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Abstract This chapter addresses two recent topics in the field of geo-information,
the former more technological and the latter more scientific. On one side, there is
an emerging trend of visualizing data and their changes in space and time through
multidimensional geospatial clients and/or virtual globes. In the most advanced
cases, these are not simply plain viewers but also allow analysis of the data by
acting as “multidimensional intelligent geo-viewers”. On the other side, citizen
science is providing a great momentum to the possibility of lay people taking part in
scientific development. It is a new, citizen-centred paradigm which, in most cases,
takes advantage of the individual and collective augmented capability of sensing
the surrounding world through the sensors that we wear. The “citizen sensors” will
consciously contribute to this development, either through volunteered geographic
information or by being themselves an unconscious part of the data analytics, which
makes use of geo-crowdsourced data to extract information in order to create a
higher level understanding of natural and manmade phenomena. This chapter seeks
to outline the Web technological solutions for visualizing and analyzing such data,
through a summary of the current state of the art and the original applications
developed by the authors.

Introduction

Since the beginning of the new century a dramatic change has characterized the
evolution of GeoWeb, defined as the collection of services and data supporting the
use of geographic information over the Internet (Scharl and Tochtermann 2007).
While the delivery of geospatial data over the Web began in the early 1990s (Putz
1994), it was not until 2005 that—following the success of Web 2.0 (O’Reilly
2005)—a new wave of geospatial Web applications has marked the birth of the
so-called GeoWeb 2.0 (Maguire 2007). During the last two decades Web mapping
applications have gradually evolved from being mostly static, poorly interactive
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and with limited functionality (few data accessible and few functions available on
them) to dynamic, interactive and resembling the traditional desktop counterparts
(Plewe 2007). Many factors have contributed to this success such as the increase
of computational power of computers and broadband Internet communication, the
introduction of technologies such as AJAX (Asynchronous JavaScript and XML)
and mapping APIs (Application Programming Interfaces) as well as the OGC (Open
Geospatial Consortium) standards for Web mapping interoperability (Peng and Tsou
2003).

Almost 10 years ago a new boost to the exploitation of Web-served geospatial
data was given by the birth of virtual globes, and more in general multidimensional
clients offering spatio-temporal visualization of geographic contents. Beyond their
successful impact on the general public (Butler 2006), virtual globes introduced
powerful ways not only to visualize but also to explore, analyse and process the
heterogeneous and complex data generated by scientific disciplines (Blower et al.
2007).

Another big shift in the history of GIS began at almost the same time. Summa-
rized by the term Volunteered Geographic Information or VGI (Goodchild 2007), a
new era started where users have become active providers of geospatial contents.
Social networking, digital photography, online mapping and mobile devices are
currently fruitful sources of VGI, with OpenStreetMap (Arsanjani et al. 2015)
being the most popular example of a collaborative spatial data collection project.
Citizen science, outlining volunteers’ participation in the development of scientific
activities (Cohn 2008), relies in many cases on VGI. This citizen-centred paradigm
takes advantage of the individual augmented capability of sensing the world, which
thanks to the sensors we wear can also produce vast quantities of unconsciously
geo-crowdsourced data—termed by Harvey (2013) as CGI or Contributed GI (as
opposed to VGI). One such example being the amount of data which is daily
collected by smart phone users almost without any user control.

How mature is the bridge between virtual globes and VGI? The purpose of this
chapter is to contribute to the discussion by investigating two innovative ways virtual
globes can be exploited, namely as: (a) collaboration platforms for visualizing,
exploring and collecting VGI; and (b) multidimensional intelligent geo-viewers
providing advanced spatio-temporal visualization of citizen-sensed data. These
topics are deepened through the description of two specific applications which have
been recently (early 2016) developed by the authors.

The remainder of the chapter is structured as follows. Section on “Virtual
Globes as the New Generation Visualization Platforms” provides a background
on virtual globes which outlines their historical development, primary features
and main software implementations. Next, a review is provided on virtual globe-
based applications focused on the exploration of crowdsourced geo-data. The two
original applications developed by the authors are then presented in section on
“Applications”: a collaborative platform for managing citizen-sensed information
and an intelligent geo-viewer of telecommunication data. Section on “Conclusions”
concludes with the summary of the work’s contributions and directions for future
research.
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Virtual Globes as the New Generation Visualization Platforms

As mentioned above, virtual globes have ushered in a historical change in the way
geospatial information is delivered over the Internet. This era was identified by
Plewe (2007) as the fourth generation of Web Mapping applications, coming to
the forefront after three different stages of 2D applications featuring an increasing
level of interaction and usability. Virtual globes are software providing a 3D
representation of the Earth and allowing users to explore it in a virtual environment
while streaming satellite imagery, Digital Elevation Models (DEMs) and other
geographic data from the Internet (Schultz et al. 2008). Unlike traditional GIS
they offer users a “magic carpet ride” above the Earth surface. Users can also
interact with the information represented on or above the surface, as well as manage
geographic layers and optionally add their own data to create 3D mash-ups.

Key factors which enabled the birth of virtual globes include the development of
high-performance graphics cards for 3D visualization (mainly driven by the video
game industry), the evolution of Internet bandwidth, the increased availability of
high-resolution satellite imagery (Yu and Gong 2012) and the advancements in
the field of global spatial grids (Sahr et al. 2003). The success of virtual globes
must be certainly attributed to Google Earth,1 which since its release in 2005 has
gained an astonishing popularity among the general public. Goodchild reasonably
claimed that “Just as the PC democratized computing, so systems like Google Earth
will democratize GIS” (Butler 2006). In response to Google Earth ESRI released
ArcGIS Explorer2 and Microsoft launched its Bing Maps Platform3 (previously
Microsoft Virtual Earth), while an open source alternative—World Wind4 released
by NASA—has been available since 2003.

