
A

Software Adaptation in Wireless Sensor Networks

Mikhail Afanasov, Politecnico di Milano, Italy
Luca Mottola, Politecnico di Milano, Italy and SICS Swedish ICT
Carlo Ghezzi, Politecnico di Milano, Italy

We present design concepts, programming constructs, and automatic verification techniques to support the
development of adaptive Wireless Sensor Network (WSN) software. WSNs operate at the interface between
the physical world and the computing machine, and are hence exposed to unpredictable environment dynam-
ics. WSN software must adapt to these dynamics to maintain dependable and efficient operation. However,
developers are left without proper support to develop adaptive functionality in WSN software. Our work fills
this gap with three key contributions: i) design concepts help developers organize the necessary adaptive
functionality and understand their relations, ii) dedicated programming constructs simplify the implemen-
tations, iii) custom verification techniques allow developers to check the correctness of their design before
deployment. We implement dedicated tool support to tie the three contributions, facilitating their practical
application. Our evaluation considers representative WSN applications to analyze code metrics, synthetic
simulations, and cycle-accurate emulation of popular WSN platforms. The results indicate that our work
is effective in simplifying the development of adaptive WSN software; for example, implementations are
provably easier to test and to maintain, the run-time overhead of our dedicated programming constructs is
negligible, and our verification techniques return results in a matter of seconds.

ACM Reference Format:
Mikhail Afanasov, Luca Mottola, Carlo Ghezzi, 2017. Software Adaptation in Wireless Sensor Networks.
ACM Trans. Autonom. Adapt. Syst. V, N, Article A (January YYYY), 28 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Wireless Sensor Networks (WSNs) bridge the gap between the physical world and the
computing machine [Jackson 1995] by seamlessly gathering data from the environ-
ment through sensors, and by taking actions on it through actuators. Because of their
intimate interactions with the physical world, WSNs are exposed to multiple and un-
predictable environment dynamics that affect their operation.
Example. Consider the use of WSNs to track wildlife [Pásztor et al. 2010]. Battery-
powered WSN nodes are embedded in collars attached to animals, such as zebras or
badgers. The devices are equipped with sensors to track the animals’ movement, for
example, based on GPS and accelerometer readings, and to detect their health con-
ditions, for example, based on body temperature. Low-power short-range radios are
used as proximity sensors by allowing nodes to discover each other whenever they are
within communication range, using a form of periodic radio beaconing. A node logs the
radio contacts to track an animal’s encounters with other animals, enabling the study
of their social interactions. The radio is also used to off-load the contact traces when
in reach of a fixed base-station. Small solar panels harvest energy to prolong the node
lifetime [Bhatti et al. 2016].

This work is supported by ... Author’s addresses: {name}.{surname}@polimi.it
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1556-4665/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2 M. Afanasov et al.

Using battery-powered WSN devices makes energy a precious resource that devel-
opers need to trade against the system functionality, depending on the situation. For
example, GPS sampling consumes non-negligible energy. The difference between con-
secutive GPS readings may be taken as an indication of the pace of movement, and
used to tune the GPS sampling frequency and granularity. The contact traces can be
sent directly to the base-station whenever the latter is within radio range, but they
need to be stored locally otherwise. When the battery is running low, developers may
disable GPS sampling to make sure the node survives until the next encounter with a
base-station, not to lose the collected contact traces.
Problem. The traits of wildlife tracking applications, which we present here simply
as an illustrative example, are commonly found in many WSN scenarios, including in-
telligent homes and buildings [Mattern et al. 2010], smart health-care [Ko et al. 2010],
and mobile immersive computing [Mottola et al. 2006; Magerkurth et al. 2005]. Multi-
ple environmental dimensions evolve concurrently and independently, such as location
and battery levels. WSN software needs to adapt to such dynamics to maintain effi-
cient performance. For example, in wildlife tracking, the inability to adapt to different
situations may result in earlier battery depletion, preventing WSN nodes to eventually
upload sensor data to the base-stations and thus hampering the analysis.

WSN nodes are, however, peculiar computing platforms with significant resource
constraints. They typically feature 16-bit microcontrollers with a few KBytes of data
memory. Mainstream development approaches are thus generally inapplicable: sound
design concepts are largely missing [Picco 2010], programming often occurs using low-
level languages [Mottola and Picco 2011], and the few dedicated verification techniques
only target low-level functionality [Sasnauskas et al. 2010; Mottola et al. 2010; Li and
Regehr 2010]. The problem is exacerbated whenever developers are to realize adaptive
WSN software, whose complexity generally increases compared to the static case. In
this area, proper developer support to implement adaptive functionality in concrete
systems is arguably lacking.

To give a concrete feeling of the issues at stake, Figure 1 shows a simplified im-
plementation of adaptive functionality using nesC [Gay et al. 2003], a dialect of C
commonly used for WSN development. NesC function calls are asynchronous; results
are returned using a notion of event that essentially operates as a callback. The code
implements only one aspect of the adaptation needed in wildlife tracking: to send read-
ings to the base-station whenever reachable, or to store them locally otherwise.

In Figure 1, multiple orthogonal concerns are intertwined and functionality are
tightly coupled. For example, the decision on what operating mode to employ, that is,
whether to consider the base-station as reachable, is implemented from line 19 to 24 .
This lies in the the same module as the adaptive processing itself from line 7 to 17 .
Both functionality depend on the same global variable base station reachable,
whose management is entirely on the programmer’s shoulders. Moreover, the checks
to perform before changing operating mode, such as those in lines 8 and 11 , are mixed
with the functionality that changes the mode itself.

Using existing approaches to implement WSN software thus often results in en-
tangled implementations that are difficult to debug, maintain, and evolve. Modifying
the code in one place, for example, likely leads to further changes in several other
places, increasing the programmer’s effort even in the simplest cases. As the number
of relevant environment dimensions and their combinations grows, WSN implementa-
tions quickly turn into “spaghetti code” [Finne et al. 2010], as visible also in publicly
available WSN codebases [TinyOS 2016]. Moreover, verifying the correctness of the
combined functioning of different adaptation strategies becomes a challenge. Manual
testing of all possible combinations is immensely time-consuming; therefore, WSN de-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Software Adaptation in Wireless Sensor Networks A:3

1
2 module ReportLogs {
3 uses interface Collection;
4 uses interface DataStore;
5 }implementation {
6 int base_station_reachable = 0;
77 event msg_t Beacon.receive(msg_t msg) {
88 if (!acceleromenter_detects_activity())
9 return;

10 if (call Battery.energy() <= THRESHOLD)

1111 return;
12 base_station_reachable = 1;
13 call GPS.stop()
14 call BaseStationReset.stop();
15 call BaseStationReset.startOneShot(TIMEOUT);}
16 event void BaseStationReset.fired() {

1717 base_station_reachable = 0;
18 }

1919 event void ReportPeriod.fired() {
20 switch (base_station_reachable){
21 case 0:
22 call DataStore.deposit(msg);
23 case 1:

2424 call Collection.send(msg);
25 }
26 }
27 }

Fig. 1: Example nesC implementation of adaptive functionality. Several orthogonal
functionality become entangled and need to share global data.

velopers often deploy systems with little confidence in their correctness [Sasnauskas
et al. 2010; Iwanicki et al. 2014].
Contribution. Our work is centered on a notion of context. Such a notion is vastly em-
ployed in various areas of computing, including proximate selection, contextual recon-
figuration, contextual information, and context-triggered actions [Schilit et al. 1994;
Abowd et al. 1999; Dey 2001], yet not in WSN software. We specifically consider a
context to be a specific situation, including both environmental and system features,
that WSN software might find itself in. This is similar to the notion of “situation” em-
ployed in context-aware computing [Coutaz et al. 2005]. A large body of work exists
on context recognition through sensor data, in the presence of noise, and based on in-
complete information [Schmidt et al. 1999; Kang et al. 2008; Kern et al. 2003]. Our
work is complementary to these efforts, which are typically application-specific. We
rather provide general-purpose support to help developers realize adaptive functional-
ity in WSN systems1, thus leveraging the existing body of work on top of a severely
resource-constrained platform.

Following a brief survey of the state of the art in Section 2, our contribution unfolds
in three parts:

— We conceive dedicated design concepts, described in Section 3, to support developers
in the early phases when identifying the possible system’s evolutions. In our work,
these emerge as a result of determining the different situations a WSN system may
find itself in, what environmental dimensions are responsible for these situations,
and the relations between different adaptation decisions.

1In this sense, the wildlife-tracking application, as well as all other applications we mention throughout the
paper, are merely and intentionally-simplified illustrative examples to help the reader understand.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 M. Afanasov et al.

— We extend nesC with notions of Context-oriented Programming (COP) [Hirschfeld
et al. 2008]. Section 4 describes the resulting language, called CONESC, which ame-
liorates the coupling between functionality, rendering implementations easier to
understand and to maintain. The design concepts of Section 3 map to the program-
ming constructs we introduce, easing the transition from design to implementation.

— We conceive automatic verification techniques to check the correctness of an ap-
plication’s design against the possible environment evolutions, as we describe in
Section 5. Our techniques operate before deployment, thus requiring reduced effort
than most exiting approaches [Iwanicki et al. 2014; Romer and Ma 2009]. Further,
they quickly return counterexamples expressed with the same design concepts of
Section 3, facilitating the identification of issues.

The three contributions are tied together by dedicated tool support. Section 6 de-
scribes GREVECOM, a visual tool that allows developers to i) specify their designs
using the concepts in Section 3, ii) use these to generate code templates using the
CONESC constructs in Section 4, and iii) automatically verify the designs against
developer-provided correctness specifications using the techniques in Section 5. Still
in Section 6, we also describe the compiler support we implement to automatically
translate CONESC sources into plain nesC, which allows one to employ the nesC tool-
chain to obtain the binary for deployment on WSN devices.

