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Abstract

1. Perturbations to an ecosystem’s steady state can trigger transient responses of great ecological

relevance. Asymptotic stability determines whether a generic perturbation will fade out in the

long run, but falls short of characterizing the dynamics immediately after an equilibrium has5

been perturbed. Reactivity, traditionally defined as the maximum instantaneous growth rate

of small perturbations to a stable steady state, is a simple yet powerful measure of the short-

term instability of a system as a whole. In many ecological applications, however, it could be

important to focus on the reactivity properties of just some specific, problem-dependent state

variables, such as the abundance of a focal species engaged in interspecific competition, either10

predators or preys in a trophic community, or infectious individuals in disease transmission.

2. We propose a generalized definition of reactivity (g-reactivity) that allows to evaluate the dif-

ferential contribution of the state space components to the transient behavior of an ecological

system following a perturbation. Our definition is based on the dynamic analysis of a system

output, corresponding to an ecologically-motivated linear transformation of the relevant state15

variables. We demonstrate that the g-reactivity properties of an equilibrium are determined

by the dominant eigenvalue of an Hermitian matrix that can be easily obtained from the

Jacobian associated with the equilibrium and the system output transformation.

3. As a testbed for our methodological framework, we analyze the g-reactivity properties of

simple spatially-implicit metapopulation models of some prototypical ecological interactions,20

namely competition, predation and transmission of an infectious disease. We identify con-

ditions for the temporary coexistence of an invader with a (possibly competitively superior)

resident species, for transitory invasion of either prey or predator in otherwise predator- or

prey-dominated ecosystems, and for transient epidemic outbreaks.

4. Through suitable examples, we show that characterizing the transient dynamics associated25

with an ecosystem’s steady state can be, in some cases, as important as determining its asymp-

totic behavior, from both theoretical and management perspective. Because g-reactivity anal-

ysis can be performed for systems of any complexity in a relatively straightforward way, we

conclude that it may represent a useful addition to the toolbox of quantitative ecologists.

1 Introduction30

The study of ecosystem stability has been, and still is, one of the landmarks of theoretical ecology

(Odum, 1953; MacArthur, 1955; Holling, 1973; May, 1973; Pimm, 1984; Tilman, 1996; McCann, 2000;

Tilman et al., 2006). Several methods have been proposed to quantify the resilience of an ecological

steady state to perturbations, most of which traditionally refer to the long-term dynamics of the

system (see e.g. Grimm and Wissel, 1997; Arnoldi et al., 2016). While determining the asymptotic35

behavior of an equilibrium is of obvious importance from both theoretical and management perspective,

characterizing its short-term transient dynamics immediately after a perturbation can be, in some
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cases, at least as important. As an example, some invasive species may show a so-called boom-and-bust

demographic pattern (Williamson, 1996; Simberloff and Gibbons, 2004), in which an abrupt increase

in population abundance after introduction is followed by a sudden collapse. Similarly, in disease40

ecology, exposure to a pathogen can produce a transient epidemic wave in a näıve population (i.e. a

population lacking pre-existing immunity to the disease); in this case, peak disease prevalence may be

orders of magnitude larger than the one eventually observed after the pathogen has possibly become

endemic (Anderson and May, 1992; Keeling and Rohani, 2007). These examples clearly illustrate a

key ecological point: observation and theory must focus on process-relevant timescales, not necessarily45

(or not only) on asymptotic dynamics (Hastings, 2010).

A simple measure of a system’s short-term instability to small perturbations was proposed by Neu-

bert and Caswell (1997). Specifically, they introduced the notion of reactivity, defined as the maximum

instantaneous rate at which perturbations to a stable steady state can be amplified. Revived by the

seminal paper by Neubert and Caswell, the analysis of transient behavior in biological systems has50

been recognized as a key concept to long-term ecological understanding (Hastings, 2004). Reactivity

has been studied in several ecological applications, such as food-web dynamics (Chen and Cohen,

2001), pattern-formation processes (Neubert et al., 2002), metapopulation dynamics (Marvier et al.,

2004; Aiken and Navarrete, 2011), predator-prey interactions (Neubert et al., 2004), stage-structured

populations (Caswell and Neubert, 2005; Stott et al., 2011), pathogen transmission (Hosack et al.,55

2008; Chitnis et al., 2013; Woodall et al., 2014) and community dynamics (Tang and Allesina, 2014;

Barabás and Allesina, 2015; Suweis et al., 2015; Cortez, 2016).

In this work we present an extension of the basic definition of reactivity that seems to be especially

suited for ecological applications. In fact, one possible setback of the original theory by Neubert and

Caswell (1997) is that reactivity was defined as an isotropic quantity, i.e. all state variables are60

given equal weight in the evaluation of the system’s short-term response to external perturbations.

A measure of reactivity that allows unequal weighting of state variables was introduced by Verdy

and Caswell (2008). However, their method does not include the situation in which the system is

considered reactive if only some state variables display a positive growth rate in the aftermath of a

perturbation to a stable steady state. In many ecological contexts, though, it could be important to65

focus on the short-term instability properties of just some specific, problem-dependent components of

the state space – or of some suitable combination of state variables. To that end, a fully anisotropic

definition of reactivity is needed. A few examples may help understand the ecological relevance of this

issue, which we deem noteworthy. For instance, in a competition model describing resident-invader

dynamics and characterized by a stable resident-only equilibrium, one might want to assess the short-70

term response of the system following the introduction of the invader in the ecosystem in terms of

the abundance of the invader population; in a predator-prey system, one might be interested in the

short-term fluctuations of just one of the interacting species (either the prey or the predator) while
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neglecting (i.e. assigning a zero-weight to) the other; or, finally, in eco-epidemiological applications,

one would perhaps limit reactivity analysis only to the variables pertaining to infection, thus assessing75

the likelihood of transient epidemic waves. None of these important ecological problems could be

properly analyzed with the original definition of reactivity.