Many features of virtual globes contributed to their popularity. Virtual globes
are multi-scale, multipurpose and multidimensional, i.e. they can even provide a 4D
visualization if time component is considered (Brovelli et al. 2013). Virtual globes
offer high context capability while at the same time providing ease and intuitiveness
of use. In turn this translates into a richer and more realistic user experience.
What is more, the chance of visualizing, locating and interacting with different
kinds of geospatial contents within a single 3D virtual environment has opened
many possibilities for using virtual globes in a number of geo-related disciplines,
including scientific ones (Brovelli and Zamboni 2012).

In addition to those mentioned above, several other virtual globe platforms have
been released over the last decade. Examples are ESRI ArcGlobe,5 SkylineGlobe,6

1http://www.google.com/earth
2http://www.esri.com/software/arcgis/explorer
3http://www.microsoft.com/maps
4http://worldwind.arc.nasa.gov/java
5http://www.esri.com/software/arcgis/extensions/3danalyst
6http://www.skylinesoft.com

http://www.google.com/earth
http://www.esri.com/software/arcgis/explorer
http://www.microsoft.com/maps
http://worldwind.arc.nasa.gov/java
http://www.esri.com/software/arcgis/extensions/3danalyst
http://www.skylinesoft.com
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CitySurf Globe,7 SuperMap GIS,8 EarthBrowser,9 ossimPlanet,10 QGIS Globe,11

gvSIG3D12 (based on NASA World Wind), osgEarth,13 Marble,14 Norkart Virtual
Globe15 and Earth3D16. Standards like HTML5 and WebGL17 have recently made
it possible to render interactive 3D graphics within Web browsers without the
need of specific proprietary applications, run-time environments (e.g. Java Virtual
Machine) or plugins. A new wave of WebGL-based virtual globes has thus
emerged including Cesium,18 WebGL Earth,19 WebGL Globe,20 OpenWebGlobe21

(Loesch et al. 2012) and the Web-based version of World Wind22. It is out of
the scope of this chapter to provide a rigorous and detailed description of the
characteristics and differences between the virtual globes listed above. However,
some useful classifications of virtual globes according to a number of criteria
(platform-dependence, license type, type of application, geographic layers available
by default, functionalities and freedom of customization) are provided by Brovelli et
al. (2014). Keysers (2015) proposes a categorization of virtual globes into platforms
and visualization applications: open and closed source; public and restricted
access.

An emerging concept related to virtual globes is Digital Earth (DE). It was
envisioned by Gore (1998) as a multi-resolution, 3D representation of the planet
allowing scientists, policy-makers, students and all societal sectors to manage
georeferenced information and navigate them in space and time (Brovelli et al.
2015). Though DE and virtual globes are often used as synonyms, according to
Harvey (2009) DE refers to the experiences and knowledge people have, and
continue to make of the world, while virtual globes represent the most viable term
for discussions of DE software environment. In other words, virtual globes are not
DE, but rather a point of access to DE. This is why in the growing literature on
DE virtual globes are also named geobrowsers (see for example Goodchild 2008;

7http://www.citysurf.com.tr
8http://www.supermap.com
9http://www.earthbrowser.com
10https://trac.osgeo.org/ossim/wiki/OssimPlanet
11http://hub.qgis.org/wiki/quantum-gis/Globe_Plugin
12https://redmine.gvsig.net/redmine/projects/gvsig-3d/wiki
13http://osgearth.org
14https://edu.kde.org/marble
15http://www.virtual-globe.info
16http://www.earth3d.org
17https://www.khronos.org/webgl
18https://cesiumjs.org
19http://www.webglearth.org
20https://github.com/dataarts/webgl-globe
21http://www.openwebglobe.org
22http://webworldwind.org

http://www.citysurf.com.tr
http://www.supermap.com
http://www.earthbrowser.com
https://trac.osgeo.org/ossim/wiki/OssimPlanet
http://hub.qgis.org/wiki/quantum-gis/Globe_Plugin
https://redmine.gvsig.net/redmine/projects/gvsig-3d/wiki
http://osgearth.org
https://edu.kde.org/marble
http://www.virtual-globe.info
http://www.earth3d.org
https://www.khronos.org/webgl
https://cesiumjs.org
http://www.webglearth.org
https://github.com/dataarts/webgl-globe
http://www.openwebglobe.org
http://webworldwind.org
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Annoni et al. 2011; Craglia et al. 2012), thus underlining their correspondence to
traditional Web browsers in searching, retrieving and organizing information, whose
nature is however spatial (Jones 2007).

Virtual Globes for the Exploration of Crowdsourced Geo-Data

Despite having democratized access to geospatial information, due to their primarily
commercial orientation (driven by Google Earth), virtual globes were initially
considered poorly suited for scientific purposes (Craglia et al. 2008). Some years
later Goodchild et al. (2012) identified some limits of the existing virtual globes
compared to Gore’s vision, e.g. the inability to explore the Earth both backward
and forward in time, the limited set of available data, and the user interaction
which often resembled an access to a searchable catalogue rather than a real
exploitation. Nonetheless, the capabilities of virtual globes described in section on
“Virtual Globes as the New Generation Visualization Platforms” have made them
increasingly used in a variety of scientific disciplines. At the time of writing (early
2016), examples include geology (Blenkinsop 2012; Martínez-Graña et al. 2013;
Zhu et al. 2014), ecology (Guralnick et al. 2007), history and cultural heritage
(Brovelli et al. 2013; Valentini et al. 2014), cartographic heritage (Brovelli et al.
2012; Gede et al. 2013), natural disasters and disaster management (Webley 2011;
Tomaszewski 2011), environmental analyses and modelling (Chien and Tan 2011;
Brovelli and Zamboni 2012), weather forecast (Smith and Lakshmanan 2011),
instruction and education (Lindner-Fally and Zwartjes 2012; Bodzin et al. 2014),
health (Stensgaard et al. 2009), landscape planning (Schroth et al. 2011) and urban
studies (Nebiker et al. 2010). User functions typically include data visualization,
collection, exploration, integration, validation, communication and dissemination,
modelling, and decision support (Yu and Gong 2012).