Our evaluation, described in Section 7, considers three representative WSN applica-
tions. Based on these, we compare implementations based on our design concepts and
CONESC, against functionally-equivalent implementations obtained using existing ap-
proaches and nesC. We find that the functionality in the former are less coupled, the
complexity of code is decreased, and changes require less programming effort. When
using CONESC, these benefits come at the price of a negligible run-time overhead in
time and energy, which we quantify using cycle-accurate emulation. Next, we assess
the scalability of our verification techniques, using increasingly complex application
designs. For realistic instances, the verification process takes seconds, providing evi-
dence of its practical use.

2. RELATED WORK
A substantial body of work exists on the design, implementation, and verification of
adaptive software [Cheng et al. 2009]. Most of this, however, targets mainstream com-
puting systems. WSNs, on the other hand, present peculiar characteristics that cru-
cially impact the development process. Nevertheless, adaptation logic exists aplenty
in WSNs [Zimmerling et al. 2012; Bourdenas et al. 2011], yet developers lack dedi-
cated development support to embed these functionality in concrete systems.

Using embedded resource-constrained computing platforms, efforts close to ours can
be divided into four categories. Model-driven approaches exist to support the design
of adaptive applications, yet they tend to be domain specific or to result in monolithic
implementations. Programming support for adaptive WSN applications is also inves-
tigated, although the application logic runs outside of the WSN, rather than right on
the WSN devices as in our case. Finally, automatic verification tools exist for WSNs as
well, but they are designed to operate directly on the code with no specific support to
check the correctness of adaptive behaviors.
Design support. Subramanian and Katz [2000] define a component model to build
self-adaptive WSN architectures. The work is domain-specific in that it targets static
WSNs, that is, wherever nodes do not move in space. Many WSN applications, however,
leverage the ability of WSN devices to operate autonomously in mobile settings, as in
the example application in the Introduction. In this case, the approach of Subramanian
and Katz [2000] would not be applicable.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Software Adaptation in Wireless Sensor Networks A:5

In a similar vein, Diguet et al. [2011] provide design support that blurs the bound-
aries between hardware and software, gaining more flexibility in providing adaptive
functionality. Their design, however, leads to application-specific implementations. In
contrast, we aim to provide a general solution to the design, implementation, and ver-
ification of adaptive WSN software. We concretely demonstrate this by investigating
diverse applications in Section 7.

Fleurey et al. [2011] propose a model-driven approach to develop adaptive WSN
firmwares. They model an application as a state machine. The predicates defined over
the application state determine behavioral variations. Whenever these predicates are
found to hold, the state machine adapts its transitions. The source code is automati-
cally generated. Differently, we do not aim at automatically generating the complete
application code, but provide dedicated design concepts and programming constructs
that allow for fine-grained optimizations.
Programming support. Three main programming approaches typically provide sup-
port for adaptation: Aspect-oriented Programming (AOP), Meta-programming, and
Context-Oriented Programming (COP) [Salvaneschi et al. 2013].

AOP [Kiczales et al. 1997] allows developers to add behaviors to existing code with
limited modifications. The new functionality is indicated through a “pointcut” speci-
fication within the existing code, which represents an entry point for the additional
behavior to be triggered within the control flow. Such a technique is especially effec-
tive for so-called “crosscutting concerns”, that is, functionality that cut across multiple
abstractions. These typically affect the entire program, thus defying the traditional
forms of modularization. Examples are logging, security, and transactions.

AOP can be implemented by modifying the underlying interpreter or execution envi-
ronment, or through dedicated pre-processors. The difficulties in the former techniques
led to most AOP implementations being realized through a process known as weaving,
that is, a special case of program-to-program transformation. An aspect weaver reads
the aspect-oriented code and generates appropriate functionally-equivalent source
code in a traditional language with the aspects integrated.

AOP implementations based on weaving techniques proved effective in a number
of complex scenarios [Filman et al. 2004]. On the other hand, WSN software is both
significantly less complex than the kind of systems where AOP is typically employed,
and rarely exhibits the kind of cross-cutting concerns AOP is most effective for. Fur-
ther, AOP tends to obscure the control flow, making implementations more difficult to
test. This may become a key concerns in WSNs because of the little visibility into the
system’s internals [Romer and Ma 2009].

In Meta-programming [Visser 2002], programs can treat themselves as their data.
Therefore, a program may be designed to read, generate, analyse, or transform other
programs, and even to modify itself while running. This enables greater flexibility to
efficiently handle new situations without recompilation. While providing an extreme
form of software adaptation, meta-programming however requires modifications of the
binary at run-time, which is hardly feasible on resource-constrained devices.

Several systems employ some form of COP to implement WSN applica-
tions [Bardram 2005; Wood et al. 2008; Sehic et al. 2011]. In these cases, however,
the WSN devices are considered as mere sources of raw data, whereas adaptation hap-
pens on the software running outside of the WSN, for example, on a standard machine
that acts as a base-station. In our work, COP supports developers in implementing
adaptive functionality that runs right onto the WSN devices. In doing so, our work
needs to consider the limitations dictated by the target platforms.
Automatic verification. Most approaches to the automatic verification of embedded
software work directly on the source code. For example, Clarke et al. [2004] present a

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 M. Afanasov et al.

Health conditions

abnormal temperature
iff (Resting OR NotMoving)

Battery

Activity

Base-station

on enter:
disable GPS

Low
on enter:
enable GPS

Normal

voltage < threshold

voltage > threshold

on active:
log locally

Unreachableon enter:
triggers NotMoving
dump log
on active:
send readings to the BS

Reachable

timeout

BS beacon received
iff Running

on active:
track GPS often

Running
on active:
track GPS rarely

Resting
on active:
no GPS tracking

NotMoving

small GPS difference

large GPS difference negligible GPS difference

acceleration detected

on active:
create alert beacon

Diseased
on active:
create normal beacon

Healthy

normal temperature

Fig. 2: Context-oriented model for a wildlife tracking application.

verification tool that checks ANSI-C sources against safety properties such as correct-
ness of pointer constructs. The SLAM toolkit of Ball and Rajamani [2002] determines
whether a C program violates programmer-provided correctness rules. BLAST [Beyer
et al. 2007] formally proves that a C program satisfies given safety properties.

In the domain of WSN software, Bucur and Kwiatkowska [2009] focus on the auto-
matic verification of applications written in nesC, similar to the T-Check tool of Li and
Regehr [2010] that uses several heuristics to battle the state-space explosion due to
operating at the level of nesC sources. Kleenet [Sasnauskas et al. 2010] focuses on the
network interactions across WSN devices running the Contiki [Dunkels et al. 2004] op-
erating system. Anquiro [Mottola et al. 2010] takes Contiki code as input as well, and
implements several state abstraction mechanisms to combat the state space explosion.

Unlike the approaches above, our automatic verification occurs based on the context-
oriented design, not on the actual implementation. This has pros and cons. On one
hand, identifying potential issues early in the development process saves testing and
debugging effort later. On the other hand, the transition from the design to the imple-
mentation still leaves the possibility of introducing defects in the actual code. Because
of the direct mapping from the design concepts to the abstractions in CONESC and our
tool support, however, we argue these risks are ameliorated.

3. DESIGN
We illustrate design concepts to support developers in identifying the different situa-
tions a WSN system may find itself in, their relations, and possible evolution in time.
Next, based on the experience we accumulated in employing these concepts in multiple
applications, we describe recurring design patterns.

3.1. Concepts
We introduce two key concepts: i) individual contexts, and ii) context groups. A context
represents an individual situation the software running on a given WSN device may
encounter [Coutaz et al. 2005]. Whenever that situation occurs, the software changes
its functioning accordingly, implementing an appropriate adaptation decision. For ex-
ample, in the wildlife-tracking application described in the Introduction, the reacha-
bility of the base-station based on the physical location of a device represents an indi-
vidual context coupled to a corresponding functionality. This is different to the context

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Software Adaptation in Wireless Sensor Networks A:7

and functionality representing the situation where the base-station is unreachable. A
context group is a collection of contexts sharing common characteristics, for example,
being determined by the same environment dimension. We may group together the
two contexts representing the (un)reachability of the base-station, as both depend on
a device’s physical location.

Figure 2 represents the complete design of the wildlife tracking application based
on contexts and context groups. The four context groups, shown as the outer boxes,
represent collections of individual contexts depending on battery level, base-station
reachability, as well as an animal’s health conditions and activity levels. The individ-
ual contexts, shown as the inner boxes in every group, are described by a name and by
actions taken when entering or leaving a context, and by processing executing as long
as the context is active, that is, the context corresponds to the current situation. Con-
text and context groups provide structure and help factor out the adaptation necessary
to deal with independent environment dimensions.

At most one context is active in each context group at any point in time. However,
multiple contexts belonging to different groups may be active at the same time. Con-
texts within the same group are tied with transitions that express the conditions trig-
gering a change of the current context. In Figure 2, for example, a change in the battery
voltage below a threshold triggers a change from the Normal to the Low context in the
Battery group. The evolution of active contexts in different groups thus mimics the
semantics of parallel state machines, but for the following features:

— Context transitions may contain dependencies. For example, if a body sensor reads
an abnormal temperature, it might indicate that the animal is Diseased, and require
a transition to the corresponding context. In this situation, however, an animal is
most probably moving slightly or not at all; therefore, the active context in the Ac-
tivity group should not be Running.

— Context activation may also trigger a transition in a different context group, as is
the case in the Reachable context of Figure 2. Because the base-station is deployed
at a known location, its reachability indicates the device is nearby. Therefore, we
trigger a transition to the NotMoving context in the Activity group to disable GPS
tracking and assume the base-station location as the one of the device.

The concepts we described are largely decoupled from a concrete programming lan-
guage, enabling their implementation in different WSN languages. On the other hand,
we do not provide explicit support for distribution. Notwithstanding this limitation,
we demonstrate in Section 7 that our design concepts, together with their concrete
realization in CONESC, apply to a significant fraction of adaptive WSN applications.

