mu bands ERD have 

different onsets. In particular, beta band ERD begins earlier in 

time with respect to mu band ERD. We hypothesize that this 

difference lies on the separate functional networks to which 

the sensorimotor rhythms are associated. Indeed, it has been 

demonstrated that the mu rhythm reflects predominantly 

somatosensory cortical functions, while the beta rhythm is 

associated with motor cortical functions [35]. ERD magnitude 

has been demonstrated to correlate with the extent of cortical 

activation, and specifically a stronger ERD corresponds to a 

higher cortical activation, as demonstrated by a recent EEG-

fMRI study [36]. We observed comparable ERD values after 

movement onset in those conditions in which the volitional 

intention factor was present (i.e., tasks A, C), thus suggesting 

a comparable level of cortical activation. In addition, the EMG 

analysis demonstrated that the subjects’ muscular contribution 

was equivalent in these tasks. Indeed, the presence of the 

volitional factor is coupled with beta band ERD to start at 

movement onset which can be associated to movement 

planning in an externally triggered movement, particularly for 

what is concerning PM and SMA areas. Beta band ERD 

associated with glove/NO active movement condition might 

reflect brain activation related to movement execution itself, 

rather than movement planning, as the resulting movement is 

purely passive. This is in line with what has been suggested in 

literature, and namely that the volitional intention factor was 

found to play an important role in the movement execution, 

when the motor scheme and proprioceptive predictions for the 

upcoming movement are generated [19]. 

We observed a stronger and long lasting ERD towards the 

end of movement in those conditions in which the robotic 

assistance was present (i.e., tasks A, B) with respect to the 

condition in which the movement was not supported by the 

glove (i.e., task C). In line with literature findings [37], this 

enhancement of ERD pattern during the last part of the 

movement could originate from reinforced afferent 

proprioceptive feedback related to the final position imposed 

by the robotic glove. Primary somatosensory cortex receives 

ascending inputs from spinal circuits, typically through the 

thalamic pathway [38] and specifically, part of the primary 

somatosensory cortex, Brodmann area 3a, receives substantial 

input from muscle proprioceptors [39]. 

B. Hypothesis for an impact on rehabilitation treatment 

design 

We hypothesize that the earlier SMC activation 

immediately after movement onset is due to the volition 

intention, and primarily mediated by primary motor cortex, 

while the more prolonged SMC activation in the last part of 

the movement is due to the reinforced afferent proprioceptive 

feedback given by the glove, primarily mediated by primary 

sensorimotor cortex. This is in line with the interaction 

between artificially altered sensory feedback and volitional 

movement as revealed by fMRI activation shown to be located 

in primary sensorimotor cortex that has been interpreted as the 

differential effect of proprioception during concurrent 

voluntary movement in healthy subjects [19]. The same effect 

has been shown for post-stroke patient, where the ability to 

plan the movement (as mediated by supplementary motor 

area) and to perceive functional electrical stimulation as 

support for drop foot correction as a part of his/her own 

control loop (as mediated by angular gyrus) has been 

demonstrated to be important for motor relearning to take 

place [20], [40].  

Although the use of robotic assisted treatments for 

neurological rehabilitation is controversial, our study suggests 

that the movement planning after an externally triggered 

movement, as mediated by subject volitional contribution, 

coupled with the effective movement execution, which is 

supported by the robotic device, is able to provide early brain 

activation (i.e., earlier ERD) coupled with stronger 

proprioceptive feedback (i.e., longer ERD). In particular, the 

planned movement should correspond to proper 

somatosensory feedback for the motor scheme to be 

strengthen as suggested by Hebbian-based plasticity [41], [42].  

This might be particularly important for neurological patients 

where the movement cannot be completed by themselves, and 

thus the passive robot-assisted or the active robot-assisted 

modalities are the only possibilities for the design of a 

rehabilitation treatment. Therefore, based on the results 

obtained in the present study, the implications for the design 

of a rehabilitative therapy are the following: i) an active-

assisted training, whether performed by a robotic device or by 

a therapist, induces an earlier activation of the relevant brain 

areas (i.e., SMC, PM, SMA) with respect to a passive-assisted 

training; ii) after movement onset, which is when the motor 

scheme for the upcoming movement is generated, the brain 

activations induced by the active-assisted modality are 

comparable to those induced by a voluntary movement; iii) 

towards the end of the movement, reinforced afferent 

proprioceptive feedback might force a more prolonged brain 

activity. 

C. Study limitations and future sights 

Brain activity implications when considering active 

participation to a robotic assisted movement have been 

investigated in 8 healthy volunteers. We did not include 

patients with neurological trauma in the study, since we 

wanted to understand how active-assisted and passive-assisted 

motor training can modulate the sensorimotor rhythms in a 

physiological context. Although a small number of subjects 
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participated to the study, the reported results are statistically 

robust. Additional investigations on a larger population are 

recommended to confirm the achieved findings. The rather 

small number of movement repetitions per task (i.e., 10 

movements), even if comparable with that used in a previous 

study [16], has been determined based on a compromise 

between a reasonable duration of the experiment and the 

goodness and robustness of results. The experiment was 

conducted in controlled conditions, so the quality of data was 

accurately checked. As the four tasks were executed 

consecutively, the number of repetitions was determined in 

order to prevent the subject from being bored and from fatigue 

effects. Due to the need of not removing the robotic glove 

between tasks A and B, so to guarantee the maximum of 

movement repeatability, we did not randomized the 

experimental order of tasks, and therefore it might have been 

subjected to a certain carryover effect.  

As a future research, we plan to investigate the neural 

correlates of active-assisted and passive-assisted motor 

training in neurological patients with particular attention to 

ERD timing. 
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