In line with the main content of this chapter, the following discussion provides
an overview of virtual globe applications focused on geo-data volunteered or
crowdsourced by users. It is worth noting that VGI has been recognized as a key
opportunity for the development of DE (Craglia et al. 2008; Annoni et al. 2011) and
that even OpenStreetMap has been shown to be well-positioned within DE’s goals
(Mooney and Corcoran 2014).

Elvidge and Tuttle (2008) predict the power of virtual globes in democratizing
content contributions by users. Examples related to Google Earth are described such
as the Maplandia gazetteer and the geotagged photos from Panoramio. Using virtual
globes as pure visualization platforms to display geotagged contents from media
sharing sites is still a common practice. As an example, Kisilevich et al. (2010)
exploit Google Earth to produce interactive visualizations of tourist sites based on
geotagged photos from Panoramio and Flickr. Similarly, Vu et al. (2015) make use
of Google Earth to visualize Flickr photos for exploring tourists’ travel behaviour.
Both examples lack time filtering of data.
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Cooper et al. (2010) draft a questionnaire to explore the perceptions held by
geographical information professionals from Africa on the use of VGI in virtual
globes. Results reveal a number of pros and cons, these latter including the fact
that digital divide (Norris 2001) is still a strong barrier to the democratization
promoted by VGI and virtual globes. Gede et al. (2013) created a virtual museum
where a WebGL-based virtual globe environment allows users to navigate digitized
paper globes. Upon registration, the users can add/edit both data and descriptions,
thus adding a participative nature to the collection. Wu et al. (2010) describe
a 3D urban planning interoperable environment based on GeoGlobe, a virtual
globe prototype developed by the authors. Both urban planning designers and the
public can visualize, manipulate and discuss urban planning projects. Participation
happens through the upload of urban models as well as online tools such as
forums, e-mails and instant messaging. Some spatial analysis tools are also available
within the platform (e.g. to compute distances and calculate/simulate sunlight and
sunshade). Beltran et al. (2013) present the VisioMIMEXT application built on
top of NASA World Wind which allows the user to spatially search, visualize
and retrieve georeferenced media resources from diverse social networks (Twitter,
OpenStreetMap, YouTube, Flickr, Geonames and Wikipedia). Time filtering of data
is planned as a future extension. The authors stress the role of virtual globes as data
fusion tools for both experts and the public.

Virtual globes are also recognized as useful Web-based tools for collaborative
mapping. The collaborative geospatial environment described by Nebiker et al.
(2007) allows integrating observations from real-world mobile geo sensors (e.g.
GPS logs and UAV video streams) into a three-dimensional viewer (i3D) developed
by the authors. Additional communication channels between users such as chat,
video or voice are also available. Similarly, Yovcheva et al. (2010) describe the
development of a geo-collaborative web-based virtual globe prototype, based on
Google Earth and designed for distributed teams of environmental researchers
working with spatio-temporal data.

Virtual globes are also used in remote sensing as platforms for collecting,
comparing and validating land use/land cover (LULC) data. The main example
is Geo-Wiki23 (Fritz et al. 2009; Fritz et al. 2012), an online Google Earth-
based crowdsourcing platform where volunteers exploit high-resolution imagery to
perform spatial validation of existing LULC maps. A recent paper (See et al. 2015)
offers an overview of the main features of the platform together with examples on
how the crowdsourced data collected through Geo-Wiki has been used to improve
information on LULC. A similar system is VIEW-IT (Virtual Interpretation of
Earth Web-Interface Tool), a crowdsourcing platform based on Google Earth, which
allows users to collect LULC data from high-resolution imagery (Clark and Aide
2011). Another tool designed for experts to assess LULC change and validate global
LULC maps is developed by Bastin et al. (2013). The platform is mainly 2D but
makes also use of Google Earth to increase context capability. Depending on the
area, users can visualize images at different dates using a time slider.

23http://geo-wiki.org

http://geo-wiki.org
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Applications

In contrast to the picture emerging from the literature review outlined in sec-
tion on “Virtual Globes as the New Generation Visualization Platforms”, two
virtual globe-based applications are presented in the following which constitute
promising examples of new generation 3D/4D platforms to explore volunteered
and crowdsourced data. The first, described in section on “PoliCrowd”, provides
a general-purpose collaboration platform for managing observations collected from
mobile devices. A multidimensional viewer of telecommunication data, based on
a high-level platform for scientific data analysis, is then presented in section on
“Telecommunication Data Viewer”.

PoliCrowd

The first application, named PoliCrowd24 (current version 2.0), implements a
multidimensional and multi-thematic collaboration platform based on NASA World
Wind virtual globe. PoliCrowd is a Web-based system able to: (a) allow citizens to
perform field surveys using common mobile devices, compiling and submitting ad
hoc questionnaires together with multimedia contents (images, videos, etc.), which
are registered through the device sensors and georeferenced through the device
positioning services (e.g. the GPS); (b) store and manage field-captured data into
a spatial database and provide Web publication using standard protocols; and (c)
provide a Web-based collaboration platform offering not just a 3D/4D visualization
interface, but also an overall framework allowing users to manage data and create
customized maps.