3.2. Patterns
Based on experience, we observe distinct patterns emerging that provide structured
ways to address specific types of adaptive functionality. These patters, discussed next,
allow developers to express complex functionality with only a handful of concepts.
Behavior control. Different behaviors of the same high-level functionality are often
represented in a single context group. Figure 2 shows one such example in the Base-
station group, which includes two different behaviors for the same high-level function-
ality of processing the collected logs. The same pattern is found also in other appli-
cations. For example, an adaptive protocol stack [Gnawali et al. 2009; Fotouhi et al.
2012] uses different protocols for the same underlying physical layer depending on
node’s mobility. The high-level packet relay functionality is expressed with a similar
design, as we show in Section 7.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 M. Afanasov et al.

Behavior Control

on active:
perform actionN

Behavior Variation N
on active:
perform action1

Behavior Variation 1

Context 
Controller

<<controls>>

User 
Component

Fig. 3: Behavior control pattern.

Content Provider

on active:
return dataN

Context Data N
on active:
return data1

Context Data 1

Context 
Data Consumer

Context 
Controller

<<controls>>

Fig. 4: Content provider pattern.

Trigger

on enter/exit:
enable/disable X

Trigger N
on enter/exit:
enable/disable X

Trigger 1
Context 

Controller

<<controls>>
Fig. 5: Trigger pattern.

Figure 3 shows an abstract view of the behavior control pattern and its characteriz-
ing elements. Developers define a single context group to export a functionality whose
behavior depends on the active context. An external context “controller” drives the
transitions between the contexts in the group. In the wildlife tracking application,
for example, the context controller checks if beacons are received indicating a nearby
base-station, and accordingly activate a specific context in the Base-station group.
Content provider. We also observe cases where context-dependent data is offered to
other functionality with little to no processing involved, differently from the behavior
control pattern that provides non-trivial context-dependent processing. An example is
in the Health conditions group of Figure 2. Depending on the active context, the pe-
riodic beacon is generated differently. The actual processing that involves the beacon
happens elsewhere in the system; in this case, throughout the network stack responsi-
ble for transmitting the beacon over the air. We notice this pattern in other applications
as well. For example, the smart-home application we describe in Section 7 employs the
same pattern to manage user preferences depending on time of the day.

The characterizing elements, abstractly shown in Figure 4, differ from those of be-
havior control. The “controller” component is often fairly trivial. For example, the “con-
troller” in the smart-home application of Section 7 simply checks the time of the day.
Differently, the component consuming the context-dependent data plays a key role.
While functionality structured as behavior control can be considered stand-alone, the
content provider needs to be tailored to the data consumer.
Trigger. We also recognize designs where contexts are used only to trigger spe-
cific operations, especially on hardware components, without any significant context-
dependent processing or data offered. An example is the Battery group in Figure 2.
The contexts in the group are used to enable or disable the GPS sensor depending on
the battery level. In the smart-home application of Section 7, we notice a similar pat-
tern when tuning lights in a room. Depending on the amount of natural light, different
contexts are activated that tune the artificial lighting accordingly.

As shown in Figure 5, the “controller” drives context transitions similar to behav-
ior control. However, unlike the other patterns, there is no external components that
either uses context-dependent functionality or consumes context-dependent data.

4. PROGRAMMING SUPPORT
To support programmers in implementing adaptive WSN software, we borrow concepts
from Context-oriented Programming (COP) [Hirschfeld et al. 2008] and embed them
in the nesC language. We choose nesC because of the widespread adoption and stable
tool-chain. However, as we discuss next, we are not tied to nesC; designs similar to the

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Software Adaptation in Wireless Sensor Networks A:9

1 context group BaseStationG {
22 layered command void report(msg_t msg);
3 }implementation {
44 contexts Reachable,
55 Unreachable is default,
66 MyErrorC is error;
7 components Routing, Logging;
8 Reachable.Collection -> Routing;
9 Unreachable.DataStore -> Logging;

10 }

Fig. 6: Base-station context group in CONESC.

one we explain next can be obtained in a range of WSN programming languages, for
example, functional ones [Newton et al. 2007; Mainland et al. 2008].

We provide the necessary background on COP and nesC in Section 4.1. Next, Sec-
tion 4.2 illustrates the main programming constructs of our COP extension to nesC,
called CONESC. The design concepts of Section 3 map directly to these constructs,
facilitating the transition from design to implementation. Section 4.3 describes the
concrete use of these constructs in implementing adaptive functionality. Section 4.4
describes how CONESC programmers control context transitions.

4.1. nesC and COP
nesC is a component-based event-driven programming framework for WSNs, derived
from C. Applications are built by interconnecting components that interact by provid-
ing or using interfaces. An interface lists one or more functions, tagged as commands or
events. Commands are used to execute actions; for example, querying a sensor. Com-
mands are non-blocking and return immediately. Events are used to collect the results
asynchronously. Because of the duality between commands and events, nesC inter-
faces are bidirectional: data flows both ways between components connected through
the same interface. Component configurations specify the wirings among components;
these are components themselves, can provide interfaces, and be wired to other config-
urations or components.

COP is a programming paradigm often employed to implement adaptive software.
Central to COP is the notion of layered function, that is, a function whose behavior
changes depending on the current situation and transparently to the caller. COP al-
ready proved effective in creating adaptive software in mainstream applications, such
as user interfaces [Keays and Rakotonirainy 2003] and text editors [Kamina et al.
2011]. In these settings, programmers rely on COP extensions of popular high-level
languages, such as Java [Sehic et al. 2011].

Realizing a COP extension of nesC is non trivial. Because of the resource constraints
of the underlying platform, nesC itself is quite limited. For example, nesC program-
mers cannot create run-time instances of components, while component wirings in
nesC are statically defined; therefore, they cannot change at run-time. Further, the
use of dynamic memory is discouraged; typical microcontrollers on WSN devices of-
fer no memory protection, so bugs in memory handling may have disastrous effects.
These features are often employed to realize COP extensions of existing programming
languages [Salvaneschi et al. 2012], yet they are not available in nesC.

4.2. Context Groups and Individual Contexts
We map the notion of context group in Section 3 to an extended form of nesC configu-
ration. The interface of a context group is used to declare the prototype of layered func-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 M. Afanasov et al.

1 context Unreachable {
22 transitions Reachable iff ActivityG.Running;
3 uses interface DataStore;
4 }implementation {
5 event void activated(){//...}
6 event void deactivated(){//...}
7 command bool check(){//...}
8 layered command void report(msg_t msg){
99 call DataStore.deposit(msg);

10 }
11 }

Fig. 7: Unreachable context.

1 context Reachable {
2 uses interface Collection;
3 uses interface DataStore;
4 transitions Unreachable;
5 uses context group BatteryG;
66 triggers AcitivityG.NotMoving;
7 } implementation {
8 event void activated(){
99 call DataStore.dump_log();}

1010 event void deactivated(){//...}

1111 command bool check(){
12 return call BatteryG.getContext() == BatteryG.Normal;
13 }
14 layered command void report(msg_t msg){

1515 call Collection.send(msg);
16 }
17 }

Fig. 8: Reachable context.

tions. Their behavioral variations are expressed by individual contexts in the group,
whose definition extends that of nesC components.

Figure 6 shows the CONESC implementation of the Base-station group of Figure 2.
The layered function report is declared in line 2 using the layered keyword. The
actual behavior of such a function, in fact, depends on the active context in the group. If
the base-station is reachable, messages must be transmitted over the radio; otherwise,
they should be locally stored until the next encounter with a base-station.

The individual contexts in the group are specified in line 4 of Figure 6 using the
contexts keyword. Of the three contexts in the example, the Unreachable one is de-
fined as is default in line 5 , that is, the context is active at start-up. The is error
keyword in line 6 indicates an error context, whose semantics we illustrate next. In-
cluding an error context is not mandatory; our translator generates an empty one if
not declared. The remainder of the context group follows the normal nesC syntax and
semantics for configurations.

Figure 7 and 8 illustrate an excerpt of the CONESC implementations of the contexts
Reachable and Unreachable in Figure 2. Individual contexts extend the notion of nesC
component by providing different implementations of the layered function defined in
the corresponding group, for example, function report defined in Figure 6. In context
Unreachable, the implementation of report in line 9 of Figure 7 deposits the message
in the local data store; otherwise, if context Reachable is active, function report in
line 15 of Figure 8 transmits the message over the air using a data collection protocol.
The caller of function report, however, only owns a reference to the context group and

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Software Adaptation in Wireless Sensor Networks A:11

1 module User {
22 uses context group BaseStationG;
3 }implementation {
4 event void Timer.fired() {
55 call BaseStationG.report(msg);
6 }
77 event void BaseStationG.contextChanged(context_t con) {
8 if(con == BaseStationG.Reachable) // DO SOMETHING...
9 }

10 }

Fig. 9: User component.

1 module BaseStationContextManager {
2 uses context group BaseStationG;
3 }implementation {
4 event msg_t Beacon.receive(msg_t msg) {
55 activate BaseStationG.Reachable;
6 call BSReset.stop();
7 call BSReset.startOneShot(TIMEOUT);}
8 event void BSReset.fired() {
99 activate BaseStationG.Unreachable;

10 }
11 }

Fig. 10: Base-station context controller.

does not need to know what context is currently active therein; changing to the most
appropriate behavior happens transparently, as we illustrate next.

Individual contexts may specify actions to take when entering or leaving a context;
for example, to initialize variables or to perform the necessary clean-up. As discussed
in Section 3, on entering context Reachable, a programmer may want to off-load the
contact traces, since the base-station is within reach. Programmers place the necessary
functionality as the body of a predefined activated event, as in line 9 of Figure 8.
The event is automatically triggered when entering the context. The deactivated
event, shown in line 10 of Figure 8, is dual.

4.3. Execution
Figure 9 shows an example component that relies on the functionality implemented
by the layered function report. In line 5 , when a timer fires, the call occurs with-
out explicitly referencing either of the individual contexts that provides a concrete
implementation of report. The binding corresponding to the active context happens
dynamically. This is possible as our CONESC translator, described in Section 6, auto-
matically generates the code that implements the necessary dynamic dispatching.

