
Bi-Dimensional Binning for Big Genomic Datasets

Simone Cattani

Politecnico di Milano, Milan, Italy

simone.cattani@polimi.it

Stefano Ceri

Politecnico di Milano, Milan, Italy

stefano.ceri@polimi.it

Abdulrahman Kaitoua

Politecnico di Milano, Milan, Italy

abdulrahman.kaitoua@polimi.it

Pietro Pinoli

Politecnico di Milano, Milan, Italy

pietro.pinoli@polimi.it

ABSTRACT
Binning the genome is used in order to parallelize big data
operations upon regions. In this extended abstract, we com-
paratively evaluate the performance and scalability of Spark
and SciDB implementations over datasets consisting of bil-
lions of genomic regions. In particular, we introduce an orig-
inal method for binning the genome, i.e. partitioning it into
sections of small sizes, and show that it outperforms con-
ventional binning used by SciDB and closes the gap between
SciDB and a Spark-based implementation. The concept of
bi-dimensional binning is new and can be extended to other
systems and technologies.

Keywords
ACM proceedings, LATEX, text tagging

1. INTRODUCTION
We are currently developing a new, holistic approach to

genomic data modelling and querying. Our approach is
based on GenoMetric Query Language (GMQL) [Masseroli
et al. 2015], a high-level query language for genomics; the
current implementations of GMQL1, described in [Kaitoua
et al. 2016], use Flink2 and Spark3 We recently implemented
GMQL on a scientific data management system; we selected
SciDB because it supports multi-dimensional data aggrega-
tion and because it includes an add-on specifically dedicated
to tertiary data analysis for genomics [Paradigm4 2015a];
thus, it is an ideal alternative implementation framework
for GMQL.

In [Cattani 2016] we benchmarked Spark and SciDB at
work on genomic queries; the benchmark demonstrates the
superiority of SciDB in computations which perform selec-
tions and aggregations, but also shows that Spark outper-
forms SciDB in genomic map computations, that perform

1www.bioinformatics.deib.polimi.it/GMQL/interfaces/
2www.apache.flink
3www.apache.spark

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

c� 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

genome-wise region comparisons (similar to join); in such
cases, both the SciDB and Spark computations use the con-
ventional monodimensional binning, a method for partition-
ing the genome into disjoint portions so as to enable paral-
lelism. In this paper, we introduce a new method for bin-
ning, called bidimensional binning, that can be used also
with cloud-based solutions but is best suited to the multi-
dimensional characteristics of SciDB; we prove the correct-
ness of bidimensional binning and show that bidimensional
binning outperforms monodimensional binning in large size
SciDB computations and reduces the gap in performance
between SciDB and Spark.

2. GENOMIC ABSTRACTIONS FOR SCIDB

2.1 Data Model
We summarize the relevant features of Genomic Data Model

(GDM), from [Kaitoua et al. 2016]. A sample s is a triple
hid, R,Mi where:

• id is the sample identifier; sample identifiers are unique
within each dataset.

• R is the set of regions of the sample, built as pairs hc, fi
of coordinates c and features f ; coordinates are arrays
of four fixed attributes chr, left, right, strand, features
are arrays of typed attributes; we assume attribute
names of features to be di↵erent. The region schema

of s is the list of attribute names and types used for
the identifier, the coordinates and the features.

• M is the set of metadata of the sample, built as attribute-
value pairs ha, vi.

A dataset is a collection of samples with the same region
schema. In this paper, we do not use metadata, so we do
not further discuss how they are handled in SciDB. Regions
of a dataset are stored into a single SciDB array; they are
organized according to the relative sample id and genomic
coordinate. We cast chromosome and strand values, natively
represented by strings, to integers; regions data are mapped
to a 6-dimensional array, where attribute fields are based on
the specific feature schema.

DS_RD = < feature_schema >

[sid, chr, left, right, strand, x]

The x dimension is an enumeration value, required because
each GDM sample could have more than one region with the
same coordinates and at least one di↵erent feature. Fig. 1



Figure 1: Dataset with 2 samples in GDM format.

Figure 2: Mapping experiments to references in ge-

nomics.

shows a small dataset with two samples and a feature schema
consisting of a single attribute.