PoliCrowd is fully built upon existing open source software and is in turn released
as open source. The two main software products exploited for the development are
the Open Data Kit25 (ODK) suite for managing citizen-sensed data, and the World
Wind virtual globe on which the platform is built. After a detailed description of
these components, the system architecture and its main functionalities are presented
in the following.

Open Data Kit (ODK)

The ODK suite is composed of three main modules providing complementary
functions to perform and manage data collection, i.e. ODK Build, ODK Aggregate

24http://geomobile.como.polimi.it/policrowd2.0
25https://opendatakit.org

http://geomobile.como.polimi.it/policrowd2.0
https://opendatakit.org


226 M.A. Brovelli et al.

Fig. 1 Example of ODK Collect form to report cultural POIs

and ODK Collect. ODK Build26 enables design of the form (i.e. the questionnaire)
that users will complete in the field. It is an HTML5 Web application offering
a drag-and-drop interface, which works well for designing simple forms. When
complex forms need to be designed, XLSForm27 can be used instead. The form
is then loaded into ODK Aggregate, which can be deployed on Google App Engine
(enabling users to quickly get running without facing the complexities of setting
up their own scalable Web service) or locally on a Tomcat28 server backed with a
MySQL29 or PostgreSQL30 database. ODK Aggregate is the server-side component
of the ODK suite and it is also responsible for user administration. It provides blank
forms to, and accepts compiled forms from ODK Collect, which is the client-side
component, which runs on Android mobile devices. ODK Collect allows users to
perform point-wise surveys including different data types (text, number, location,
multimedia, barcodes) and works well without a network connection. An example
of ODK Collect form to report cultural Points of Interest (POIs) is shown in Fig. 1.

NASA World Wind Java SDK

Used by space agencies (e.g. the ESA—European Space Agency), local and
national government agencies (e.g. the US FAA—Federal Aviation Administration),
commercial industry and scientific communities, NASA World Wind is based on
open standards and can be configured to load and visualize the most popular spatial
data formats. It is conceived to work with large amounts of data and information, all

26http://build.opendatakit.org
27http://xlsform.org
28http://tomcat.apache.org
29http://www.mysql.com
30http://www.postgresql.org

http://build.opendatakit.org
http://xlsform.org
http://tomcat.apache.org
http://www.mysql.com
http://www.postgresql.org
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of which can be stored on local disks or remote data servers. Many satellite images
are available by default including BlueMarble (BMNG 500 m), i3-Landsat (15 m),
USGS Orthophoto (1 m US only), USGS Urban Area Orthophoto (0.5–0.25 m
selected US cities), and MS Virtual Earth Aerial Imagery, as well as some Digital
Terrain Models (DTMs) including SRTM30Plus (30 arc-sec, 900 m), SRTM3 v2
v4.1 (3 arc-sec, 90 m), ASTER ( 30 m), and USGS NED ( 30 m, 10 m US only).
Both images and DTMs are dynamically served by NASA31 and USGS32 WMSs
(Web Mapping Services). Moreover, it is possible to access any OGC compliant
WMS server and specific servers providing DEMs that can be superimposed onto
the geoid model implemented within the platform. Finally, it is possible to locate on
the globe, and in its surrounding space, both 2D objects (lines, polygons, markers,
callouts and multimedia viewers) and 3D objects built up from geometric primitives
(parallelepipeds, spheres, extruded polygons, etc.). The platform is suitable for any
geospatial application thanks to the possibility of controlling the structure, quality
and accuracy of the surface horizontal and vertical components (by varying the
textures and the DTMs, respectively) and the full three-dimensional component of
the virtual globe (the 2D and 3D objects that can be created for specific application
scenarios).

The openness of World Wind code ensures a complete control of both the
customization and the extensions required for creating the 3D model and all
functionalities needed to interact with the model itself. Moreover, a platform-
independent viewer can be implemented which is directly executable on differ-
ent operating systems and potentially accessible by a simple Web browser. As
mentioned in section on “Virtual Globes as the New Generation Visualization
Platforms”, currently there are two versions of World Wind: the first one, simply
named NASA World Wind, is written in Java and uses the JOGL library33; the
second one, named Web World Wind, is written in HTML5 and JavaScript (JS)
and makes use of WebGL. Both platforms are available as a Software Development
Kit (SDK) and provide the infrastructure to create spatial applications based on
virtual globe technology. Currently the Java version provides a number of advanced
features, which are not yet implemented in the JS version, and for this reason we
chose to use the NASA World Wind Java SDK. Being written in Java, it is both
platform-independent and usable as both a desktop application or accessible by
simple Web browsers as an applet or via Java Web Start (JWS) technology.

System Architecture

A technical overview of the PoliCrowd 2.0 platform is shown in Fig. 2. The platform
consists of two main components: the PoliCrowd client and the PoliCrowd server.

31http://www.nasa.gov
32https://www.usgs.gov
33http://jogamp.org/jogl/www

http://www.nasa.gov
https://www.usgs.gov
http://jogamp.org/jogl/www
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Fig. 2 System architecture of the PoliCrowd 2.0 platform

The former, available as a JWS application, is based on World Wind and developed
by taking advantage of its SDK. It provides a 3D visualization of the available
geospatial contents and interacts with the PoliCrowd server through a Restful Web
Service. The server is deployed on the GlassFish34 J2EE (Java 2 Enterprise Edition)
application server backed with a PostgreSQL relational database to store all of
the data related to the platform (system data and data uploaded by the users).
The PoliCrowd client can connect to and retrieve data from any WMS and ODK
server, thus allowing visualization and interaction on the globe with contents created
through ODK Collect mobile clients.