Figure 10 also shows the CONESC code that implements context detection and cor-
respondingly activates a context in the Base-station group. Programmers trigger tran-
sitions between contexts using the activate keyword. For example, in line 5 of Fig-
ure 10, a transition to context Reachable is triggered as soon as a radio beacon from
the base-station is received. In the same event handler, a timer is started to keep track
of the time since the last radio beacon. When the timer fires before being reset by the
next radio beacon, the base-station is considered unreachable and a transition to the
corresponding context is triggered in line 9 .

The context detection functionality in Figure 10 is intentionally simplified for illus-
tration purposes. However, nothing prevents developers from employing more sophisti-
cated criteria to trigger a context change, based on application requirements, platform

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 M. Afanasov et al.

transitions
transition is possible

iff
dependencies are 

satisfied

check()
conditions are 

satisfied

context Error 
is activated

yes yes

no no

yes

activate 
context A

context A is 
activated

context A is 
not activated

no

Fig. 11: Context activation rules.

1 context NotMoving {
22 transitions Resting;
3 }implementation {//...}

Fig. 12: NotMoving context.

characteristics, and the vast literature on context detection [Schmidt et al. 1999; Kang
et al. 2008; Kern et al. 2003].

For example, consider how to detect when an animal’s body temperature becomes
abnormal to activate the Diseased context of Figure 2. Given application requirements
may dictate this situation to be detected when the sensor readings surpass a thresh-
old for a prolonged period. Different application requirements may prescribe the same
to be recognized based on fluctuating patterns over the evolving time series of sensor
readings. Using CONESC, both can be implemented to execute the activate instruc-
tions for the Diseased context. Similar observations apply to implement functionality
to tame the inaccuracies of sensor readings, including those due to calibration, occlu-
sion, and noise [Wu et al. 2002; Gustafsson 2010; Olfati-Saber 2007].

Notice how Figures 6 to 10 implement the behavior control pattern, described in
Section 3.2. The component of Figure 9 relies on a functionality whose behavior is de-
termined by the context controller of Figure 10. The benefit is that context-dependent
functionality, as well as the logic driving context detection and activation, are com-
pletely decoupled and implemented in different modules. We demonstrate in Section 7
that this renders implementations easier to understand, debug, and maintain.

4.4. Context Transitions
Programmers need to take extra care of context transitions, as they may drastically
change the application behavior. CONESC provides specific features to this end.

Every time the active context in a group changes, user components are notified
through a predefined event contextChanged. Programmers may implement the cor-
responding event handler, as exemplified in line 7 of Figure 9, to react to the corre-
sponding context change with specific actions. The name of the newly activate context
is provided as a parameter to the event.

When transitioning to a new context, the processing transparently traverses several
checking stages, shown in Figure 11. If all checks succeed, the new context is activated;
otherwise, either the transition is canceled or the Error context is activated, depending
on the kind of failure:

(1) Not all transitions are feasible between contexts. For example, within the Activity
group of Figure 2, it is only possible to move from context NotMoving to Resting.
This is encoded in CONESC with the keyword transitions, exemplified in line 2
of Figure 12, followed by the list of target contexts. A violation of this specification

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Software Adaptation in Wireless Sensor Networks A:13

may indicate a significant design or hardware/software issue; the Error context is
thus activated where programmers may take dedicated countermeasures.

(2) The context-oriented design may indicate dependencies among transitions, as de-
scribed in Section 3.1. For example, within the Base-station group, a transition from
Unreachable to Reachable depends on context Running being active, indicating that
an animal is actually moving when approaching the base-station. Such dependen-
cies are specified in CONESC with the keyword iff, as shown in line 2 of Figure 7,
followed by the fully qualified name of the context this transition depends on. A
dependency violation is treated similarly to the case above.

(3) Programmers may express “soft” requirements whose violation may not necessar-
ily indicate a serious issue. For example, before activating the Reachable context,
programmers may check that sufficient energy is available to transfer the collected
logs to the base-station. If not, they may defer the activation of the Reachable
context until sufficient energy is harvested. To specify these checks, programmers
implement a predefined command check in individual contexts, which returns a
Boolean value that grants permission for context activation. An example is shown
in line 11 of Figure 8. Should the check fail, the previous context remains active.

Finally, the design concepts illustrated in Section 3 allow one to express triggers
between transitions. This is the case, for example, when transitioning to the Reachable
context in the Base-station group. As the base-station is nearby at a known location,
we assume the node location to be the same and spare the energy consumption of
GPS sampling by triggering a transition to the NotMoving context. CONESC allows
programmers to express this processing by using the triggers keyword, as shown
on line 6 of Fig. 8, followed by the fully-qualified name of the context that must be
automatically activated when entering.

5. VERIFICATION
Checking the correctness of WSN software is difficult in general. Worse is the case
when WSN software needs to be adaptive to environment dynamics that are, in gen-
eral, unpredictable. Traditional testing approaches struggle in exhaustiveness [Iwan-
icki et al. 2014]. Further, as the number of relevant environment dimensions grows,
the number of possible situations the software may encounter increases exponentially;
thus, scalability also becomes a hampering factor. As a result, many WSN software
implementations undergo very limited verification before deployment [Picco 2010].

Based on the concepts illustrated in Section 3, we conceive a technique to automati-
cally, yet exhaustively check the correctness of the application’s design. We use model
checking techniques to identify issues such as contexts that may become unreachable
or deadlock situations that may block the software in a specific configuration. In addi-
tion, our techniques support the verification of developer-provided arbitrary properties
expressed in Computation Tree Logic (CTL) [Clarke et al. 1986].

Using model checking to verify the correctness of the context-oriented design is,
however, not immediate. Existing tools do not directly support the semantics of the
design concepts described in Section 3. For example, the notion of dependency across
transitions or the existence of triggers between contexts do not directly translate into
the abstractions used by most existing model checkers.

Rather than building a new tool from scratch, we illustrate next an algorithm that
translates a context-oriented design into a form compatible with that of modern model
checking tools. As described in Section 6, our tool-chain uses the latter to run the
actual verification process. Next, it translates back the results of the verification into
the original form, easing their interpretation by developers. Leveraging an existing
tool to check the correctness of the context-oriented design allows us to rely on the

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 M. Afanasov et al.

robustness and maturity of the latter. Particularly, the verification engine is re-used
from the existing tool, which reduces the risk of introducing bugs in the verification
mechanisms as compared to developing a new tool.
Transformation. We choose to transform a context-oriented design defined according
to Section 3 into a semantically equivalent finite state machine (FSM), that is, one
whose state space features a one-to-one mapping with the state space of the original
context-oriented design. An FSM representation allows us to employ many state-of-
the-art model checkers [Clarke et al. 1999].

Let us consider a generic context-oriented design with a set G of context groups.
We call g.C the set C of contexts in group g ∈ G; for example, in the context-
oriented design of Figure 2, Battery .C = {Normal ,Low}. Each context c has a
set O of outgoing transitions represented as tuples 〈o, e〉, where o is the tar-
get context and e is the label for that transition. In Figure 2, for example,
Resting .O = {〈Running , large GPS difference〉, 〈NotMoving ,negligible GPS difference〉}.
Triggers between contexts are defined as an attribute T of an individual context c;
for example, Reachable.T = NotMoving in Figure 2, or ⊥ if no trigger is defined.

We call D the set of dependencies for context transitions in the original design.
An element in D takes the form 〈c1, c2, c〉, where c1 and c2 are the originator and
target contexts of a transition, respectively, and c is the context whose activation
is necessary for this transition to be taken. Based on Figure 2, for example, both
〈Healthy ,Diseased ,Resting〉 and 〈Healthy ,Diseased ,NotMoving〉 belong to D.

The corresponding FSM has a set SFSM of states and a set TFSM of transitions. A
state s ∈ SFSM is a n-tuple 〈c1, c2, . . . , cn〉, n = |G|, where each element ci in the tuple
represents an individual context in a distinct group gi ∈ G. Each state s ∈ SFSM is
obtained by considering each active context in every group. A transition t ∈ TFSM is
a tuple 〈s1, s2, e〉 representing a transition from s1 ∈ SFSM to s2 ∈ SFSM with label e.
States s1 and s2 differ by at least one individual context c′ ∈ s1 that changes to c′′ ∈ s2.

A transition where exactly one c′ ∈ s1 changes to c′′ ∈ s2, and no other c′′′ changes
between s1 and s2, exists when it satisfies the following constraints:

(1) For an individual context c′ in s1, a transition in the original context-oriented
design exists in c′.O to an individual context c′′ in s2 with no triggers, that is,
〈c′′, e〉 ∈ c′.O and c′′.T = ⊥. Label e in transition t is the label of 〈c′′, e〉 ∈ c′.O.

(2) If a dependency 〈c′, c′′, c〉 ∈ D exists, then c is also found in s1, that is, if a de-
pendency exists on this transition, the dependent context is part of s1 and thus the
dependency is satisfied.

Differently, a transition where c′ ∈ s1 changes to c′′ ∈ s2, with other c′′′ possibly
changing between s1 and s2, exists when for an individual context c′ in s1, a transition
in the original context-oriented design is found in c′.O to an individual context ct whose
trigger points to c′′. This means, 〈ct, e〉 ∈ c′.O and ct.T = c′′. Label e in transition t is
the label of 〈ct, e〉 ∈ c′.O.

