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ABSTRACT
The problem of inception and growth of a damaging-cohesive crack in an elastic bar is considered. It is shown that
the position where the crack actually forms can the obtained from the minimality conditions of an energy functional,
including the bulk energy and the surface energy, while the equilibrium of the system is obtained from the stationarity
conditions. The progressive damage of the cohesive interface is taken into account by means of a step by step procedure.
The finite step solution is also shown to make stationary a functional defined for each step.

1 INTRODUCTION
Cohesive-crack models, pioneered by Barenblatt [1], are commonly used for the simulation of fracture in
quasi-brittle materials. In this area, among various other directions of recent research, we mention here:
(a) development of efficient finite-element formulations such as extended finite elements [2], (b) coupling
between continuum damage modelling and cohesive crack propagation [3] (c) energy characterization and
variational formulations [4]-[9]. The present paper focuses on this last issue, in the line of what proposed
in [5]. The major difference with respect to previous works is the nonholonomic nature of the cohesive
crack model which is explicitly taken into account by means of a step by step procedure. A variational
property of the finite step solution is established and illustrated with reference to a bar, endowed with non-
homogeneous fracture properties, subject to body forces and imposed displacements. The actual location
of crack initiation is also shown to be governed by the minimality of an energy functional.

2 DEFINITION OF THE PROBLEM
A bar constrained at both ends and subjected to a body forceb(x) directed along its axis is considered. The
reference configuration of the bar is represented by the intervalI = [0, L]. In order to account for fractures,
the admissible configurations are assumed to belong to a space of (possibly) discontinuous functionsu
satisfying the boundary conditionsu(0) = 0 andu(L) = η. The set of points whereu is discontinuous,
denoted bySu, is not prescribed a priori and may contain the endpoints of the bar. Incompenetration is
imposed by the constraint[u] ≥ 0. A cohesive damaging model of the type shown in Fig. 1 is assumed for
the opening crack.
In the bulk, the current state of the bar is governed by the following equations, whereε is the longitudinal
strain,σ the axial stress andE the Young’s modulus

ε =
du

dx
compatibility (in the bulk) (1)

dσ

dx
+ b = 0 equilibrium (in the bulk) with non-zero body forces (2)

σ = Eε elastic (bulk) behavior (3)

while for every crack pointz ∈ Su we have

[u] (z) = u+(z)− u−(z) ≥ 0 compatibility at the interface with a crack (4)

σ+ (z) = σ− (z) equilibrium across a crack (5)
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Figure 1: traction - displacement discontinuity law for cohesive damaging crack.

The bar behaves elastically as long as the axial stressσ (x) is below a thresholdp0 (x), which is assumed
to vary along the bar. The damage cumulated in the interface is taken into account by a non-decreasing
internal variableξ (Fig. 1). The maximum tractionp which can be transmitted across the crack, is governed
by a softening functiong (ξ) such thata (x) g (0) = p0 (x) , wherea (x) accounts for the variation of
the resistance along the bar. For increasing opening displacement, the traction decreases following the
softening brancha (x) g (ξ) . For z ∈ Su, the traction-opening displacement cohesive law is expressed by
the following set of relations

{
p = p ([u] , ξ, z) = a (z) g(ξ)

ξ [u] for ξ > 0
p (0, 0, z) ∈ [0, p0 (z)] for ξ = 0

traction-crack opening displacement relation (6)

p− a (z) g (ξ) ≤ 0 (p− a (z) g (ξ)) ξ̇ = 0 ξ̇ ≥ 0, loading-unloading conditions (7)

g (ξ) =
dG (ξ)

dξ
with G (ξ) inelastic potential of internal variableξ (8)

These definitions imply that, for a crack atz ∈ Su

ξ (t, z) = max
τ≤t

[u] (τ, z) (9)

The fracture energy, i.e. the energy necessary to create the discontinuity, is defined as

Gf (x) = lim
[u]→[u]crit

a (x)G ([u]) < ∞ (10)

Note that cohesive models with[u]crit →∞ are also feasible as long asGf (x) remains bounded.

3 FINITE-STEP PROBLEM
In view of the non-reversible nature of the crack evolution, the analysis of the bar response to an assigned
historyη(t), t ∈ [0, T ], of the imposed displacement, requires the definition of a step-by-step time marching
procedure. Let0 = t0 < t1 < . . . < tk = T be a discretization of the time interval with a finite increment
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∆t > 0. The structural responseun+1 at timetn+1 satisfies

εn+1 =
dun+1

dx
σn+1 = Eεn+1

dσn+1

dx
+ b = 0 in the bulk (11)

[u]n+1 (z) = u+
n+1(z)− u−n+1(z) ≥ 0, σ+

n+1(z) = σ−n+1(z) for z ∈ Su (12)

Knowing the configuration at timetn the following stepwise-reversible behavior is assumed for the cohesive
cracks