The paper is organized as follows. In the next section we briefly outline the isotropic reactivity

theory elaborated by Neubert and Caswell (1997) and propose a simple test to detect short-term

instabilities in a novel, fully anisotropic framework based on the dynamic analysis of a suitable system80

output. This corresponds to a linear transformation of the state variables – or, possibly, of a subset of

the state variables – that is designed to be ecologically relevant. Then, as a testbed for our framework,

we study the problem of transient species dynamics (sensu Hastings, 2004) in metacommunities. A

discussion focused on the ecological implications of our generalized definition of short-term instability

closes the paper.85

2 Materials and methods

2.1 Background: reactivity in ecological systems

The asymptotic stability of a system’s attractor defines the long-term response of the system to

small perturbations, but does not provide information about transient behavior. To circumvent this

limitation, in the case of equilibria, Neubert and Caswell (1997) proposed a way to characterize the90

short-term dynamics associated with small perturbations to the system. Given an asymptotically

stable steady state of a linearized (or linear) system dx/dt = Ax (with A being a square matrix

of dimension n, and with x being the difference between the system state and the equilibrium) and

generic perturbations x0 = x(0), Neubert and Caswell defined

reactivity ≡ max
x0 6=0

(
1

||x||
d||x||
dt

)∣∣∣∣
t=0

, (1)95

where || · || indicates the Euclidean norm of vectors. In other words, reactivity was originally defined as

the maximum initial amplification rate of small perturbations to a stable equilibrium, evaluated over

all possible local perturbations (or, for a linear system, over all possible perturbations with a given

magnitude, say ||x0|| = 1 as customary). Two cases are thus possible: either (i) all perturbations

decay exponentially over time, or (ii) at least some perturbations can initially grow, before eventually100

decaying because of the asymptotic stability of the equilibrium. In the second case, reactivity as

defined in (1) is positive, and the equilibrium is said to be reactive. Neubert and Caswell showed that

reactivity is given by the dominant eigenvalue λmax(H(A)) of the Hermitian part H(A) of matrix A,

namely H(A) = (A+AT )/2, where T indicates matrix transposition. With this method, it is possible

(and relatively straightforward) to evaluate a system’s short-term response to small perturbations as105
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a function of the model parameters. However, Neubert and Caswell’s (1997) measure relies on the

Euclidean norm of the system state, so that all variables are given equal weight in the assessment of

the reactivity properties of an equilibrium.

2.2 A generalized definition of reactivity

We build on the theory elaborated by Neubert and Caswell (1997) and propose an extended definition110

of reactivity, henceforth referred to as generalized reactivity (or, for brevity, g-reactivity), that is

particularly suited for the analysis of ecological systems. To proceed with the evaluation of g-reactivity,

we preliminarily introduce a suitable (i.e. ecologically motivated) linear output transformation y = Cx

for the linearized (or linear) system dx/dt = Ax, where C is a real, full-rank m× n (m ≤ n) matrix

defining a set of independent linear combinations of the system’s state variables.115

We define a stable equilibrium point as g-reactive if there exist some (small, yet non-zero) pertur-

bations that are initially amplified in the system output (rather than in the state space), i.e. if

d||y||
dt

∣∣∣∣
t=0

> 0 (2)

for some x0 6= 0. Fig. 1 illustrates the differences existing among different definitions of reactivity. In

the example (details in Appendix S1), A is a 2×2 upper triangular stable matrix. It may correspond,120

for instance, to the linearization of a predator-prey system (with a generalist predator) around the ex-

tinction equilibrium of the prey, with x1 representing the difference between the predator’s abundance

and its carrying capacity, and x2 representing the prey’s abundance (panel A). Panel B shows different

output transformations evaluated for a sample trajectory of the model. Specifically, the output can

be represented by the two species’ abundances (in this case g-reactivity corresponds to Neubert and125

Caswell’s reactivity), possibly weighted (Verdy and Caswell’s reactivity), by the abundance of only

one of the two species (either the predator or the prey), or by a weighted sum of the two species’

abundances (e.g. representing the total biomass of the system). The last three cases can only be

addressed in our extended framework.

Figure 1 around here130
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2.3 A simple test to detect g-reactivity

Noting that dy/dt = C dx/dt = CAx, the initial amplification rate of perturbations to a stable steady

state can be written as

d||y||
dt

∣∣∣∣
t=0

=
d
√
yTy

dt

∣∣∣∣∣
t=0

=
yT dy

dt +
(
dy
dt

)T
y

2
√

yTy

∣∣∣∣∣∣∣
t=0

=
x0

TCTCAx0 + x0
TATCTCx0

2
√
x0

TCTCx0

=

=
x0

T
(
CTCA + ATCTC

)
x0

2
√
x0

TCTCx0

=
x0

TH
(
CTCA

)
x0√

x0
TCTCx0

,

(3)

where H(CTCA) = (CTCA + ATCTC)/2 is the Hermitian part of CTCA. The dimension (defined135

as the number of linearly independent rows) of the kernel of C (i.e. the subspace of x values such

that Cx = 0) is smaller than n, because m ≥ 1 (actually, dim(ker(C)) = n−m). We thus have that

x0
TCTCx0 is positive for x0 not belonging to ker(C). Therefore, condition (2) is verified if

x0
TH(CTCA)x0 > 0 (4)

for some x0 6= 0. Perturbations for which condition (4) is satisfied define the g-reactivity basin (a140

convex polytope in Rn) of the equilibrium (see Hosack et al., 2008, for the corresponding definition in

the isotropic case). Note that they cannot lie entirely in ker(C), otherwise x0
TH(CTCA)x0 = 0. Only

trajectories originating in a neighborhood of a stable (yet g-reactive) steady state within its g-reactivity

basin will be initially amplified in the system output. Inequality (4) is verified if the quadratic form

x0
TH

(
CTCA

)
x0 is not negative semidefinite; we can thus conclude (Horn and Johnson, 1990) that145

condition (2) is equivalent to

λmax

(
H(CTCA)