Arrays are stored within fixed-size rectilinear chunks that
partition the multidimensional space. Each chunk is then as-
signed to a computational node, using a hash function over
the chunk’s coordinates; the usage of region ends as coordi-
nates allows their storage based on real region proximity, a
fundamental property in order to speed up domain specific
operations that use range intersection or range selection. Ac-
cording to [Paradigm4 2015b], the optimal size for a chunk
should be between 5MB and 50MB. In our example, with a
single attribute (and a size of about 8 Bytes), chunks with
a million of regions have size of about 8-10 MB.

2.2 Genomic map
A region mapping operation applies to two datasets, called

Reference and Experiment respectively. Although the prob-
lem formulation is generic, one can think to Reference re-
gion as known genome annotations (e.g. genes, exons, in-
trons, enhancers) and to Experiment as regions produced
by NGS processing (e.g. peaks of expressions or mutations).
This operation performs the intersection of Experiment sam-
ples over the Reference and then computes an aggregate
over such intersection (e.g., counts for each reference region
how many experiment regions intersect with it). This be-
havior is explained in Figure 2, where we show a simple
case consisting of one sample of Reference and one sam-
ple of Experiment with overlapping regions, where we count
the number of experiment regions which intersect with each
reference region (e.g., the third region of the Reference in-
tersects with 2 regions of Experiment and therefore its count
is 2).
A cloud-based implementation, e.g. in Spark, see [Kaitoua

et al. 2016], consists of two main steps: (a) binning and
(b) checking for intersection. In the binning phase, the
genome is divided into bins and every region of both the
Reference and the Experiment datasets is assigned to all
the bins it overlaps. Then, the datasets are left-joined on the
key: (id,bin,chromosome). We use sort-merge join within
the bins, by first sorting bins of the samples of both Refer-
ences and Experiments and then by merging bins by using
a linear scan4. We output just the regions from a bin for
which at least one of the starts of the two input regions
is within the bin, thus avoiding to create duplicate regions

4https://en.wikipedia.org/wiki/Sweep line algorithm

in the result. This output generation condition generalizes
a method presented in [Chawda et al. 2014]. Finally, ad-
jacent regions on contiguous bins are aggregated (using a
reduce phase), producing the final result. Monodimensional
binning for parallelizing joins in map-reduce systems was in-
troduced in [Chawda et al. 2014], and it was used in [Afrati
et al. 2015] for assessing computational bounds; recent work
include join methods for e�ciently performing sort-based
operators when regions do not overlap with two or more bins
[Cafagna and Böhlen 2017] or for using features of modern
CPU architectures [Piatov et al. 2016].

In the SciDB implementation [Cattani 2016] we initially
adopted the above binning approach, but with an important
di↵erence. In SciDB it is not possible to dynamically split a
region and distribute its replicas to an arbitrary number of
adjacent bins, as we must apply identical operations to every
cell in the array which stores the regions; thus, in order to
apply a binning strategy, we must replicate all the regions
an identical number of times. Such number is a function
of the length M of the longest region in the Reference and
Experiment datasets [Paradigm4 2015a] In general, for given
M and bin size S, each region will span to at most R bins, with:
R = dM/Se + 1. This is a limitation w.r.t. Spark, which
can manage variable region replication; region replication in
Spark occurs only when the region spans across two or more
contiguous bins.

2.3 Benchmark
We performed our experiments on the Amazon Web Ser-

vices (AWS) cloud, using a configuration with r3.4xlarge
machine, 16 cores, 122 GB of RAM and 320GB of SDD.
Testing was performed on datasets with an increasing num-
ber of samples (up to 2K) and regions; see Table 1. Ex-
ecution times of region mapping in Spark and SciDB are
reported in Table 2.

We note that Spark outperforms SciDB, whose perfor-
mance rises to about 1.5 hrs when comparing .5 million re-
gions of the reference with 101 million regions of 2000 exper-
iments. For this reason, and given the limitations of SciDB
binning algorithms discussed in Section 2.2, we decided to fo-
cus on a new method for genome binning, that better adapts
to the computational model of SciDB, discussed in the next
section.