ξn+1 = ξn + ∆ξ (13)

pn+1 = p
(
[u]n+1 , ξn+1, z

)
= a (z)

g (ξn+1)
ξn+1

[u]n+1 for ξn+1 > 0

traction-crack opening displacement relation (14)

pn+1 − a (z) g (ξn+1) ≤ 0 (pn+1 − a (z) g (ξn+1))∆ξ = 0 ∆ξ ≥ 0
loading-unloading conditions (15)

Note that the above defined finite-step problem can be conceived as resulting from a backward-difference
integration of the incremental problem, while the original (continuous) problem wil be recovered for∆t →
0.
The above defined behavior is reversible in the finite step becauseξ̇ < 0 is allowed as long as a final
nonnegative increment∆ξ of the internal variable is attained. It is therefore possible to define an energy
G̃ ([u] , ξn) associated to the reversible finite-step law

G̃ ([u] , ξn) =

{
g(ξn)
2ξn

[u]2 for [u] ≤ ξn

G ([u])−G (ξn) + ξng(ξn)
2 for [u] ≥ ξn

(16)

For ξn = 0, one hasG̃ ([u] , ξn) = G ([u]) .
The following functional is defined for the current time-step

Uη(u, ξn) =
1
2

∫

I

E

(
du

dx

)2

dx +
∑

z∈Su

a(z)G̃ ([u] (z), ξn(z))−
∫

I

bu dx (17)

LetB(x) be a primitive ofb(x) vanishing in zero. Integrating by parts the body force integral, the functional
Uη(u, ξn) can be rewritten as

Uη(u, ξn) =
∫

I

du

dx

(
1
2
E

du

dx
+ B

)
dx +

∑

z∈Su

(
a(z)G̃ ([u] (z), ξn(z)) + B(z)[u](z)

)
−B(L)η (18)

4 CRACK INITIATION AND OPENING PROBLEMS
The following crack initiation problem is considered. The bar is subjected to an assigned body forceb(x)
whose intensity is such that the strength is not exceeded in any point of the bar. Then a growing positive
displacementη is imposed atx = L until the threshold valueη0 is reached for which, at a positionx = x̄,
the stressσ reaches its limit valuep0(x̄). The value ofη0 depends on the strength of the bar, which is
governed by the functionp0 (x), and on the body forceb(x). For the sake of simplicity we will assume that
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the functionp0(x) + B(x) has a unique minimizer in the intervalI.
Forη → η+

0 , (i.e. for[u] → 0+) andξ ≡ 0, in view of the concavity ofG ([u]), the functionalUη→η+
0 (u, 0)

can be shown to be minimized by a configuration with only one crack activated. We will denote byx = x̄
the position of this crack. The following proposition holds.
Proposition. Starting from an elastic state (ξ ≡ 0), for an assigned valueη → η+

0 of the imposed displace-
ment, the value ofu satisfying the governing equations can be obtained from the stationarity conditions
of Uη→η+

0 (u, 0). The position̄x of the activated crack can be obtained from the minimality conditions of
Uη→η+

0 (u, 0).
The proof of the first part of the proposition follows closely the path of reasoning proposed by Braides, Dal
Maso and Garroni [5].
As for the position of the crack, one can note that in correspondence of the crack initiationG([u]) behaves
like g(0)[u]. Thus the energy (18) can be written as

Uη→η+
0 (u, 0) =

∫

I

du

dx

(
1
2
E

du

dx
+ B

)
dx +

∑

z∈Su

(p0(z) + B(z))[u] (19)

As the elastic energy does not depend on the position of cracks, it is clear that the minimizer will concentrate
the jump[u] in the point where(p0(z) + B(z)) reaches its minimum. Therefore, the minimality condition
imply that the position of the first crack, forη → η0, is given by the solution of the following minimization
problem

min
x∈[0.L]

{p0(x) + B(x)} (20)

The crack opening problem is now considered at timetn for an imposed displacementηn > η0. This time
the crack is assumed to remain fixed in the positionx̄ of the first activation forη = η0. A load step is
considered where the imposed displacement is incremented by a quantity∆η. The functional defined in
(17) is considered forξn > 0. The following proposition holds.
Proposition. For fixed crack position̄x, considering an evolutionary problem, discretized in time steps with
finite increments∆t, the displacementun+1 at timetn + ∆t, solution of the finite-step problem (11)-(15),
is obtained as the (local) minimizer of the energyUη(u, ξn) with the boundary conditionsu(0) = 0 and
u(L) = η(tn + ∆t) andξ freezed atξn.
Note that the incremental problem is explicit with respect to the internal variableξ, therefore this variable
can be updated indepently at the end of the step, whenun+1 is known.