)
> 0 . (5)

In other words, a stable equilibrium point is g-reactive if the dominant eigenvalue of the Hermitian

part of matrix CTCA is positive (note that all the eigenvalues of H(CTCA) are real because the

matrix is real and symmetric), while λmax(H(CTCA)) = 0 marks the transition between a non-150

g-reactive equilibrium and a g-reactive one. Condition (5) thus represents a simple – yet generally

applicable – test to discriminate between g-reactive and non-g-reactive equilibria. Obviously, it reduces

to the original isotropic condition for reactivity proposed by Neubert and Caswell if C is the identity

matrix (I). In this respect, g-reactivity indeed represents an extension and a generalization of the

original concept of reactivity. On the other hand, the above test for g-reactivity depends on matrix C:155

as such, classifying an equilibrium point as g-reactive is contingent on an appropriate choice for the

output transformation. We also remark that, in ecological applications, it may be important to check

whether a g-reactive equilibrium is also endowed with a biologically meaningful g-reactivity basin.

Sometimes, it may be useful to assess g-reactivity in response not to any generic perturbation x0,
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but rather to some particular class of perturbations. For instance, in an epidemiological system, we160

may be interested in analyzing the system’s response (e.g. in terms of secondary infections) to the

introduction of a few infected individuals in a disease-free population. Of great relevance is thus the

case in which the perturbation involves only those state variables that are represented in the output

transformation. Mathematically, this is equivalent to considering perturbations that belong to the

orthogonal complement of the kernel of C (i.e. x0 ∈ ker(C)⊥), defined as the set of vectors that are165

orthogonal to every vector in ker(C). It can be shown that so-structured perturbations can indeed be

amplified in the system output if

λmax

(
H(CAC+)

)
> 0 , (6)

where C+ = CT (CCT )−1 is the right pseudo-inverse of matrix C (representing a generalization

of a matrix inverse; in fact, matrix C may be not square, yet CC+ = I; note also that CCT is170

invertible because C is full rank) and H(CAC+) = (CAC+ + (C+)TATCT )/2. Details are given

in Appendix S2. There, we also describe whether (and how, in case) it is possible to evaluate the

maximum initial amplification rate and the overall maximum amplification of perturbations to a stable,

g-reactive steady state, depending on the structure of the output matrix and/or the perturbations

being considered.175

3 Results

To show how our newly developed theory and methods can be applied in the actual ecological practice,

we analyze the g-reactivity properties of some relatively simple models of typical ecological interac-

tions, namely competition, predation and transmission of an infectious disease. Specifically, ecological

dynamics are studied in a spatially-implicit metapopulation framework (Levins, 1969) that has widely180

been used in both theoretical and practical applications (Hanski, 1998, 1999). We focus on mean-field

metacommunity models as prototypical cases of intermediate-complexity dynamical systems applied

to ecological problems because they are simple enough as to allow a concise description, yet complex

enough as to yield nontrivial results.

3.1 Interspecific competition185

The first example concerns competition between two species (say A and B) inhabiting a fragmented

landscape. Several studies (Cohen, 1970; Levins and Culver, 1971; Horn and Mac Arthur, 1972) have

been devoted to this problem in the early years of multi-species metapopulation theory. Here we use the

model proposed by Slatkin (1974) to describe interspecific competition in a patchy environment (later,

the model has been also discussed by Hanski, 1983). If competition does not preclude coexistence of190

the two species, the landscape will comprise patches occupied by just one of the two species, patches

where both species are present and empty patches.
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Let pA and pB be the fractions of patches occupied only by species A or B, and let pAB be

the fraction of patches where A and B coexist (clearly, the fraction of empty patches is given by

1 − pA − pB − pAB). Following Slatkin (1974), patch occupancy dynamics can be described by the195

following set of ordinary differential equations (see Table 1 for a description of the state variables and

the parameters of the model):

ṗA = cA(pA + pAB)(1− pA − pB − pAB)− eApA − εBcB(pB + pAB)pA + κBeBpAB

ṗB = cB(pB + pAB)(1− pA − pB − pAB)− eBpB − εAcA(pA + pAB)pB + κAeApAB

ṗAB = εAcA(pA + pAB)pB + εBcB(pB + pAB)pA − (κAeA + κBeB)pAB .

(7)

Individuals of a given species, say A, dispersing from patches where they either live in isolation or

coexist with species B, colonize empty patches or patches previously occupied only by B at rates cA200

or εAcA, respectively. In the latter case, the factor εA ≤ 1 describes colonization competition, i.e.

reduced colonization success because of the pre-establishment of a local competitor population in the

patch (Levins and Culver, 1971; Slatkin, 1974). Colonization events are balanced by local extinctions:

in patches occupied by species A alone, local extinction occurs at rate eA; in patches where the

two species coexist, extinction of species A occurs at rate κAeA, with κA ≥ 1 describing extinction205

competition, i.e. increased extinction risk in the presence of a competitor (see again Slatkin, 1974;

Hanski, 1983). The same mechanisms apply, mutatis mutandis, to species B.