After pruning unreachable states, the FSM represents the feasible combinations of
active contexts in different groups and their transitions.
Examples. Figure 13 shows the FSM obtained for a context-oriented model that, for
simplicity, only includes group Health conditions and Activity from Figure 2. This
slice of the model does not include triggers, so only constraints (1) and (2) above ap-
ply. In group Health conditions of Figure 2, the transition from Healthy to Diseased
has label abnormal temperature and a dependency on either Resting or NotMoving;
therefore, D = {〈Healthy ,Diseased ,Resting〉, 〈Healthy ,Diseased ,NotMoving〉}. In the re-
sulting FSM, the existing dependencies are satisfied for all states 〈Healthy, ∗〉 but

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Software Adaptation in Wireless Sensor Networks A:15

large GPS difference

acceleration detected
negligible GPS difference

small GPS difference

large GPS difference

acceleration detected
negligible GPS difference

small GPS difference

abnormal temperature

⟨Healthy, Running⟩

⟨Healthy, Resting⟩

⟨Healthy, NotMoving⟩

⟨Deseased, Running⟩

⟨Deseased, Resting⟩

⟨Deseased, NotMoving⟩

normal temperature

abnormal temperature
normal temperature

abnormal temperature
normal temperature

Fig. 13: FSM model obtained from a context-oriented design that only includes the
groups Health conditions and Activity from Figure 2.

large GPS difference

acceleration detected
negligible GPS difference

small GPS difference

large GPS difference

acceleration detected
negligible GPS difference

small GPS difference

beacon

timeout
beacon

timeout

beacon

timeout
beacon

trigger
⟨Reachable, Running⟩

⟨Reachable, Resting⟩

⟨Reachable, NotMoving⟩

⟨Unreachable, Running⟩

⟨Unreachable, Resting⟩

⟨Unreachable, NotMoving⟩

beacontrigger

Fig. 14: FSM model obtained from a context-oriented design that only includes the
Base-station and Activity groups from Figure 2.

for 〈Healthy,Running〉.2 As a result, the FSM does not include the transition from
〈Healthy,Running〉 to 〈Diseased,Running〉, shown in Figure 13 with a dashed line.

Interestingly, the FSM in Figure 13 already reveals a potential issue. Based on the
informal description of the application in the Introduction, it may appear that a situ-
ation where both context Diseased and Running are active may make little sense. It
would, in fact, represent an animal that is very active when sick. However, Figure 13
shows that state 〈Diseased ,Running〉 is still reachable, thus the evolution of active con-
texts in different groups may eventually lead the application to that situation.

2The ∗ notation is a wildcard to indicate a subset of the FSM states, regardless of the specific value of the
tuple element.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 M. Afanasov et al.

Figure 14 shows an example based on a different slice of the context-oriented design
of Figure 2, only including the Base-station and Activity groups. This time, the slice
of the model includes a trigger Reachable.T = NotMoving and no dependencies. In the
FSM, the transitions from a state 〈Unreachable, ∗〉 to a state 〈Reachable, ∗〉 are subject
to a trigger that “redirects” the transition to state 〈Reachable,NotMoving〉. The dotted
lines in Figure 14 show the resulting transition in the FSM, whereas the dashed lines
show the transitions ahead of the triggers and the triggers themselves.

The FSM in Figure 14 reveals another potential issue, caused by the presence of
triggers. The transition from 〈Unreachable,Running〉 to 〈Reachable,NotMoving〉, in fact,
changes a state 〈∗,Running〉 to a state 〈∗,NotMoving〉. In the original context-oriented
design of Figure 2, however, the Running context in the Activity group has no outgoing
transitions that points to NotMoving, that is, the trigger forces the contexts to evolve
in a way the designer did not foresee. This may indicate a design flaw. We indicate this
kind of occurrences as unintended transitions.

6. TOOL SUPPORT
We design and implement a complete tool-chain to support developers in designing,
programming, and verifying adaptive WSN software using our approach. The complete
tool-chain is publicly available, including a pre-configured virtual machine image to
ease the installation process [Grevecom 2017].

Figure 15 illustrates the work-flow our tool-chain enables. The GRaphical Editor and
VErifier for Context-oriented Models (GREVECOM), which we design and implement
as an Eclipse plug-in, allows designers to graphically compose the context-oriented
design as illustrated in Section 3. Based on this, GREVECOM allows one to automati-
cally generate CONESC templates later completed with application-specific functional-
ity. The resulting implementations are handed over to a CONESC translator and then
to the nesC compiler to produce a deployment-ready binary.

Designers may also trigger a dedicated model generator that outputs a NuSMV
model through the transformation of Section 5. This is input to NuSMV, along with
predefined as well as developer-provided properties for running the actual verifica-
tion. The NuSMV results are then parsed to express them using the same concepts
of the initial context-oriented design. We choose NuSMV as it is a mature and robust
model-checking tool featuring a multitude of success stories against complex problem
instances [NuSMV 2017]. Nevertheless, we are not tied to NuSMV. As we are ulti-
mately generating an FSM representation, we may as well employ different model
checkers, depending on the nature of the problem [Clarke et al. 1999].
GREVECOM. Figure 16 shows a screen-shot of the GREVECOM editor. The main
area (A) operates as a canvas. From a dedicated palette, designers drag and drop con-
text groups and individual contexts (B) or even pre-canned patterns (C), as described

Grevecom

Designer

<extends>

Eclipse NuSMV

NuSMV Model 
Generator

NuSMV Result 
Parser

Source-Code Generator

Verify...

Generate...

Programmer

<uses>

NuSMV 
output

NuSMV 
model

<modifies>

ConesC 
Translator

ConesC 
templates

nesC compiler binary

nesC 
sources

Fig. 15: Tool-chain work-flow. The components in bold are those we developed.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Software Adaptation in Wireless Sensor Networks A:17

Fig. 16: GREVECOM editor.

in Section 3.2. Whenever doing so, a wizard pops up to guide the designer in express-
ing the key properties of the object; for example, in the case of individual contexts, a
designer is asked for the name, actions on entering/exiting, a description of the pro-
cessing when active, whether it is to be tagged as “default” or “error”, and the possible
triggers to other contexts. Individual contexts are linked by labeled transitions. Each
label contains a representation of the environmental event triggering the transition
and an optional dependency. The property tab (D) allows designers to change the prop-
erties of any object on the canvas. The hierarchy tree (E) helps navigate large models.

A menu command Verify... starts the automatic verification of the design, including
the translation to a NuSMV model, the actual verification process, and the translation
of the results back into the context-oriented design. A window such as Figure 17 pops
up asking the designer to type a list of CTL constraints divided by a semicolon. In this
example, a constraint AG !(Running&Diseased) verifies that the design of Figure 2
cannot ever find itself simultaneously in the Running and Diseased contexts. In addi-
tion to the designer-provided constraints, the NuSMV model generator inserts specifi-
cations to check the reachability of individual contexts and deadlocks. Any found coun-
terexample is graphically represented as a sequence of activated contexts, as shown at
the bottom of Figure 17. We investigate the efficiency of this process in Section 7.
CONESC translator. When the designer triggers the Generate... command, GREVE-
COM uses the context-oriented design to automatically generate CONESC templates
to aid programmers in the implementation phase. The templates already include the
CONESC code defining context groups, individual contexts with their properties, and
nesC components possibly used in patterns. The labels describing context transitions
and processing within individual contexts are translated into comments to guide pro-
grammers in filling the templates with application-specific functionality.

To obtain a deployment-ready binary, we develop a translator from CONESC to plain
nesC, which allows us to rely on the compiler and platform support of the latter.
Our translator performs two passes through the source code. First, it reads the main
Makefile to scan the component graph. Based on this, it parses every input file to

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 M. Afanasov et al.

Fig. 17: GREVECOM verification wizard.

convert any CONESC constructs into plain nesC and to generate support functionality.
The resulting sources can be compiled with the standard nesC tool-chain.

Specifically, the CONESC translator generates a custom nesC component for each
context group that takes care of dynamically dispatching layered function calls to
the implementation corresponding to the active context. This component is a part of
an automatically-generated nesC configuration that exports the layered functions de-
clared in the context group. Each individual context is translated into a nesC compo-
nent with the necessary interfaces for wiring. CONESC constructs such as activate
are also translated into standard function calls that determine the context to be con-
sidered for dispatching calls to layered functions.

Our translator is implemented using JavaCC [JavaCC 2016]. Three aspects are
worth noticing. First, the generated code is human-readable and can be modified for
fine-grained optimizations. Second, the resulting binary is completely hardware in-
dependent; since CONESC is translated into plain nesC, it enjoys the same compati-
bility as the original nesC tool-chain, allowing programmers to use CONESC with a
variety of WSN platforms. Third, despite the apparent simplicity of the translation
process, the semantics gap from CONESC to plain nesC is significant. To give an intu-
ition on this aspect, in the benchmark applications we use in Section 7, the number of
automatically-generated lines of nesC code is three times larger than the functionally
equivalent CONESC sources. We discuss these aspects next.

7. EVALUATION
We consider three representative applications; one is the wildlife tracking application
described in the Introduction, the other two are illustrated in Section 7.1. We design
and implement the three applications using either the design concepts of Section 3
and programming support of Section 4, or no specific design concept and plain nesC.
The two implementations are functionally equivalent, yet the latter approach arguably
represents common practice in WSN software [Mottola and Picco 2011]. We consider
that as a baseline for comparison.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Software Adaptation in Wireless Sensor Networks A:19

Temperature

Preferences Emergency

Light intensity

on enter:
disable 3G
on active:
send log to the BS

Normal

on enter:
enable 3G
on active:
send log to a neighbor node 
and to the Fire Service

Fire

on enter:
enable 3G
on active:
send log to the Police

Housebreaking
PIR returns
movement

normal

smoke is detected

on enter:
enable conditioner
disable heater

High
on enter:
disable conditioner
disable heater

Normal
on enter:
disable conditioner
enable heater

Low

thresholdL le temperature le thresholdH

temperature greater than thresholdH
temperature less than thresholdL

on enter:
turn lights off

Bright

on enter:
turn lights on

Dark

light level greater than threshold

light level less than threshold

on active:
day preferences

Day

on active:
weekend preferences

Weekend

on active:
night preferences

Night
night day

not weekend weekend

normal

smoke is detected

Fig. 18: Smart-home controller design.

We assess our approach along several dimensions. First, we analyze the impact of
the design concepts and programming support on the actual implementations. This
materializes in terms of the resulting coupling among components, which we inves-
tigate in Section 7.2, as the ease of changing the implementations against varying
requirements, which we discuss in Section 7.3, and in the code complexity, which we
study both qualitatively and quantitatively in Section 7.4. The benefits we demon-
strate for our design and programming approaches bear a run-time cost, mainly in
terms of MCU and memory overhead, which we measure in Section 7.5. Finally, we
investigate the effectiveness of the automatic verification for context-oriented designs
in terms of the time to i) generate the NuSMV model, discussed in Section 7.6, and ii)
concretely run the verification, as reported in Section 7.7.