Overview of Functionalities

After a first prototypal stage in which PoliCrowd was customized for tourism and
cultural topics (Brovelli et al. 2014), the current version, PoliCrowd 2.0, represents
its natural evolution with the purpose of being a completely general-purpose and
multi-thematic social platform. Using a simple and intuitive graphical user interface
(GUI) users can create, populate, customize and share projects, which refer to one
or more specific topics integrated and displayed simultaneously within the same
scenario.

34https://glassfish.java.net

https://glassfish.java.net
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Fig. 3 3D visualization of markers corresponding to POIs collected by users through ODK Collect

The 3D viewer allows users to interact with two kinds of geo-data. First, the
application can connect to any WMS compliant server. A first level of information
is provided by several base layers such as OSM, the aerial orthophotos and satellite
imagery, and the thematic maps made available as standard geoservices by the
geoportals of institutional administrations (e.g. INSPIRE and national geoportals)
or by any other dedicated WMS server specifically chosen for the customization
of the platform. A second level of information is provided by the crowdsourced
data collected by users through the ODK Collect mobile app. More in detail, the
platform has an innovative capability to connect with any ODK server and publish
the related point-wise data through a user-customizable marker-based representation
(see Fig. 3).

The markers are then open to collaborative contribution: any PoliCrowd user can
add comments and upload multimedia contents (images, video and audio files) in
order to enrich and share the information on each POI. When clicking on a POI
marker, the related details collected through ODK Collect are displayed (see Fig. 4)
and a dedicated section provides access to the textual and multimedia contents
(comments, images, audios and videos). All multimedia contents are managed by
the PoliCrowd client: images are displayed into a picture viewer whereas, for videos
and audios, the application relies on a customizable external player depending on
the user’s preference.
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Fig. 4 Examples of data visualization of POIs collected by citizens: bike parking in Osaka city,
Japan (left) and panoramic view on hiking trails in Como city, Italy (right)

POIs visualization is fully customizable thanks to a suitable layer management
interface. The attributes to be displayed can be filtered out and the marker icons can
be customized either by choosing them from a default collection or by uploading
them manually. The application can manage different projects populated with
different WMS and ODK layers. All the projects created by users are publicly
accessible by design in order to promote community participation. Finally, the
introduction of the fourth dimension (time) provides a more in-depth navigation
through the content. The time bar enables temporal filtering of all the POIs just by
picking a given date or setting a range of dates. The same capability is also available
for multimedia contents, which can be independently filtered according to the date
of upload or (if provided) the actual date they were created.

The PoliCrowd functionalities briefly described so far will be presented with
abundance of details in the following.

PoliCrowd can display a wide variety of data types since it can be connected to
any WMS and ODK server available on the Internet. More in detail the ODK API,
which is integrated into the virtual globe Java code, enables the PoliCrowd client
to retrieve all the information required to connect to any ODK Aggregate server,
i.e. the list of available forms and the corresponding submitted data, which are then
visualized on the platform. From a logical perspective, the connection to an ODK
server is treated in the same way as to a standard WMS server: the user has to
select the type of server, enter its URL and then pick up the layer(s) of interest (see
Fig. 5). The only difference is that, while WMS servers provide raster map layers,
ODK servers provide marker layers.

Any server (both WMS and ODK) a user connects to is saved into a persistent
library which is available to all PoliCrowd users in order to facilitate its reuse. Once
users have created customized collections of layers, they can save their projects in
a catalogue which is available for the whole community. The users’ credentials, the
list of available servers and projects, and the projects themselves (i.e. the available
layers and their on/off status, the location and the camera orientation of the point
of view over the globe) are stored in the PostgreSQL database on the PoliCrowd
server.
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Fig. 5 Form to transparently connect to any WMS or ODK server available on the Internet (left)
and form to select the layer(s) published by an ODK server (right)

Fig. 6 Marker icons for bike parking (left) and for environmental POIs (right)

Consistent with its multi-thematic nature, PoliCrowd allows to dynamically
customize marker icons on the platform client-side according to the specific project
the user is working on. Unlike WMS layers, where the graphic layout is predefined
on server side (WMS layer style), the PoliCrowd client provides an intuitive
graphical interface to define the styles for the point-wise marker layers derived from
ODK servers. When adding an ODK layer to a project, users can select the point
attribute to use for styling layer markers among those available, e.g. the type of
point. Automatically, as it happens for the typical styling tools in GIS, all the values
assumed by the markers for the selected attribute are displayed and for each of them,
users can either pick up an icon from a rich library of icons available within the
platform, or they can provide an icon by manually uploading the file (see Fig. 6). In
the same way of servers and projects, styles are also shareable, so that users adding
the same layer in their projects can save time by opting for a ready-made icon set
defined by another user.

The social nature of PoliCrowd allows any user to add comments and multimedia
(images, audios and videos) to any ODK layer. This is possible thanks to a built-in
interface on the client-side available when clicking on a marker. Besides showing
all the information related to that marker, the interface displays the available
multimedia contents and allows users to add new ones (see Fig. 7). PoliCrowd
integrates all these functionalities in the same client-side graphics environment,
thus making visualization and data upload easy and intuitive. Moreover, a dedicated
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Fig. 7 New multimedia contents can be added by users and managed by the platform administrator
using a dedicated Web application

Web application based on the Java Server Faces35 technology was designed and
implemented to facilitate the remote administration of the platform contents,
enabling all the CRUD (create, read, update and delete) basic functions on the
database.

PoliCrowd 2.0 introduces the fourth dimension in data visualization. A temporal
slider available on the bottom side of the interface (see Fig. 7) allows time filtering
of both the ODK marker layers and their multimedia contents. While markers are
filtered according to their submission date (i.e. the date they were created from
ODK Collect), multimedia contents can be filtered either by the date they were
uploaded on the platform or, if available, by the actual date the content was created
(i.e. the picture was taken, the video was shot, the audio was recorded). Users
can optionally add the date of creation, together with a brief description of the
multimedia content, as a metadata during the upload. Time filtering capability makes
PoliCrowd particularly suited for historical projects and, more in general, projects
where temporal information plays a key role.