Table 1 around here

The metapopulation competition model has four possible steady-state solutions, namely

xex = [0, 0, 0]T , xA =

[
cA − eA
cA

, 0, 0

]T
, xB =

[
0,
cB − eB
cB

, 0

]T
, xAB = [p̄A, p̄B, p̄AB]T

(8)210

with p̄A, p̄B, p̄AB > 0. The four equilibria correspond, respectively, to extinction of both species,

extinction of species B or A, and coexistence (a case in which computing the system state components

at the equilibrium is analytically impractical but numerically easy). The asymptotic stability of these

steady-state solutions can be assessed through linearization of model (7) around each equilibrium point.

Linear stability analysis can be performed either analytically (for xex, xA and xB) or numerically (for215

xAB). As an example, details on the assessment of the stability of xex are reported in Appendix S3.

The stability ranges in parameter space of the four equilibria of model (7) are shown in Fig. 2a. Note

that the stability diagram is symmetric about cA = cB because species A and B are assumed to be

identical in the example shown in the figure, possibly except for their colonization rates. Asymptotic

coexistence is possible (i.e. xAB is stable) if the two species’ colonization rates are not very different220

from each other (and obviously larger than the respective extinction rates), as observed by Slatkin

(1974).
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Figure 2 around here

To study the g-reactivity properties of the steady-state solutions of system (7), a suitable output

matrix needs be specified. For instance, if we wanted to analyze the transient amplification of patch225

occupancy for species B, we could define

CB =

0 u 0

0 0 v

 , (9)

with u and v being two positive parameters.

To detect g-reactive equilibria we apply condition (5) with C = CB and A = JX (JX being the

Jacobian matrix of the system evaluated at the four equilibria, X ∈ {ex,A,B,AB}). As an example,230

a detailed g-reactivity analysis for the extinction equilibrium xex is reported in Appendix S3. Fig. 2a

shows that xex is g-reactive if the colonization rate of species B is sufficiently high; conversely, the

g-reactivity of xex does not depend on the colonization rate of species A. In case of a g-reactive

extinction equilibrium, the share of landscape patches occupied by species B can temporarily grow

(before eventually vanishing, as implied by the stability of xex) following a suitable perturbation.235

Specifically, such a perturbation must lie in the g-reactivity basin of the equilibrium (Fig. 2b), as

determined by eqn. (4).

The g-reactivity of the single-species equilibrium xA can be assessed through algebraic manipu-

lations similar to those described in Appendix S3 for the extinction equilibrium. Interestingly, there

are cases (i.e. the parameter combinations for which xA is stable and g-reactive) in which species B240

can temporarily colonize the system before being outcompeted by species A, namely either for cA and

cB relatively close to the two species’ local extinction rates, or for high values of cA. Under these

conditions, an invader species (B) could temporarily coexist with the resident species (A). This result

is also demonstrated in Fig. 2c, where the maximum initial amplification rate (r) and the maximum

overall amplification (ρ?) of perturbations to the steady states of model (7), evaluated along a transect245

of Fig. 2a, is reported (see Appendix S2 for details on the evaluation of r and ρ?).

According to condition (5), the other steady states of the model (the single-species equilibrium xB

and the coexistence equilibrium xAB) are always g-reactive for generic perturbations (i.e. involving

also patches occupied by species A alone). We could have come to the same conclusion by noting

that ker(CB) 6= ker(CBJX) (X ∈ {B,AB}, see again Appendix S2). However, because the focus of250

the output transformation is on species B, it might be interesting to assess whether perturbations

not involving patches occupied by species A alone (x0 ∈ ker(C)⊥) can temporarily be amplified as

well. To do so, we evaluate the Hermitian matrices H(CBJXCB
+) and H(CBJABCB

+) (note that

the former can be worked out analytically, while evaluating the latter requires carrying out numerical

simulations of model (7)) and apply condition (6). Fig. 2a shows that both xB and xAB are g-reactive255
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for perturbations x0 ∈ ker(C)⊥ if the colonization rate of species B is either high or low.

Model (7) can also be used to analyze asymmetric interspecific competition (Tilman, 1994), i.e.

cases in which one of the two species is competitively inferior to the other (e.g. in terms of higher

extinction rate, smaller colonization competition factor and/or larger extinction competition factor).

Fig. 2d reports the results of stability and g-reactivity analysis for the different equilibria of the model260

in a case in which species B is a lesser competitor than species A. Asymptotic species coexistence

is still possible, provided that the inferior competitive abilities of species B be compensated for by

a higher baseline colonization rate (i.e. as in the case of so-called fugitive species; see e.g. Horn and

Mac Arthur, 1972; Hanski and Zhang, 1993). The parameter combinations for which species B can

temporarily colonize an otherwise A-dominated ecosystem are remarkably reduced, yet conditions265

allowing a temporary increase of the fraction of patches occupied by the competitively inferior species

still exist.