Dataset Size (MByte) Regions (Million) Samples

REF 2.3 0.506 1

DS 1 38 1.012 20
DS 2 375 10.120 200
DS 3 3832 101.2 2000

Table 1: Features of the datasets used in the bench-

mark.

Test DS 1 DS 2 DS 3

Spark 0.12 0.57 3.82
SciDB 0.28 3.29 95.33

Table 2: Execution times (in minutes) for the ge-

nomic map operation.



Figure 3: Region assignment to bins with bidimen-

sional binning

3. BIDIMENSIONAL BINNING
In this approach, each region R is assigned to a bin defined

by a pair of identifiers:

bin(R) =

✓�
R

start

bin_size

⌫
,

�
R

stop

bin_size

⌫◆

A region is assigned to the (n,m) bin when it starts in the
n-th bin and ends in the m-th bin (see Fig. 3); note that the
genome is partitioned into a bidimensional grid rather than
a monodimensional vector, and that every region is mapped
to a point in such grid; since each region is constrained to
have start < stop, a region can be assigned only to a cell
either in the primary diagonal or above the diagonal of such
space; in most genomic applications regions are short, hence
the majority of points clusters either in the diagonal or in
the cells immediately above the diagonal.

Consider now the mapping between a Reference and an
Experiment dataset. For each bin in the reference we can
divide the experiment regions into three groups: (a) regions
that for sure intersect all the reference region in the bin, (b)
regions that can potentially intersect them, and (c) regions
that do not intersect them. Consider for example the bin
(2, 3) of the reference, i.e., regions that start in bin 2 and
end in bin 3. Fig. 4 shows the regions of the experiment
that certainly intersect with them, then the regions of the
experiment that could possibly intersect with them; their
composition (taking into account that no region falls below
the diagonal) generates a rectangular target space for the bin
(2, 3) of the reference, also shown in Fig. 4. The following
theorem generalises this example.

Theorem: Let R = (l
R

, r
R

) be a box in the reference. The
search space window that defines the subset of the experi-
ment regions that can intersect with R is composed by all
the boxes E = (l

E

, r
E

) that verify the following condition:
�
l
E

 r
R

�
^
�
r
E

� l
R

�
(1)

Proof. To prove the theorem is su�cient to show that
when the above condition (1) is false then no intersection
can occur; we enumerate all such cases:

•
�
l
E

> r
R

�
^
�
r
E

� l
R

�
. In this case, all the exper-

iment regions start after the end of the reference, so
their intersection is empty.

•
�
l
E

 r
R

�
^
�
r
E

> l
R

�
. In this case, all the exper-

iment regions end before the start of the reference, so
their intersection is empty.

•
�
l
E

> r
R

�
^
�
r
E

< l
R

�
. This case is impossible

Figure 4: Experiment regions that certainly inter-

sect with regions in bin (2,3); then experiment re-

gions that can intersect with regions in bin (2,3);

and then their composition as a target space for the

regions of bin (2,3).

Figure 5: Bidimensional binning strategy

because it implies either l
E

> r
E

or l
R

> r
R

, which is
excluded by definition.

The overall bidimensional binning strategy for region map-
ping is illustrated in Fig. 5. In this approach, several inde-
pendent queries are executed by a query controller written
in Scala, one for each non-empty bin of the reference (the
figure shows theee such queries). For a given bin of the ref-
erence, an AFL query computes range intersections with all
the regions of the experiment which belong to the bin’s tar-
get space; the result is an aggregate value, associated to the
regions of the reference bin.

Implementing bi-dimensional binning in SciDB is simpler
than conventional binning, as the SciDB operator between

supports region filtering according to the condition expressed
in Theorem 1, and references are joined with experiments
according to the scheme of Fig. 5, which applies in parallel
to all the non-empty reference regions above the diagonal.
After the cross-join, result is redimensioned as a table with
two dimensions, x-ref and chr, having in its cells values for
all the experiments overlapping with each x-ref region, and
aggregate functions over the experiments can be computed.



4. EVALUATION OF BINNING STRATEGIES
As first evaluation of bidimensional binning, we consider

again query Q6 of Section 4.D; execution times are reported
in Table 3; note that, when executed over the dataset DS4,
bidimensional binning improves of about a factor 3 over
monodimensional binning, covering part of the di↵erence in
performance between SciDB and Spark.