Any user (authenticated or anonymous) can access, view and explore all the
projects created within the platform and automatically shared with the community.
Each project is maintained by its creator (owner). This means that the metadata
(project name, project description, etc.), the list of layers used (both WMS and
ODK) and the marker styles can be only edited by the project owner. Authenticated
users can create and share new projects by adding WMS and ODK layers, uploading
new POIs through ODK Collect, and adding comments and multimedia contents
to both their own POIs and to preexisting POIs uploaded by other users. The
authorization policies ensure that only the owners of the context (projects, POIs,
comments, and multimedia contents) can perform editing operations on it.

35http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
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Telecommunication Data Viewer

Geo-crowdsourced data can be typically visualized and analyzed in two different
ways. In the first case, each contribution is treated as a single, self-consistent
information and managed as such (e.g. the POIs collected and published in the
PoliCrowd application). In the second case, all contributions are pre-processed in
order to derive thematic maps describing a widespread phenomenon in a global
view. Using this second methodology, starting from data collected by the “citizen
sensors” a spatial distributions of the related variables of interest (social, economic,
environmental, etc.) is modelled through a geographical grid where each cell value
is derived through interpolation functions, sampling and statistical aggregations
(Brovelli and Zamboni 2012).

The netCDF Data Format

One of the most widely used storage formats to handle grid-based data in science
is netCDF (Network Common Data Form), a machine-independent data format
supporting the creation, access and sharing of array-oriented data (Rew et al.
2010). NetCDF is used for storing n-dimensional rectangular structures containing
many kinds of scientific data in various fields of observation (climate, ocean,
atmospheric, pollution, chemistry, medical imaging, etc.). It is a self-describing,
portable, scalable, appendable, shareable and archivable format. In details, a netCDF
file includes information about the data it contains (self-describing); it can be
accessed by computers with different ways of storing integers, characters and
floating-point numbers (portable); a small subset of a large dataset may be accessed
efficiently (scalable); data may be appended to a properly structured netCDF file
without copying the dataset or redefining its structure (appendable); one writer
and multiple readers may simultaneously access the same netCDF file (shareable);
access to all earlier forms of netCDF data will be supported by current and future
versions of the software (archivable).

NetCDF is not only a machine-independent data format for representing data, but
also a set of software interfaces and libraries which support the creation, access and
sharing of scientific data. The netCDF software implements an abstract data type,
which means that all operations to access and manipulate data in a netCDF dataset
must use only the set of functions provided by the interface. The representation
of the data is hidden from applications using the interface, so that the way data
are stored could be changed without affecting existing programs. The physical
representation of netCDF data is designed to be independent of the computer on
which the data were written.
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EST-WA: A Multidimensional Data Viewer

In the open source domain, a number of applications and libraries are available to
visualize and manage netCDF data. Almost all of them rely on a bidimensional
approach to visualize and analyse the data, while the third-dimension information
(e.g. the height of the data above the ground level) is indirectly represented by means
of contour lines, slide sections, graduated colour ramps or numerical values acquired
by querying the geometries shown in the 2D visualization. The fourth dimension
information (i.e. the time) is instead managed by providing a static “snapshot” of the
data at a specific selected point in time. On the opposite EST-WA36 (Environment
Space and Time Web Analyzer) is a tool based on netCDF format able to visualize
spatio-temporal variable distributions (e.g. sea temperature or soil permeability at
different depths, air pollution, temperature, and humidity at different heights) in
a multidimensional interface where both space (the 3D scenario) and time are
simultaneously shown (Brovelli and Zamboni 2014).

In its general architecture written in Java, EST-WA uses the netCDF Java library,
which extends the netCDF core data model and adds functionality implementing
Unidata’s Common Data Model (CDM), an abstract data model designed for
scientific datasets. The Common Data Model has three layers, which are built on
top of each other to add increasingly richer semantics. The “data access layer”
(also known as the syntactic layer) handles data reading and writing; the “coordinate
system layer” identifies the coordinates of the data arrays; and the “scientific feature
type layer” identifies specific types of data such as grids, radial, and point data, and
adds specialized methods for each of them. In detail, the “scientific feature type
layer” adds functionality for data that is common in earth sciences and in particular
provides a GeoGrid and a Grid Coordinate System. The GeoGrid is a specialized
variable that explicitly handles X, Y, Z and time (T) dimensions while the Grid
Coordinate System (on which the GeoGrid is based) provides a location in real
physical space and time for the variables (usually with reference to the Earth). The
Grid Coordinate System used by EST-WA at a minimum has a latitude (Lat) and
longitude (Lon) coordinate axes, and optionally a time coordinate axis (T) and/or a
vertical coordinate axis (Z).

The system is composed of two tools (see Fig. 8). The first one (EST-WA2D)
allows to pre-view and pre-filter netCDF data through a 2D GUI (see Fig. 9 left).
The second one (EST-WA3D) is instead the main module of the application. It
is developed using the NASA World Wind Java SDK and allows visualization
and analysis of data in a multidimensional scenario (see Fig. 9 right). A detailed
description of EST-WA2D and EST-WA3D is provided in the following.