3.2 Predator-prey dynamics

The second of our examples concerns predator-prey dynamics in a fragmented landscape. A simple

metapopulation model for a prey and its specialist predator was proposed by Bascompte and Solé270

(1998). Their approach was later extended by Swihart et al. (2001) to account for generalist predators,

i.e. predators that can survive in the absence of their preferred prey. Here we elaborate on the latter

approach, so that the landscape can be partitioned into four categories of patches: empty, prey-only

(predator is locally extinct), predator-only (prey is locally extinct) and predator-prey patches (where

local populations of prey and predator coexist).275

Let pY and pD be the fractions of patches occupied only by the prey or the predator, respectively,

and let pY D be the fraction of patches where predator and prey coexist (the fraction of empty patches

is given by 1 − pY − pD − pY D). Following Swihart et al. (2001), patch occupancy dynamics can be

described by the following set of ordinary differential equations (see again Table 1):

ṗY = cY (pY + pY D)(1− pY − pD − pY D)− eY pY + εDeDpY D − cD(pD + pY D)pY

ṗD = cD(pD + pY D)(1− pY − pD − pY D)− eDpD + κY eY pY D − cY (pY + pY D)pD

ṗY D = cY (pY + pY D)pD + cD(pD + pY D)pY − (κY eY + εDeD)pY D .

(10)280

Prey and predator organisms colonize patches at species-specific rates cY and cD. Note that possible

mechanisms of preferential colonization (i.e. prey or predators showing a preference towards empty

or prey-only patches, respectively) are not accounted for. Colonization events are balanced by local

extinctions, occurring at rates eY in prey-only patches and eD in predator-only patches. Prey or

predator extinction in patches where the two species coexist occur at rates κY eY and εDeD, respec-285

tively. The coefficient κY ≥ 1 describes higher prey extinction risk in presence of the predator, while

10



εD ≤ 1 describes lower predator extinction risk in presence of the prey.

Model (10) has four possible steady-state solutions, namely

xex = [0, 0, 0]T , xY =

[
cY − eY
cY

, 0, 0

]T
, xD =

[
0,
cD − eD
cD

, 0

]T
, xYD = [p̄Y , p̄D, p̄Y D]T

(11)

with p̄Y , p̄D, p̄Y D > 0. The four equilibria correspond to extinction of both predator and prey,290

predator extinction, prey extinction and predator-prey coexistence, respectively. The stability of these

steady-state solutions can be evaluated through the analysis of the Jacobian matrix (and its associated

eigenvalues) of model (10) evaluated at each equilibrium point (Fig. 3). The extinction equilibrium xex

is stable if both the predator’s and the prey’s colonization coefficients are smaller than the respective

extinction rates. Given the asymmetric nature of the predator-prey interaction, cY > eY is a necessary295

(yet not sufficient) condition for the long-term persistence of the prey metapopulation, while cD > eD

is a sufficient (yet not necessary) condition for the persistence of the predator. In fact, the prey-only

equilibrium xY is stable if cY > eY and the colonization coefficient of the predator is low (at most,

equal to its extinction rate eD). Conversely, the predator-only equilibrium xD is stable if cD > eD and

the colonization coefficient of the prey is not very high (yet including a sizable region characterized300

by cY > eY ). Finally, predator-prey coexistence (stable xYD) requires cY > eY , but can be observed

also if cD < eD.

Figure 3 around here

To study the g-reactivity properties of the steady-state solutions of system (10) we use two different

output matrices, namely305

CY =

u 0 0

0 0 v

 or CD =

0 u 0

0 0 v

 , (12)

which focus on the transient patch occupancy of either prey (CY) or predator (CD). Clearly, with

two output transformations, the procedure to evaluate g-reactivity has to be replicated twice. Results

are shown in Fig. 3. Concerning output matrix CY (panel a), the most interesting result is that patch

occupancy by the prey can temporarily increase in a predator-only situation (stable xD) for high values310

of the predator’s colonization rate; also, the prey-only and coexistence equilibria are always g-reactive.

Considering output matrix CD (panel B), instead, it turns out that predators can temporarily increase

in a global extinction (stable xex) or prey-only situation (stable xY) if the prey’s colonization rate is

either low or high; the predator-only (stable xD) and coexistence (stable xYD) equilibria are always

g-reactive.315
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3.3 Pathogen transmission

The third example illustrates pathogen transmission in a metapopulation. Several mathematical

models for host-pathogen interactions in spatially implicit metapopulations have been proposed: Hess

(1996) formalized a first, simple model for susceptible-infectious (SI) dynamics; Gog et al. (2002)

analyzed the effects of spillover from an alternative host on SI interactions; McCallum and Dobson320

(2002) studied susceptible-infectious-recovered (SIR) dynamics with a reservoir host; and Harding

et al. (2012) analyzed Allee effect in the context of a SI model. All these studies have contributed

to a lively debate on the long-term implications of conservation corridors for the spatial spread of in-

fectious diseases and the ensuing conservation issues, as originally discussed by Hess (1994). Here we

propose a model to describe susceptible-exposed-infectious-recovered-susceptible (SEIRS) dynamics325

in a metapopulation, namely to account for infections in which there is a non-negligible incubation

period during which newly infected hosts are not yet infective (Anderson and May, 1992). For the sake

of simplicity, and following the approach chosen in all the abovementioned host-pathogen metapop-

ulation models, landscape patches are assumed not to host organisms with different infection status.

Therefore, five categories of patches must be considered, corresponding to the four epidemiological330

compartments (S/E/I/R) and to empty patches.

Let pS , pE , pI and pR be the fractions of susceptible, exposed, infectious and recovered patches

(so that the share of empty patches is 1 − pS − pE − pI − pR). Patch occupancy dynamics can be

described by the following set of ordinary differential equations (see again Table 1):

ṗS = cSpS(1− pS − pE − pI − pR)− eSpS − cIpIpS + (1− α)ηpE + ξpR

ṗE = cEpE(1− pS − pE − pI − pR)− eEpE + cIpIpS − ηpE

ṗI = cIpI(1− pS − pE − pI − pR)− eIpI + αηpE − γpI

ṗR = cRpR(1− pS − pE − pI − pR)− eRpR + γpI − ξpR .