Test DS 1 DS 2 DS 3

Spark Q6 0.12 0.57 3.82
SciDB D2 Q6 0.43 2.10 28.49
SciDB D1 Q6 0.28 3.29 95.33

Table 3: Execution times of the mapping operation.

In order to better evaluate bidimensional binning, we then
considered real datasets. For the references, we considered
two di↵erent types of regions:

• Genes are heterogeneous regions, as their maximum
length is 24187702, their minimum length is 19, their
average length is 60680, and their median length is
20102. This length variability could negatively a↵ect
monodimensional binning.

• Promoters are small homogeneous regions, each of
size 2999, artificially built around a specific genomic
position, the transcription start site. This lenght reg-
ularity could instead favor monodimensional binning.

The experiments datasets are collected from ENCODE Nar-
row Peaks (NP) with di↵erent sizes, as shown in 4.

Dataset Size (MB) Regions (⇥ K) Samples

GENES 0.7 23.033 1

PROMOTERS 2.3 49.052 1

NP 1 17 363.537 2
NP 2 41 938.753 4
NP 3 57 1.264.764 8
NP 4 108 2.230.698 16
NP 5 155 3.227.907 32

Table 4: Features of the real datasets

Performance comparisons are shown in Fig. 6. Note that
in all cases Spark outperforms SciDB, but the di↵erence be-
tween Spark and SciDB with bidimensional binning is much
reduced, and that Spark and SciDB curves scale in a similar
way. Note as well that bidimensional bidding outperforms
monodimensional binning in the three largest experiments;
the two curves optimize monodimensional binning by set-
ting region replication in SciDB to 8 for genes and to 2 for
promoters, the best replication factors, obtained after sev-
eral experiments (with suitable tuning, the performance of
mono-dimensional binning have been improved by adapting
to the lengths of reference regions). In our future work we
plan to investigate the use of bidimensional binning with
Spark.

Acknowledgment
This work is supported by the ERC Advanced Grant GeCo

(Data-Driven Genomic Computing).

Figure 6: Performance comparison using genes and

promoters as reference

5. REFERENCES
[Afrati et al. 2015] Foto N Afrati, Shlomi Dolev, Shantanu

Sharma, and Je↵rey D Ullman. 2015. Bounds for
Overlapping Interval Join on MapReduce.. In
EDBT/ICDT Workshops. 3–6.

[Cafagna and Böhlen 2017] Francesco Cafagna and
Michael H Böhlen. 2017. Disjoint interval partitioning.
The VLDB Journal (2017), 1–20.

[Cattani 2016] Simone Cattani. 2016. Genomic computing
with SciDB, a data management system for scientific
applications. (2016).

[Chawda et al. 2014] Bhupesh Chawda, Himanshu Gupta,
Sumit Negi, Tanveer A Faruquie, L Venkata
Subramaniam, and Mukesh K Mohania. 2014.
Processing Interval Joins On Map-Reduce.. In EDBT.
463–474.

[Kaitoua et al. 2016] Abdulrahman Kaitoua, Pietro Pinoli,
Michele Bertoni, and Stefano Ceri. 2016. Framework
for Supporting Genomic Operations. IEEE Trans.

Comput. (2016).
[Masseroli et al. 2015] Marco Masseroli, Pietro Pinoli,

Francesco Venco, Abdulrahman Kaitoua, Vahid Jalili,
Fernando Palluzzi, Heiko Muller, and Stefano Ceri.
2015. GenoMetric Query Language: a novel approach
to large-scale genomic data management.
Bioinformatics 31, 12 (2015), 1881–1888.

[Paradigm4 2015a] Paradigm4. 2015a. Accelerating
bioinformatics research with new software for big data
to knowledge (BD2K).

[Paradigm4 2015b] Paradigm4. 2015b. SciDB MAC
Storage Explained.

[Piatov et al. 2016] Danila Piatov, Sven Helmer, and
Anton Dignös. 2016. An interval join optimized for
modern hardware. In Data Engineering (ICDE), 2016

IEEE 32nd International Conference on. IEEE,
1098–1109.