7.1. Applications
In addition to the wildlife tracking application shown in Figure 2, we consider two ap-
plications with different requirements. The diversity among the benchmarks we em-
ploy provides evidence of the generality of our approach.

Adaptiveness to different situations is one of the key requirements in smart-home
applications [Mattern et al. 2010]. We consider a smart-home controller, whose design
is shown in Figure 18, relying on environment information to regulate temperature
and lighting conditions in a room, as well as to deal with emergency situations. The for-
mer functionality are driven by user-provided preferences that depend on the current
situation. The preferences are managed within the Preferences group, whose contexts
provide different operating parameters depending on day/night patterns and day of

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 M. Afanasov et al.

Protocol parameters Protocol type

on active:
adjust parameters

Lifetime priority
on active:
adjust parameters

Bandwidth priority

on active:
adjust parameters

Link quality 
adaptation

on active:
use CTP protocol

CTP

on active:
use Gossip protocol

Gossip

low link quality

high load
low load

high loadlow load

acceleration equals to 0

acceleration greater than 0

Fig. 19: Adaptive protocol stack design.

Table I: Coupling types among software components.
Type Description
Content (tightest) The internal working of two components depend on each other.
Common Two or more components share some global state, for example, a variable.
External Two or more components share a common data format.
Control One component controls the flow of another.
Stamp Two components share a common data format; each of them uses a different part.
Data Two components share data through a typed interface, for example, a function call.
Message (loosest) Two components share data through an untyped interface, for example, via messages.

the week. The context transitions within the Light and Temperature groups are driven
by thresholds found in such a parameter set, compared against current temperature
and light readings. The controller exploits image, fire, and smoke sensors to detect
housebreaking and fire situations, as specified in the Emergency group.

Adaptive functionality is also required at system level, for example, when develop-
ing network stacks able to change the protocol logic depending on the situation. An
example context-oriented design is shown in Figure 19. It realizes dynamic protocol
switching in situations where a node may alternate periods of significant mobility with
periods of static operation, as specified in the Protocol type group. Whenever a node re-
mains static, it runs the Collection Tree Protocol (CTP) [Gnawali et al. 2009], which
employs tree routing to funnel data to the destination. As soon as the on-board ac-
celerometer detects a significant movement, the node switches to a route-less protocol,
which allows the node to relay data efficiently in mobile settings [Ferrari et al. 2012].
In addition, the Protocol parameters group specifies three parameter sets, depending
on whether lifetime or bandwidth is to be favored, and based on current link qualities.

Worth noticing is that the patterns we discussed in Section 3.2 emerge in these de-
signs as well. For example, the Preferences group in Figure 18, in fact, operates as
a content provider with respect to the Light and Temperature groups. The individual
contexts in the Preferences group do not include any significant functionality, yet pro-
vide context-dependent parameters to other components. The same pattern is found
in the Protocol parameters group of Figure 19. A behavior control pattern is found
in both applications. In Figure 18, the functionality to handle emergency information
changes between the individual contexts in the Emergency group, as well as the be-
havior of network API changes depending on the active protocol in the Protocol type
group of Figure 19. Finally, the trigger pattern is found in multiple places; for exam-
ple, in Figure 18 when operating the HVAC systems in the Temperature group or when
enabling/disabling the 3G modem in the Emergency group.

7.2. Design and Programming → Coupling
The coupling among components generally determines the ease of maintenance of the
software [Koopman 2010]. According to Stevens and Yourdon [1979], seven types of

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Software Adaptation in Wireless Sensor Networks A:21

Table II: Coupling comparison. The context-oriented design and CONESC save most
types of coupling that are present when using plain nesC.

Application C
on

te
nt

C
om

m
on

E
xt

er
na

l

C
on

tr
ol

D
at

a

Wildlife tracking – nesC yes yes yes yes yes
Wildlife tracking – ConesC – – yes – yes
Smart-home – nesC yes yes yes yes yes
Smart-home – ConesC – – yes – yes
Adaptive stack – nesC yes yes yes yes yes
Adaptive stack – ConesC – – yes – yes

coupling exist, summarized in Table I. The tighter is the coupling among these types,
the more difficult is extending, evolving, and debugging the software. We manually
inspect the CONESC and nesC implementations of the three benchmark applications
to identify the types of coupling therein.
Results. Table II reports our findings. In general, the context-oriented design and
CONESC foster increased decoupling among components compared to plain nesC.

For example, Content coupling is avoided in CONESC implementations, in that dif-
ferent behavioral variations of the same layered function are encapsulated in different
contexts. Contrary, nesC programmers are forced to expose internal component infor-
mation to bind command or events to different components depending on the situa-
tion. Similarly, nesC developers use global variables to switch between functionality;
this is actually the case of variable base station reachable in Figure 1. This cre-
ates Common coupling, which developers avoid in CONESC implementations because
the necessary functionality is automatically generated by our translator. Control cou-
pling is avoided in CONESC implementations as well. This is a result of the ability to
dynamically dispatching calls to layered functions transparently to the programmer;
this functionality must be manually coded using nesC.

Data and External coupling are found in both CONESC and nesC implementations.
Both ultimately extend C, which relies on typed interfaces, and different components
need to use common data formats.

7.3. Design and Programming → Software Evolution
The need of evolving the software is common to many application domains. In WSN
software, this need exacerbates as new requirements often emerge once domain ex-
perts gain increased understanding of the environment they study [Gaura et al. 2010].
Because of the complexity of designing and implementing WSN software, the question
is how disruptive such changes may be.

To investigate this aspect, we assess the effort required to perform three example
modifications in the CONESC and nesC implementations of the three benchmark ap-
plications. We extend the wildlife tracking application to the case where domain ex-
perts need to track the spread of a disease. To this end, a new type of beacon needs
to be generated for an animal who was in contact with a diseased one, but shows no
symptoms yet. In the smart-home application, we consider the case when a periodic
run-time check of the controller execution is to be added. Should a potential failure be
discovered, the controller needs to change its behavior. Finally, we modify the adaptive
protocol stack by removing one of the parameter sets, which was found to be inefficient.
Results. Generating a new type of beacon in the wildlife tracking application requires
modifying the design by adding a Carrier context in the Health conditions group of

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 M. Afanasov et al.

Table III: Complexity comparison. The context-oriented design and CONESC yield sim-
pler implementations that are easier to debug and to reason about.

Average per-module

Application Va
ri

ab
le

s

F
un

ct
io

ns

P
er

-
fu

nc
ti

on
st

at
es

(a
vg

)

Wildlife tracking – nesC 6 8 12567.3
Wildlife tracking – ConesC 3 2 6231.2
Smart-home controller – nesC 2 2 18654.2
Smart-home controller – ConesC 0,8 1,9 5678.3
Adaptive stack – nesC 2,5 3,25 9830.3
Adaptive stack – ConesC 0,4 1,6 3451.8

Figure 2. This context corresponds to the generation of the new type of beacon, handed
over to the network stack for the actual transmission according to the content provider
pattern. Let apart the functionality to concretely gather the information to embed in
the new type of beacon—equally required in CONESC and nesC—the modifications in
the former only amount to 5 lines of code. To implement the same extension in nesC,
besides the necessary code modifications, programmers need additional global states,
further complicating the control flow.

Extending the smart-home controller with a run-time check of the execution requires
modifying its design by adding a new context group with two individual contexts: Nor-
mal or Faulty. This change in the design corresponds to about 40 lines of code in
CONESC, besides the implementation of the new contexts. Using nesC, in addition
to the individual functionality depending on the state of the controller, a new global
variable is necessary to switch between these states, further increasing the coupling.

Finally, removing a context in the CONESC implementation of the adaptive protocol
stack only requires modifying 3 lines of code, whereas in nesC developers must modify
several lines of code scattered throughout different components. This is a paradigmatic
benefit brought by the increased decoupling of CONESC implementations.

7.4. Programming → Complexity
The complexity of implementations bears an impact on the readability as well as the
ease of debugging and understanding. We estimate this aspect by measuring the num-
ber of variable and function declarations in each component, which are generally con-
sidered as intuitive indicators of complexity [Koopman 2010]. As debatable it may be
to measure the effectiveness of a programming abstraction [Mottola and Picco 2011],
we also measure the number of lines of code when using CONESC or nesC.

Complexity is also a function of the number of states in which a program can find
itself [Koopman 2010]. A state here is considered any possible assignment of values
to the program variables. Thus, the number of states must be computed by looking
at the different combinations of values of variables for every possible execution. We
use SATABS [Clarke et al. 2005], a model-checking tool for C programs, to perform
this analysis. The tool performs off-line verification against user-defined assertions. To
do so, it searches through the program executions where a given assertion holds. As a
by-product of this process, SATABS returns the number of states it explores in the pro-
gram. With a specific configuration, we force SATABS to explore all possible program
executions and thus to return the total number of distinct states in the program. We
use SATABS on a per-function basis, implementing empty stubs wherever we cannot
process the code with SATABS, for example, in the case of hardware drivers.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Software Adaptation in Wireless Sensor Networks A:23

 0  5  10  15  20  25  30

Wildlife tracking

Adaptive stack

Smart-home

MCU cycles

Context transition overhead

Function call overhead

 
 

(a) MCU overhead.

 0  0.5  1  1.5  2  2.5  3

Wildlife tracking

Adaptive stack

Smart-home

%

Binary overhead

RAM overhead

 
 

(b) Memory overhead.
Fig. 20: MCU and memory overhead. The additional resources necessary for CONESC
are very limited.

Results. Table III illustrates our results. CONESC shows a significant reduction in
both declared functions and variables. This comes from the ability to dynamically bind
function calls to a corresponding behavioral variation transparently to the caller. In
nesC, achieving the same functionality requires to define a set of global variables to
check what variation needs to be employed depending on the situation. As a result,
the number of per-function states that programmers have to deal with almost halves
when using CONESC, making implementations easier to understand.