(13)335

Local populations are endowed with different colonization (cΣ) and extinction (eΣ) rates according

to their epidemiological status (Σ ∈ {S,E, I,R}). For the sake of parameter parsimony, we can

assume that susceptible, exposed and recovered populations share the same baseline colonization

(cS = cE = cR = c) and extinction (eS = eE = eR = e) rates, while infectious populations are

characterized by lower colonization (cI = εIc, εI ≤ 1) and higher extinction (eI = κIe, κI ≥ 1) rates.340

Upon being colonized, empty patches assume the epidemiological status of the occupying organisms.

Susceptible patches become exposed when colonized by organisms dispersing from infected patches,

while the event that exposed organisms migrating to a susceptible patch would eventually become

infectious (and thus make the whole patch exposed) is here neglected for simplicity. Patches that have

been exposed to the pathogen progress to a different epidemiological status at a rate η, corresponding345

to the inverse of the average incubation time of the disease; specifically, if a local epidemic outbreak
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unfolds (with probability α) they become infectious patches, otherwise they get back to a susceptible

status (with probability 1−α). Infectious patches lose their status at rate γ, representing the inverse

of the average duration of a local epidemic, and become recovered patches. Recovered patches become

susceptible again at rate ξ, corresponding to the inverse of the average duration of the specific immunity350

to the disease.

Model (13) has three possible steady-state solutions, namely

xex = [0, 0, 0, 0]T , xdf =

[
c− e
c

, 0, 0, 0

]T
, xen = [p̄S , p̄E , p̄I , p̄R]T (14)

with p̄S , p̄E , p̄I , p̄R > 0. The three equilibria correspond, respectively, to metapopulation extinc-

tion, pathogen extinction (the so-called disease-free equilibrium, i.e. a state in which all occupied355

patches are susceptible to the infection) and pathogen establishment (endemic equilibrium, in which

the pathogen can persist indefinitely in the metapopulation). The stability ranges of the three equi-

libria of model (13) can be obtained from the analysis of the dominant eigenvalues of the Jacobian

matrices J0, Jdf and Jen (for the extinction, disease-free and endemic equilibrium, respectively;

Fig. 4a). The metapopulation is doomed to extinction for low values of the baseline colonization rate360

(c < e, Levins, 1969), persists in a disease-free state for intermediate values of c, or endures in an

endemic-transmission setting for high values of c.

Figure 4 around here

Increasing values of c lead to higher overall patch occupancy, as expected, yet the fraction of

susceptible patches peaks for intermediate values of the colonization rate, namely for c corresponding to365

the transition from a disease-free to an endemic state (Fig. 4b). Clearly, this transition is particularly

important from an epidemiological perspective, because it marks a separation between conditions

under which the disease is absent from the metapopulation and conditions under which sustained

transmission is possible. Such a transition is triggered by a stability switch between the disease-free

and the endemic equilibrium. With straightforward algebraic manipulations, it is possible to prove370

that the disease-free equilibrium becomes unstable if

R =
αε(c− e)
γ + (κ− ε)e

> 1 , (15)

corresponding to the condition for the dominant eigenvalue of Jdf to switch from negative to positive

(or, equivalently, for the determinant of Jdf to switch from positive to negative; note in fact that Jdf

is of even order). The threshold parameter R can be interpreted as the basic reproduction number of375

the disease (Anderson and May, 1992).

To study the g-reactivity properties of the steady states of model (13) from an epidemiologically-
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relevant perspective, we use the following output transformation matrix

CEI =

0 u 0 0

0 0 v 0

 , (16)

where only the infection-related state variables (exposed and infectious) are accounted for. A transient380

disease epidemic can thus be defined as the extinction or the disease-free equilibria being g-reactive.

Using condition (5), we find that the extinction equilibrium is g-reactive if

Eex =
v2

4u2

α2η2

(c− e− η)(εc− κe− γ)
> 1 , (17)

while the disease-free equilibrium is g-reactive if

Edf =

[
u2ε(c− e) + v2αη

]2
4u2v2η[γ + (κ− ε)e]

= R+

[
u2ε(c− e)− v2αη

]2
4u2v2η[γ + (κ− ε)e]

> 1 . (18)385

Note that these two conditions hold for both generic perturbations and perturbations involving only

exposed and infected patches (x0 ∈ ker(CEI)
⊥), because ker(CEI) = ker(CEIJX) (X ∈ {ex, df},

Appendix S2). Inequality (18), in particular, implies that the parameter region for which the disease-

free equilibrium is g-reactive lies close to the boundary R = 1 separating the stability region of the

disease-free equilibrium from that of the endemic equilibrium. Interestingly, Snyder (2010) found390

that, in general, weakly stable systems have a greater capacity to be reactive. Eex and Edf represent

thresholds for transient epidemicity (see Hosack et al., 2008): if one of the two above conditions is

verified, a temporary epidemic outbreak may be possible even in the absence of endemic transmission.

As for the endemic equilibrium, condition (5) holds true independently of parameter values, hence a

stable xen is always g-reactive for generic perturbations (in fact, ker(CEI) 6= ker(CEIJen), see again395

Appendix S2). To assess whether it is also reactive to perturbations x0 ∈ ker(CEI)
⊥, we simulate

model (13) and evaluate numerically the dominant eigenvalue of H(CEIJenC
+
EI). Fig. 4a shows

that the endemic equilibrium subject to perturbations x0 ∈ ker(CEI)
⊥ is g-reactive for parameter

sets close to R = 1. Therefore, transient epidemic waves are expected to occur especially in the

disease-free/endemic transition region embedding R = 1, where the fraction of susceptible patches is400

maximum, leading to either temporary pathogen invasion (in a previously disease-free metapopulation,

R < 1) or a transient increase in the fraction of infected/infectious patches (in a metapopulation in

which pathogen transmission is endemic, R > 1).