EST-WA2D allows the user to open any netCDF format file and read all of the
data and metadata stored within it. Files can be loaded from local storage (e.g. the
local file system of the computer where the application runs) or from remote Web
servers accessed through the HTTP protocol. The HTTP access is viable thanks to a

36http://geomatica.como.polimi.it/elab/est-wa
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Fig. 8 EST-WA architecture

Fig. 9 EST-WA: the 2D viewer EST-WA2D (left) and the 3D viewer EST-WA3D (right)

feature of netCDF files which makes them accessible over the network by exploiting
a simple Web server allowing for a range of requests for a resource. In this way the
server must not return the data as “chunked” transfer-coding but allows a client to
request only the data of interest.

For each variable stored in the netCDF file, the EST-WA2D GUI displays the
data type, the measurement unit, the description, the rank, and the axes defining the
variable domain. According to the variable type different information is shown. On
each axis the measurement unit, the dimension, the step and the minimum/maximum
values are reported. For each GeoGrid variable, the grid coordinate system infor-
mation (i.e. the corresponding axes) is also given. Selecting each single element
(variable, domain, grid or axis) it is possible to access the second level of metadata
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(attribute) and to get the complete overview of the information stored in the netCDF
file. After the selection of the variable of interest, it is possible to activate the 2D
map pre-viewer (see Fig. 9 left). Besides the usual browsing functionalities (pan,
zoom-in and zoom-out), the dynamic map allows to interact with the content of the
multidimensional structure by filtering data in both the spatial and the time domain.

For each axis (Lat, Lon, Z, and T) the GUI provides two sliders to select the
minimum and maximum values (i.e. the range of the axis) in order to pre-filter
the area of interest and select a spatio-temporal sub-domain. When the cursor of
each slider is moved, the representation of the data is automatically updated in the
viewer providing an immediate visual feedback of the selection. The sub-domain
selection is a very useful feature when the spatio-temporal size of the data stored
in the netCDF file is wide and the region of interest to be visualized is limited to
a specific restricted area. Moreover, this functionality can be used to generate new
netCDF files containing sub-sets of the original one, since EST-WA2D allows to
export the filtering results.

EST-WA3D is a fully multidimensional netCDF file viewer which uses an
innovative “doxel-based” modelling solution specially designed and implemented
inside the platform. By extending the existing NASA World Wind Java classes
to visualize the geometric primitives, new geometric figures were created. The
basic 3D structure of the geometric model used by EST-WA is the voxel, which
represents a cell of a regular grid in the three-dimensional space. The voxel is the
3D generalization of the rectangular pixel used in the 2D visualization and it is
represented as a parallelepiped. The composition of all the geo-referenced voxels
in a regular-grid frame forms the 3D model of the data stored in a netCDF file at
a certain time. Each voxel is displayed with graduated colours (based on a colour
ramp) depending on the value the variable takes at that position (see Fig. 9 right).
When the volume occupied by the whole set of data does not correspond to a full
parallelepiped (e.g. the 3D shape of the water filling an irregular natural basin) the
voxels are not created in correspondence of the grid cells with “missing value” in
order to obtain a full match of data with their representation.

The extension of the 3D static model to a 4D dynamic model, where time is also
considered, was realized implementing a new geometric primitive called dynamic
voxel, or simply doxel. A doxel is a voxel with the replacement of its static value
with an array containing all the values the variable assumes at the different times.
Compared to the static representation of a voxel (having a fixed colour), a doxel is
displayed with different colours depending on the value the variable takes at that
specific position at a certain time (dynamic representation). In order to also analyse
the inner doxels of the multidimensional model, the volume can be sectioned with
planes orthogonal to each other (see Fig. 10). For every axis (latitude, longitude and
height) it is possible to define a minimum and a maximum cutting plane in order to
visualize a slice of the original volume.

The viewer rendering is optimized by partitioning the 3D model into two logic
sub-models: the inner part and the external layer, which is the shell of the model
itself. Taking into account the selected cutting planes, the system sends to the
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Fig. 10 Voxel structure and the cutting planes

Fig. 11 EST-WA3D: sectioned model (left) and section profile graphic (right)

rendering engine only the filtered shell doxels (the shell doxels included in the
domain delimited by the cutting planes) and the doxels which close the volume
at locations corresponding to the cutting planes themselves. Compared to a basic
solution where all the doxels are represented, the performance is greatly improved.
Just to give an example, considering a cube of 100 � 100 � 100 doxels, in the
optimized case only 58,808 values are rendered instead of 1,000,000: the decrease of
computation is equal to 94%. A local caching system finally increases the efficiency
in accessing and handling the data using a separate management of the whole dataset
(static dataset) and the current visible dataset (dynamic dataset) obtained from the
insertion/removal of doxels depending on the cutting planes.

The environment is similar to the default NASA World Wind interface (on
which it is based) but new tools for browsing data in time, analyzing the temporal
evolution of the variable and slicing the data model to see the inner doxels have
been implemented (see Fig. 11). Data can be sectioned along a constant longitude,
latitude or height and, in order to increase the visual analysis of the Z (height)
dimension, a vertical shift and a vertical exaggeration can be applied to the model.
Moreover, a legend with the colour ramp corresponding to the variable values allows
the quantitative analysis of the phenomenon (see Fig. 11 left). The value of a single
voxel at a certain time and location or the values of all the voxels along a profile
are readable thanks to an implemented 2D viewer appearing over the main map (see
Fig. 11 right). Inside this semi-transparent window the graphic of the variable along
the selected profile and the single values are dynamically synchronized with any
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movement of the scene and the consequent displacement of the profile along the 3D
model. The user has full control of the profile, i.e. both translation and rotation in
all directions are possible.

Finally, to completely customize the environment and to improve the spatio-
temporal contextualization of the variable represented, functionalities for accessing
WMS layers are also available. Through a dedicated GUI that can be activated from
the menu bar, users can connect to any OGC compliant WMS server and select
layers to be displayed on the virtual globe as background and/or auxiliary thematic
maps.