The number of lines of code when using CONESC or nesC turns out to be roughly
comparable. More interesting is the size of the plain nesC code output by our CONESC
translator. As mentioned in Section 6, this is three times larger than the original
CONESC code, on average. Besides indicating the extent of the semantics gap between
CONESC and nesC, this observation also demonstrates that the few simple concepts
we conceive for CONESC do capture a significant portion of processing.

7.5. Programming → MCU and Memory Overhead
The use of CONESC comes at the cost of run-time overhead. Compared to a hand-
crafted implementation, for example, the code our translator automatically generates
is likely less optimized in terms of memory occupation or processing time. The lat-
ter possibly affects energy consumption as well. To asses this aspect, we investigate
the memory overhead when using CONESC as compared to nesC, as well as the MCU
overhead for context transitions and calls to layered functions. We determine the for-
mer using the nesC and GNU-C tool-chains, whereas we measure the latter using the
MSPSim cycle-accurate emulator [Eriksson et al. 2009]. MSPSim models the MCU of
popular WSN devices such as the TMote Sky [Polastre et al. 2005].
Results. Figure 20 shows the results. The MCU overhead for layered function calls,
shown in Figure 20a, varies from 2 to 5 MCU cycles depending on the application. This
emerges because of the dynamic dispatching to the active context. In absolute terms,
and thus also in terms of the corresponding energy consumption, the overhead is neg-
ligible: the simplest operation on a WSN node, such as turning an LED on or off, takes
8 MCU cycles. The MCU overhead for performing context transitions is slightly larger,
but in the same order of magnitude. This is mainly caused by the checks performed
when executing a transition, described in Section 4.4.

Figure 20b indicates that the memory overhead is 2.5% in the worst case. The com-
plexity of the application, however, largely dictates the relative memory penalty. For
example, the wildlife tracking application, being the most complex in terms of con-
texts, context changes, and data processing, shows the highest memory overhead. In

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 M. Afanasov et al.

contrast, the memory overhead for the adaptive protocol stack is negligible. In this
case, interestingly, the CONESC translator generates almost the same set of variables
that a nesC programmer would define by hand.

7.6. Verification → NuSMV Model Generation
The automatic verification technique we conceive involves two steps: i) generating the
semantically equivalent FSM as explained in Section 5 along with its encoding in an
NuSMV model, and ii) running the actual verification using the latter as input. We
evaluate the two separately.

To measure the time to generate the NuSMV model, we place ourselves in the worst
situation and employ synthetic designs conceived to yield the highest running times.
A procedural implementation to generate the NuSMV model according to the specifi-
cation in Section 5 is quadratic in both the number of context groups NC = |G| and in
the number of individual contexts NCG = |g.C| in a group g ∈ G. Because additional
processing is required for each transition in a group, the highest running times corre-
spond to a design where all groups include the largest number of individual contexts
and each of these is bound with a transition to every other context in the group.

We perform measurements with NC ∈ [2, . . . , 10] and NCG ∈ [1, . . . , 10]. Note how
these designs are, in fact, quite unrealistic. The representative applications in Sec-
tion 7.1, for example, include fewer context groups and fewer individual contexts than
most of these configurations. Moreover, it is rarely the case that so many transitions
are defined for each context. Typical WSN devices are severely resource-constrained;
the context-oriented designs would rarely reach these degrees of complexity.

Our implementation of the transformation procedure is written in Java and runs on
an Intel Core2Duo machine at 1.4 GHz with 4 GBytes RAM. We measure the CPU
time using the standard Java library ThreadMXBean. To account for random effects
that may alter a measurement, we repeat the measurements multiple times, until the
standard deviation across different repetitions falls below 5%.
Results. Figure 21 depicts the trends at stake against varying either NC or NCG. The
curves confirm the quadratic trends. Most importantly, however, the absolute values
are extremely limited. Even in an unrealistic configuration with NC = NCG = 10, the
time to generate the NuSMV model rests well below 200 ms.

7.7. Verification → Running Time
We measure the time taken by NuSMV to verify the semantically equivalent FSM. To
verify the input model efficiently, NuSMV converts the FSM into an equivalent binary
decision diagram (BDD) [Clarke et al. 1999]. The counter-example possibly indicating
a property violation is found on the BDD representation of the model, yet it might not
be useful to the user until it is translated back in terms of transitions in the original
FSM model. This process, called “generation of counterexample traces” is optionally
disabled through a command-line parameter in NuSMV [NuSMV 2017], as users may
not necessarily be interested in detailed information on a property violation.

We consider both the context-oriented designs of the representative applications in
Section 7.1 and the synthetic ones of Section 7.6. For the former, we consider the cases
where the model is correct and where it contains flaws such as deadlocks, unintended
transitions as defined in Section 5, and violations of developer-provided CTL proper-
ties. To trigger the latter, we artificially introduce specific flaws in the context-oriented
design; for example, to insert a deadlock, we add two mutually-exclusive dependencies
in the original design. In these experiments, NuSMV is configured to always gener-
ate counter-example traces whenever a property violation is found. In contrast, for the
synthetic designs of Section 7.6, we limit ourselves to the case of a correct model or

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Software Adaptation in Wireless Sensor Networks A:25

 0
 20
 40
 60
 80

 100
 120
 140
 160

 1  2  3  4  5  6  7  8  9  10

T
im

e,
 m

s

Number of context groups

5 contexts per group
8 contexts per group

10 contexts per group

(a)

 0
 20
 40
 60
 80

 100
 120
 140
 160

 2  3  4  5  6  7  8  9  10

T
im

e,
 m

s

Number of contexts per group

2 groups
5 groups

10 groups

(b)

Fig. 21: Time for generating the NuSMV model. The curves confirm the quadratic trend
in the number of context groups and individual contexts; the absolute values remain
below 200 ms.

 0

 10

 20

 30

 40

 50

Wildlife tracking Smart-home Adaptive stack

T
im

e,
 m

s

Correct
Deadlock

Illegal transition
User constraints

Fig. 22: NuSMV running time with the FSM equivalent to the context-oriented designs
of Section 7.1. The absolute values remain below 50 ms.

a model with a deadlock. In addition, we check the impact of generating a counter-
example trace whenever a property violation is found. We fix NC = 5 and vary NCG to
investigate how NuSMV scales with the size of the input models.

We measure the CPU time taken by NuSMV with UNIX command time. The rest of
the setup, including the hardware, is the same as in Section 7.6.
Results. Figure 22 shows the NuSMV running time with the FSM equivalent to the
context-oriented designs of the applications of Section 7.1. The absolute values are
all very limited, and lower than 50 ms in all cases. Even by considering these values
in addition to the times to generate the equivalent FSM from the original context-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26 M. Afanasov et al.

 0
 10
 20
 30
 40
 50
 60

 2  3  4  5  6  7  8  9

T
im

e,
 m

in
ut

es

Number of context groups

No flaws
Flawed without counter-example trace generation

Flawed with counter-example trace generation

Fig. 23: NuSMV running times with the FSM equivalent to the synthetic designs of
Section 7.6. The running times remain practical up to NCG = 8, and are always below
one minute for NCG ≤ 7.

oriented design, discussed in Section 7.6, the total running times remain practical.
There is no significant difference in the running times depending on the type of flaw,
or on the type of CTL property that fails.

Figure 23 shows the results of the experiments with the synthetic models of Sec-
tion 7.6. Because of how we generate the equivalent FSM, adding one context group
in the original design yields an exponential increase in the size of the state space
NuSMV needs to explore, which is reflected in the trends of Figure 23. For realistic
configurations, such as those with NCG ≤ 7 and NC = 5, the running times are below
one minute. They start becoming impractical only for NCG = 9.

As seen already in Figure 22, a flawed model requires slightly increased running
times also in Figure 23. A comparison between the two plots provides evidence that
this overhead comes from the generation of the counter-example trace. When this
functionality is disabled in NuSMV as explained above, the running times are slightly
below those of a correct model. Reason for this is that NuSMV verifies the model in-
crementally, and stops as soon as a property violation is found.

8. CONCLUSION
We presented design concepts, programming constructs, and automatic verification
techniques to support developers in realizing adaptive WSN software. Our design con-
cepts help factor out the adaptation necessary to deal with independent environment
dimensions and understand their relations. These concepts map directly to the con-
structs of CONESC, our context-oriented extension of nesC, which greatly simplifies
the implementation of adaptive WSN software. The automatic verification techniques
we conceive complement the design and programming support by providing a means
to check the correctness of the design prior to the actual deployment. The three con-
tributions are tied together by dedicated tool support, which supports developers from
design to implementation and verification.

Our evaluation, based on three diverse representative applications, indicates that
our design concepts and CONESC result in higher-quality implementations that are
simpler to reason about, structurally more decoupled, and easier to modify compared to
functionally-equivalent implementations written in plain nesC. On the other hand, the
run-time overhead for CONESC implementations, again compared to plain nesC, turns
out negligible. Finally, we quantitatively demonstrate that our verification techniques
work efficiently on practical instances, returning results in a matter of seconds.
Acknowledgments. This work was partly supported by projects “Zero-energy Build-
ings in Smart Urban Districts” (EEB), “ICT Solutions to Support Logistics and Trans-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Software Adaptation in Wireless Sensor Networks A:27

port Processes” (ITS), and “Smart Living Technologies” (SHELL) of the Italian Min-
istry for University and Research.

REFERENCES
G. Abowd, A. Dey, P. Brown, N. Davies, M. Smith, and P. Steggles. 1999. Towards a better understanding of

context and context-awareness. In International Symposium on Handheld and Ubiquitous Computing.
T. Ball and S. K. Rajamani. 2002. The SLAM Project: Debugging System Software via Static Analysis. In

Proceedings of POPL.
J. E. Bardram. 2005. The Java Context Awareness Framework (JCAF) – A Service Infrastructure and Pro-

gramming Framework for Context-aware Applications. In Proc. of PERVASIVE.
D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. 2007. The Software Model Checker Blast: Applica-

tions to Software Engineering. Int. J. Softw. Tools Technol. Transf. (2007).
N. A. Bhatti, M. H. Alizai, A. A. Syed, and L. Mottola. 2016. Energy Harvesting and Wireless Transfer

in Sensor Network Applications: Concepts and Experiences. ACM Trans. on Wireless Sensor Networks
(TOSN) (2016).