4 Discussion

In this work we have proposed a novel, generally applicable test to evaluate the reactivity of dynamical405

systems. Our definition of reactivity (g-reactivity) is especially suited to analyze ecological problems
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in which it may be necessary to track the transient dynamics of just some of the state variables

of the system, or a suitable linear transformation thereof. In this respect, g-reactivity overcomes a

possible limitation of previous approaches, which basically neglected (Neubert and Caswell, 1997) or

only partially addressed (Verdy and Caswell, 2008) the problem of the state variables’ differential410

contribution to the transient behavior of a system following a perturbation to a stable steady state.

Our framework includes Neubert and Caswell’s and Verdy and Caswell’s definitions of reactivity as

particular cases, thus representing a useful tool for the study of transient dynamics in ecological

systems.

Although the level of technicality involved in the derivation of our new method might seem bewil-415

dering at first sight, the use of g-reactivity is actually quite straightforward in practice. Given a linear

or linearized system described by the state matrix A, a necessary, preliminary step is the definition of

a suitable output transformation matrix, C. Then, if only the existence of generic perturbations that

will initially be amplified in the system output needs be assessed, one can simply use condition (5) and

determine the sign of λmax(H(CTCA)), possibly in conjunction with the evaluation of the g-reactivity420

basin (eqn. 4). The analysis of perturbations endowed with a specific structure and the evaluation

of the initial/overall maximum amplification of perturbations require some additional steps, but the

simple procedure just outlined should be sufficient to conduct g-reactivity analysis for a variety of

applications.

To show how our methodological framework can be applied to ecological problems, we have per-425

formed g-reactivity analysis for three simple, yet paradigmatic metapopulation models describing,

respectively, competition, predation and disease transmission in a fragmented landscape (Hanski,

1998, 1999). Case-specific ecological lessons can be learned from each of these applications:

• the analysis of the model for interspecific competition has shown that two species can temporar-

ily coexist in a fragmented landscape even if the study of long-term dynamics would predict430

extinction of either (or both) metapopulations. This result could be particularly important if

one of such species were an invader for which control measures had to be sought: in this case,

linear stability theory could help design strategies for the eradication of the pest in the long-run,

while g-reactivity analysis could suggest ways to limit short-term outbreaks. Our analysis also

sheds new light on the transient dynamics of fugitive species, i.e. of species that can compensate435

for inferior competitive traits with better dispersal abilities. Specifically, we have shown that the

likelihood of temporary colonization by the competitively inferior species is remarkably reduced

in the case of asymmetric competition;

• the model for predator-prey dynamics has clearly shown that a distinction between g-reactive

and non-g-reactive steady states cannot be made in absolute terms, because different choices440

for the output transformation (e.g. focusing on either the predator’s or the prey’s transient
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dynamics in the problem at hand) can lead to different outcomes. Therefore, deciding whether

or not an equilibrium point is g-reactive requires a suitable (possibly ecologically motivated and

certainly problem-dependent) definition of the output transformation matrix. This message is

general in scope, evidently extending beyond this predator-prey example;445

• finally, the model for pathogen transmission in a fragmented landscape has shown that, while

increasing colonization rates (possibly as a result of increased habitat connectivity) can favor

the spread of an infectious disease in a metapopulation (as measured by the prevalence of in-

fected/infectious patches at the equilibrium), the likelihood of transient epidemic waves is max-

imum for intermediate colonization rates, namely around values of the colonization rate close to450

the disease-free/endemic transition, for which the share of susceptible patches peaks.

Although relatively simple, the examined models were not completely amenable to analytical

treatment. Conditions for g-reactivity have been evaluated numerically whenever a formal derivation

was impossible or impractical. This in turn demonstrates how the methods described here can provide

ecologists with quantitative tools that are ready to be used in applications of any degree of complexity.455

In particular, g-reactivity analysis could be usefully applied to spatially explicit ecological models, such

as structured metapopulations (Hanski and Ovaskainen, 2000; Ovaskainen and Hanski, 2001; see also

Casagrandi and Gatto, 1999, 2006; Mari et al., 2014; Bertuzzo et al., 2015; Grilli et al., 2015). By doing

so, it would be possible to complement stability analysis for such models (which is often framed in

terms of the so-called metapopulation capacity; see again Hanski and Ovaskainen, 2000) with a study460

of the transient dynamics that may follow spatially heterogeneous perturbations, i.e. perturbations

acting only on some specific habitat patches. Also, coupling g-reactivity analysis with elements of

generalized stability theory (see Farrell and Ioannau, 1996, for a review) would allow the detection of

the fastest-growing perturbation geometries, with possibly profound implications for the conservation

and management of populations inhabiting fragmented ecosystems.465

Acknowledgements

LM, RC and MG acknowledge support from Politecnico di Milano. AR acknowledges funding from

the ERC Advanced Grant RINEC 22172, and from the Swiss National Science Foundation Projects

200021 1249301, 31003A 135622 and PP00P3 150698. All authors acknowledges funding from the

H2020 project “ECOPOTENTIAL: Improving future ecosystem benefits through Earth observations”470

(project ID 641762). The authors wish to thank three anonymous referees for their insightful com-

ments.

16



Authors’ contributions

LM and MG designed methodology and led the writing of the manuscript. All authors analyzed the

results, contributed critically to the drafts and gave final approval for publication.475

References

Aiken, C. M. and Navarrete, S. A. (2011). Environmental fluctuations and asymmetrical dispersal:

Generalized stability theory for studying metapopulation persistence and marine protected areas.