Application of EST-WA to Explore Geo-Crowdsourced Data

Geo-crowdsourced data, which are constantly and often unconsciously contributed
by users through wearable sensors, are to all effects comparable to the kinds of
scientific variables mentioned above whose spatio-temporal analysis is suited for
EST-WA exploitation. A specific application is hereafter presented which concerns
citizen-sensed telecommunication data.

These data refer to mobile call data records in Milan, Italy, and were made
available as open data by the Italian Telecom Italia mobile operator in the frame
of the Telecom Italia Big Data Challenge.37 Data have a temporal resolution of
10 min for a total of 2 months (November and December 2013) and a spatial
resolution of 235 m � 235 m for a total of 100 � 100 cells covering Milan city. Five
different phone activities are recorded: incoming and outcoming calls, incoming
and outcoming SMSs (Short Message Services) and Internet connections. In the
case of calls and SMSs, a Call Detail Record (CDR) is generated each time a
user receives/issues a call or receives/sends an SMS. Regarding the Internet, a
CDR is generated each time a user starts or ends a connection or, during the same
connection, when there have been more than 15 min or 5 MB from the last generated
CDR.

The available data, which include about 100M records, are stored in the NoSQL
MongoDB38 database from which, thanks to an ad hoc Python script, netCDF files
can be generated on the fly.

These netCDF files are organized as four-dimensional regular grids, where the
Z component is represented by the day (at most 61 slices corresponding to the
61 days) and the time component is represented by the 10 min interval (at most
144, corresponding to the count of 10 min timeslots in a day). The dimension of
each doxel is therefore 235 m � 235 m � 1 d � 10 min.

The Python script to generate netCDF data is run through a Web application
with a form that users have to fill.39 Referring to time there are two main choices.

37http://theodi.fbk.eu/openbigdata
38https://www.mongodb.org
39http://landcover.como.polimi.it/BigNetCDF
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Fig. 12 EST-WA visualization of SMSs sent in Milan city on December 31, 2013 at 12 pm (left)
and 11 pm (right)

In the first case, users can select either all subsequent days or only Mondays, only
Tuesdays, etc. from a starting date to an ending date; in the second case, users
can select multiple dates from a calendar. Users have then to select the phone
activity they are interested in (calls in, calls out, SMSs in, SMSs out, and Internet
connections), submit the request and receive the file. Once the file has been sent to
the user, it is deleted from the server filesystem to avoid its overload.

Generated netCDF files can be then spatio-temporally explored through the EST-
WA interface. As an example, Fig. 12 shows the visualization of the SMSs out at
two different hours of December 31, 2013: 12 pm (noon) and 11 pm. The colour
ramp varies from blue (lowest counts of SMSs out) to red (highest counts). From
the spatial perspective, the number of SMSs is in both cases higher in Milan city
centre than in the suburbs. From the temporal point of view, the number of SMSs
sent by people clearly shows a significant increase when midnight approaches, as
this is typically the timeslot to send relatives and friends wishes for the new year.
It is worth noting that the use of an intelligent multidimensional geo-viewer like
EST-WA provides a much more meaningful and comprehensive understanding of
the data compared to those achievable with traditional 2D or static 3D solutions.

Conclusions

This chapter has investigated the technological-scientific interaction between multi-
dimensional visualization and the universe of VGI and citizen science. Although
virtual globes applications and volunteered/contributed GI have both appeared
almost a decade ago, their mutual interconnection is still a largely unexplored topic.
Virtual globes have had the merit of democratizing GIS (Butler 2006); however
10 years later they remain strongly under-exploited for a number of scientific needs.

As shown in the literature review, VGI-related exploitation of virtual globes
is often limited to the pure access and visualization of user-produced datasets
(e.g. geotagged photos), with Google Earth—a primarily commercial product—
still being the most popular alternative. User interaction is usually restricted to
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few, simple operations, the amount of accessible data is limited and the use of time
dimension to navigate data is almost absent. Thus, validating what Goodchild et al.
(2012) stated, still in 2016 we recognize how far the Digital Earth idea envisioned
by Gore (1998) is.

In contrast to the current scenario, two advanced applications have been pre-
sented which prove the key role multidimensional applications can play when
dealing with citizen-sensed data. The first application meets the need of exploiting
virtual globes as general-purpose, VGI-based collaboration platforms. Besides
retrieving and displaying user-collected data, the platform allows scientific com-
munities to create and manage their own projects. The second application addresses
the problem of spatio-temporally exploring complex datasets contributed by citizen
sensors. Based on a scientific data format like netCDF, the platform acts as an
intelligent geo-viewer able to easily spot macroscopic phenomena and eventually—
at a more detailed level—even less evident patterns, which are more complex to
study. In contrast to Google Earth, the use of an open source, scientifically oriented
virtual globe like NASA World Wind has allowed to deeply customize and enrich
the applications according to the needs.

The example of telecommunication data presented above shifts the discussion to
the broad theme of big data, which recent literature has shown to be well-connected
to VGI (see e.g. Fischer 2012). Despite statistical and processing techniques
are required to perform full data analytics (e.g. to correlate telecommunication
data to specific weekdays and/or weather/environmental conditions), a thorough
visualization represents the first crucial step when dealing with big data.

Finally, it is worth mentioning the difficulties users sometime experience in
exploiting complex multidimensional applications such as those described. While a
true realization of DE—including robust handling of real-time data streams—would
be desirable and beneficial for many scientific and societal needs, digital divide is
still preventing a large portion of humankind from access and/or real exploitation.
Therefore, there are at least two challenges to face: to reduce the complexity of such
applications on one side and to educate people in using them on the other side. On
both of them we are strongly working.
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