5 APPLICATION TO A BAR IN TENSION WITH CONSTANT AXIAL BODY FORCE
Consider a bar of lengthL = 10 mm and uniform elastic modulusE = 1 MPa, subject to a constant body
forceb = 0.2E/L and a monotonically increasing imposed displacementη (t) . The bar is assumed to have
a fracture strengthp0 (x) = a (x) g (0) varying along the bar witha (x) = 1 + (x− L/2)2 andp0 (L/2) =
0.1E. Denoting byw the displacement discontinuity, a linear cohesive crack model is considered

g(w) =
{

g0(1− 1
wcrit

w) for w ≤ wcrit

0 for w ≥ wcrit

with wcrit = 0.15L. The potentialG(w) is then given by

G(w) =
{

g0(w − 1
2wcrit

w2) for w ≤ wcrit

g0
wcrit

2 for w ≥ wcrit
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Figure 2: (a) energy function forη = η0; (b) crack position.

LetA (η, w) be the set of displacements such thatu(0) = 0, u(L) = η and[u] = w. Assuming a holonomic
process (ξ = 0) and imposing equilibrium in the bulk, one can express the displacements in terms of the
imposedη, the crack openingw and the crack position̄x. Equivalently one can minimizeUη with respect
to u ∈ A (η, w), thus obtaining the functionU(η, w, x̄)

U(η, w, x̄) = min{Uη(u, 0) : u ∈ A (η, w)}
For this example the solutionu(x) can be explicitly computed and the energy function can be obtained

U(η, w, x̄) =
E (η − w)2

2 L
+

b (2wx̄− L (η + w))
2

− b2L3

24E
+

[
1 +

(
x̄− L

2

)2
]

G(w) (21)

Note thatU(η, w, x̄) is differentiable with respect tow andx̄. Local minimizers are found from

∂U
∂w

= − E (η − w)
L

+
b (2 x̄− L )

2
+

[
1 +

(
x̄− L

2

)2
]

g(w) = 0

∂U
∂x̄

= bw + (2x̄− L)G(w) = 0 (22)

The valueη0 of η at crack initiation and the crack position̄x can be obtained by solving (22) forη andx̄
with w = 0. One obtainsη0 = 0.099L andx̄ = 0.49L. Fig. 2a shows the plot ofU as a function of the
crack position and opening displacement forη = η0 (for representation convenience values ofU >0.2 have
been cut in this plot). It should be noted that forη = η0 , x̄ = 0.49L is the position of the point where
the curve representing the stresses along the bar is tangent to the curve representing the fracture strength
p0 (x) , see Fig. 2b.
For fixed crack position̄x = 0.49L, the optimal value of energyU as a function of the imposed displacement
is plotted in Fig. 3a. The red line represents the bulk energy, while the blue line corresponds to the sum of
bulk and surface energy, defined only forη ≥ η0. For η ≥ η0 the minimum is obtained by activating the
crack.
For η > η0 the minimizers of (21) give a position of the crack different fromx̄ = 0.49L which is not
feasible for the real problem. The contour plot ofU for η = 0.14L is shown in Fig. 3b. The optimal value
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Figure 3: (a) energy vs imposed displacement; (b) contour plot of the energy forη = 0.14L.

is for x̄ = 0.482L, w = 0.129; the correct solution marked by a white dot in 3b is obtained minimizingU
with respect tow for x̄ = 0.49L.

ACKNOWLEDGMENTS. This work has been carried out within the context of MIUR-Cofin2003 pro-
gramme “Interfacial damage failure in structural systems: applications to civil engineering and emerging
research fields”.

REFERENCES
[1] J.I. Barenblatt: The mathematical theory of equilibrium cracks in brittle fracture.Advances Appl.

Mech., 7, 55-129, 1962.

[2] S. Mariani, U. Perego: Extended finite element method for quasi-brittle fracture,
Int. J. Num. Meth. Engrg.58 (2003) 103–126

[3] C. Comi, S. Mariani, U. Perego: An extended finite element strategy for the analysis of crack growth in
damaging concrete structures,Proc. ECCOMAS 2004Jyvaskyla, 24-28 July 2004

[4] G. Francfort, J.J. Marigo: Revisiting brittle fracture as an energy minimization problem,
J. Mech. Phys. Solids46 (1998) 1319–1342

[5] A. Braides, G. Dal Maso, A. Garroni: Variational formulation of softening phenomena in fracture me-
chanics: The one-dimensional case,Arch. Ration. Mech. Anal.146(1999) 23–58

[6] G. Maier, C. Comi: Energy properties of solutions to quasi-brittle fracture mechanics problems with
piecewise linear cohesive crack models.in: Continuous damage and fracture, A. Benallal ed.Elsevier
(2000)

[7] G. Del Piero, L. Truskinovsky: Macro- and micro-cracking in one-dimensional elasticity,Inter-
nat. J. Solids Structures38 (2001) 1135–1148

[8] M. Negri: A finite element approximation of the Griffith’s model in fracture mechanics.Numer. Math.
95 (2003) 653–687

[9] M. Angelillo, E. Babilio, A. Fortunato: A computational approach to fracture of brittle solids based on
energy minimization.Preprint Universit̀a di Salerno

6