Marine Ecology Progress Series, 428:77–88.

Anderson, R. M. and May, R. M. (1992). Infectious Diseases of Humans: Dynamics and Control.480

Oxford University Press, Oxford, UK.

Arnoldi, J. F., Loreau, M., and Haegeman, B. (2016). Resilience, reactivity and variability: A math-

ematical comparison of ecological stability measures. Journal of Theoretical Biology, 389:47–59.

Barabás, G. and Allesina, S. (2015). Predicting global community properties from uncertain estimates

of interaction strengths. Journal of the Royal Society Interface, 12:20150218.485
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Tables

Table 1: List of symbols used in the metapopulation models. State variables/model parameters are
listed in the top/bottom part of each subtable.

Interspecific competition

pA fraction of patches occupied only by species A
pB fraction of patches occupied only by species B
pAB fraction of patches occupied by both species

cΣ baseline colonization rate of species Σ (Σ ∈ {A,B})
eΣ baseline extinction rate of species Σ
εΣ colonization competition factor for species Σ (≤ 1)
κΣ extinction competition factor for species Σ (≥ 1)

Predator-prey dynamics

pY fraction of patches occupied only by preys
pD fraction of patches occupied only by predators
pY D fraction of patches occupied by both preys and predators

cΣ colonization rate of species Σ (prey: Σ = Y ; predator: Σ = D)
eΣ extinction rate of species Σ
εD extinction rate reduction factor for the predator
κY extinction rate increase factor for the prey

Pathogen transmission

pS fraction of susceptible patches
pE fraction of exposed patches
pI fraction of infectious patches
pR fraction of recovered patches

cΣ colonization rate of compartment Σ (Σ ∈ {S,E, I,R})
eΣ extinction rate of compartment Σ
η incubation rate
α probability of developing infection
γ recovery rate
ξ immunity loss rate
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Figures

Figure 1: A theoretical example to show the differences among different definitions of reactivity. a)
Simulations of the linear dynamical system described by matrix A: all trajectories converge to the
stable steady state x1 = x2 = 0. b) Effect of different output transformations for a sample trajectory
of the model (thick line in panel a). The steady state of the model described by matrix A is non-
g-reactive for matrices C1 (original reactivity sensu Neubert and Caswell, 1997) and C4, while it is
g-reactive for matrices C2 (weighted reactivity sensu Verdy and Caswell, 2008), C3 and C5. The
cases pertaining matrices C3, C4 and C5 can only be studied in our newly developd framework. See
Appendix S1 for a detailed g-reactivity analysis of this example.

Figure 2: Stability and g-reactivity analysis of model (7), describing interspecific competition in a
fragmented landscape. The focus is on the transient dynamics of species B. a) Stability and g-
reactivity ranges of the steady-state attractors of the system: black curves represent separations
between the stability regions of different equilibria (labels), while gray shading indicates parameter
regions where the relevant steady state is g-reactive (dark gray indicates that the equilibrium is g-
reactive also for perturbations involving only the variables included in the output transformation). b)
Basin of g-reactivity for a stable, g-reactive extinction equilibrium (cA = cB = 0.9), evaluated either
analytically via linearization (light shading) or through the numerical computation of d||y||/dt at t = 0
(dark shading). Black curves show some sample trajectories of the system in a neighborhood of the
global extinction equilibrium (pA(0) = 0 in all simulations). c) Maximum initial amplification rate
(black line, left axis) and maximum overall amplification (gray line, right axis) of perturbations to
the steady-state attractors (labels on top) of the system for different values of the colonization rate of
species A (cB = 0.9). Other parameters (panels a–c): eA = eB = 1, εA = εB = 1/3, κA = κB = 3. d)
As in panel a, for a case of asymmetric competition in which species B is assumed to be competitively
inferior to species A. Parameter values: eB = 2eA, εB = εA/2, κB = 2κA; other parameters as in
panels a–c. In all panels, g-reactivity has been evaluated with respect to output matrix CB, with
u = v = 1.

Figure 3: Stability and g-reactivity ranges of the steady-state attractors of model (10), describing
predator-prey interactions in a fragmented landscape. Black curves indicate separations between the
stability regions of different equilibria (labels), while gray shading illustrates parameter regions with
g-reactive steady states (dark gray indicates that the equilibrium is g-reactive also for perturbations
involving only the variables included in the output transformation), respectively for the prey-focused
output matrix CY (panel a) or the predator-focused output matrix CD (panel b). Parameter values:
eY = 1, eD = 10, εD = 1/10, κY = 10, u = v = 1.

Figure 4: Stability and g-reactivity analysis of model (13), describing pathogen transmission in a
metapopulation (SEIRS dynamics). a) Stability and g-reactivity ranges of the steady-state attrac-
tors of the system: black curves separate the stability regions of different equilibria (labels), while
gray shading indicates parameter regions where the relevant steady state is g-reactive according to
the epidemiologically-motivated output matrix CEI (dark gray indicates that the equilibrium is g-
reactive also for perturbations involving only the variables included in the output transformation).
b) Asymptotic fractions of S/E/I/R patches and total patch occupancy (legend) for different values
of the baseline colonization rate c (e = 0.1). Labels on top show the stability ranges for the three
equilibria of the system. Other parameters: cS = cE = cR = c, cI = εIc, εI = 1/3, eS = eE = eR = e,
eI = κIe, κI = 3, α = 0.75, η = 1, γ = 0.1, ξ = 0.05, u = v = 1.
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