T. Bourdenas, D. Wood, P. Zerfos, F. Bergamaschi, and M. Sloman. 2011. Self-adaptive routing in multi-hop
sensor networks. In Proc. of CNSM.

D. Bucur and M. Kwiatkowska. 2009. Bug-Free Sensors: The Automatic Verification of Context-Aware
TinyOS Applications. In Proc. of AmI.

B. Cheng and others. 2009. Software Engineering for Self-Adaptive Systems: A Research Roadmap. Springer.
E. Clarke, O. Grumberg, and D. Peled. 1999. Model checking. MIT press.
E. Clarke, D. Kroening, and F. Lerda. 2004. A tool for checking ANSI-C programs. In In Tools and Algorithms

for the Construction and Analysis of Systems. Springer, 168–176.
E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. 2005. SATABS: SAT-based Predicate Abstraction for

ANSI-C. In Proc. of TACAS.
E. M. Clarke, E. A. Emerson, and A. P. Sistla. 1986. Automatic Verification of Finite-state Concurrent Sys-

tems Using Temporal Logic Specifications. ACM Trans. Program. Lang. Syst. (1986).
J. Coutaz, J. Crowley, S. Dobson, and D. Garlan. 2005. Context is Key. Commun. ACM 48, 3 (2005).
A. Dey. 2001. Understanding and using context. Personal and ubiquitous computing 5, 1 (2001).
J.-P. Diguet, Y. Eustache, and G. Gogniat. 2011. Closed-loop-based self-adaptive hardware/software-

embedded systems: Design methodology and smart cam case study. ACM Trans. on Embedded Com-
puting Systems (TECS) (2011).

A. Dunkels, B. Gronvall, and T. Voigt. 2004. Contiki - a lightweight and flexible operating system for tiny
networked sensors. In Local Computer Networks, 2004. 29th Annual IEEE International Conference on.

J. Eriksson, F. Oesterlind, N. Finne, N. Tsiftes, A. Dunkels, T. Voigt, R. Sauter, and P. J. Marroon. 2009.
COOJA/MSPSim: Interoperability Testing for Wireless Sensor Networks. In Proc. of Simutools.

F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. 2012. Low-Power Wireless Bus. In Proc. of the ACM
Conference on Embedded Network Sensor Systems (SenSys).

R. Filman, T. Elrad, S. Clarke, and M.ehmet Akşit. 2004. Aspect-oriented software development. Addison-
Wesley Professional.

N. Finne, J. Eriksson, N. Tsiftes, A. Dunkels, and T. Voigt. 2010. Improving Sensornet Performance by
Separating System Configuration from System Logic. In Proc. of EWSN.

F. Fleurey, B. Morin, and A. Solberg. 2011. A Model-driven Approach to Develop Adaptive Firmwares. In
Proc. of the 6th SEAMS.

H. Fotouhi, M. Zuniga, M. Alves, A. Koubaa, and P. Marron. 2012. Smart-HOP: A Reliable Handoff Mecha-
nism for Mobile Wireless Sensor Networks. In Proc. of EWSN.

E. Gaura, L. Girod, J. Brusey, M. Allen, and G. Challen. 2010. Wireless sensor networks: Deployments and
design frameworks. Springer Science & Business Media.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. 2003. nesC language: A holistic ap-
proach to networked embedded systems. In Proc. of PLDI.

O. Gnawali, R Fonseca, K. Jamieson, D. Moss, and P. Levis. 2009. Collection Tree Protocol. In Proc. of
SENSYS.

Grevecom 2017. GrEVeCOM: Software Adaptation in Wireless Sensor Networks. (2017).
bitbucket.org/neslabpolimi/conesc/wiki/.

F. Gustafsson. 2010. Statistical sensor fusion. Springer.
R. Hirschfeld, P. Costanza, and O. Nierstrasz. 2008. Context-oriented Programming. Journal of Object Tech-

nology (2008).
K. Iwanicki, P. Horban, P. Glazar, and K. Strzelecki. 2014. Bringing Modern Unit Testing Techniques to

Sensornets. ACM Trans. Sen. Netw. (2014).
M. Jackson. 1995. The World and the Machine. In Proc. of ICSE.
JavaCC 2016. JavaCC - The Java Compiler Compiler. (2016). javacc.java.net.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:28 M. Afanasov et al.

T. Kamina, T. Aotani, and H. Masuhara. 2011. EventCJ: A Context-oriented Programming Language with
Declarative Event-based Context Transition. In Proc. of AOSD.

S. Kang, J. Kee, H. Jang, Y. Lee, S. Park, and J. Song. 2008. SeeMon: Scalable and Energy-efficient Context
Monitoring Framework for Sensor-rich Mobile Environments. In Proceedings of the 6th International
Conference on Mobile Systems, Applications, and Services (MOBISYS).

R. Keays and A. Rakotonirainy. 2003. Context-oriented Programming. In Proc. of MobiDe.
N. Kern, B. Schiele, and A. Schmidt. 2003. Multi-sensor activity context detection for wearable computing.

In European Symposium on Ambient Intelligence.
G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin. 1997. Aspect-

oriented programming. European Conference on Object-oriented Programming (ECOOP) (1997).
J. Ko, C. Lu, M. B. Srivastava, J. A. Stankovic, A. Terzis, and M. Welsh. 2010. Wireless sensor networks for

healthcare. Proceedings of IEEE (2010).
P. Koopman. 2010. Better Embedded System Software. Carnagie Mellon Press.
P. Li and J. Regehr. 2010. T-check: Bug Finding for Sensor Networks. In Proc. of IPSN.
C. Magerkurth, A. D. Cheok, R. L. Mandryk, and T. Nilsen. 2005. Pervasive Games: Bringing Computer

Entertainment Back to the Real World. Comput. Entertain. 3, 3 (2005).
G. Mainland, G. Morrisett, and M. Welsh. 2008. Flask: Staged Functional Programming for Sensor Net-

works. In Proc. of ICFP.
F. Mattern, T. Staake, and M. Weiss. 2010. ICT for green: how computers can help us to conserve energy. In

Proc. of ICEECN.
L. Mottola, A. L. Murphy, and G. P. Picco. 2006. Pervasive Games in a Mote-enabled Virtual World Using

Tuple Space Middleware. In ACM NETGAMES.
L. Mottola and G.P. Picco. 2011. Programming Wireless Sensor Networks: Fundamental Concepts and State

of the Art. ACM Comp. Surveys (2011).
L. Mottola, T. Voigt, F. Österlind, J. Eriksson, L. Baresi, and C. Ghezzi. 2010. Anquiro: Enabling Efficient

Static Verification of Sensor Network Software. In Proc. 2010 ICSE/SENSEA.
R. Newton, G. Morrisett, and M. Welsh. 2007. The Regiment Macroprogramming System. In Proc. of IPSN.
NuSMV 2017. NuSMV: A New Symbolic Model Checker. (2017). nusmv.fbk.eu.
R. Olfati-Saber. 2007. Distributed Kalman filtering for sensor networks. In IEEE Conference on Decision

and Control. IEEE.
B. Pásztor, L. Mottola, C. Mascolo, G. P. Picco, S. Ellwood, and D. Macdonald. 2010. Selective Reprogram-

ming of Mobile Sensor Networks Through Social Community Detection. In Proc. of EWSN.
G. P. Picco. 2010. Software Engineering and Wireless Sensor Networks: Happy Marriage or Consensual

Divorce?. In Proc. of FSE/SDP FOSER.
J. Polastre, R. Szewczyk, and D. Culler. 2005. Telos: enabling ultra-low power wireless research. In Proc. of

IPSN.
K. Romer and Junyan Ma. 2009. PDA: Passive distributed assertions for sensor networks. In Proc. of IPSN.
G. Salvaneschi, C. Ghezzi, and M. Pradella. 2012. Context-oriented Programming: A Software Engineering

Perspective. J. Syst. Softw. (2012).
G. Salvaneschi, C. Ghezzi, and M. Pradella. 2013. Towards language-level support for self-adaptive software.

ACM Trans. Auton. Adapt. Syst. (2013).
R. Sasnauskas, O. Landsiedel, M. Hamad Alizai, C. Weise, S. Kowalewski, and K. Wehrle. 2010. KleeNet:

Discovering Insidious Interaction Bugs in Wireless Sensor Networks Before Deployment. In Proc. of
IPSN.

B. Schilit, N. Adams, and R. Want. 1994. Context-aware computing applications. In First Workshop on Mobile
Computing Systems and Applications (WMCSA).

A. Schmidt, M. Beigl, and H.-W. Gellersen. 1999. There is more to context than location. Computers &
Graphics 23, 6 (1999).

S. Sehic, F. Li, and S. Dustdar. 2011. COPAL-ML: A Macro Language for Rapid Development of Context-
aware Applications in Wireless Sensor Networks. In Proc. of SESENA.

W. Stevens and E. N. Yourdon. 1979. Classics in Software Engineering. Chapter Structured Design.
L. Subramanian and R.H. Katz. 2000. An architecture for building self-configurable systems. In Proc. of

MobiHOC.
TinyOS 2016. TinyOS 2.1.2. (2016). www.tinyos.net.
E. Visser. 2002. Meta-programming with concrete object syntax. In International Conference on Generative

Programming and Component Engineering.
A. D. Wood, J. A. Stankovic, G. Virone, L. Selavo, Z. He, Q. Cao, T. Doan, Y. Wu, L. Fang, and R. Stoleru.

2008. Context-aware wireless sensor networks for assisted living and residential monitoring. Network,
IEEE (2008).

H. Wu, M. Siegel, R. Stiefelhagen, and J. Yang. 2002. Sensor fusion using Dempster-Shafer theory [for
context-aware HCI]. In IEEE Instrumentation and Measurement Technology Conference.

M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele. 2012. pTunes: Runtime parameter adaptation
for low-power MAC protocols. In Proc. of IPSN.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.


