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Trajectory tracking control of thrust-vectoringUAVs

Davide Invernizzi a, Marco Lovera a

aPolitecnico di Milano, Department of Aerospace Science and Technology, Via La Masa 34, 20156, Milano

Abstract

In this paper a geometric approach to the trajectory tracking control of Unmanned Aerial Vehicles (UAVs) with thrust
vectoring capabilities is proposed. The control problem is developed within the framework of geometric control theory, yielding
a control law that is independent of any parametrization of the configuration space. The proposed design works seamlessly
when the thrust vectoring capability is limited, by prioritizing position over attitude tracking. The control law guarantees
almost-global asymptotic tracking of a desired full-pose (attitude and position) trajectory that is compatible with the platform
underactuation according to a specific trackability condition. Finally, a numerical example is presented to test the proposed
control law on a tilt-rotor quadcopter UAV. The generality of the control strategy can be exploited for a broad class of UAVs
with thrust vectoring capabilities.
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1 Introduction

The development of Unmanned Aerial Vehicles (UAVs)
with thrust vectoring capabilities has grown significantly
in recent years. These aerial vehicles are endowed with
a propulsion system that can deliver both a net torque
and a force with respect to the aircraft frame, which
makes them end-effector-like devices. Among the differ-
ent technological solutions, several multirotor configu-
rations have shown great potentiality in terms of fast
disturbance rejection and maneuverability [8,4,6,17,14].
Indeed, while the standard coplanar multirotor architec-
ture [1,12,10] combines good performance and a simple
mechanical design, it is inherently underactuated as the
control force can be applied only in a fixed direction of
the aircraft frame. On the contrary, thrust vectoring ve-
hicles overcome this intrinsic maneuverability limitation
and widen the operational range of the conventional sys-
tem. Among the different architectures that have been
developed, it is worth mentioning the fixed-tilted hexa-
copter [14] and the tilt-rotor quadcopter [17].

The trajectory tracking control problem for these aerial
vehicles is challenging for two main reasons: the maneu-
ver may involve large rotational motions and there may
be limitations in the thrust vectoring capability, thus re-
ducing the actual maneuverability. In particular, propul-
sion systems of thrust-vectoring UAVs cannot usually
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deliver thrust in any direction of the aircraft frame [14],
which makes the platform underactuated. These issues
have been addressed explicitly in [6], in which the control
strategy is based on prioritizing position over attitude
tracking to handle the actuation limitation. The result-
ing control law guarantees almost-global tracking (in the
sense of [9]) but requires a sufficiently fast loop for the
stabilization of the angular velocity. Following similar
ideas, [5] tackled the tracking problem for a more gen-
eral class of UAVs with laterally bounded input force.
The approach presented therein includes an optimiza-
tion step to handle the actuation limitation but it guar-
antees only local exponential convergence of the track-
ing errors. Thrust vectoring control techniques have also
been exploited to solve the position tracking problem of
ducted-fan vehicles [13,1,16].

In this work, the trajectory tracking problem for UAVs
with thrust vectoring capabilities is solved directly in
SO(3)×R3, with thrust and torque as inputs. We start
by showing that tracking of a desired full-pose trajec-
tory (position and attitude) is not feasible if the thrust
can be produced only in a cone region around the verti-
cal body axis of the vehicle. However, by relaxing atti-
tude tracking requirements, position tracking can always
be achieved. In particular, a reference attitude, different
from the desired one, is computed by means of a dy-
namic controller such that it is always possible to deliver
the control force required to guarantee position track-
ing. Then, the modified attitude trajectory is used as the
actual reference for the attitude control subsystem. By
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exploiting a geometric PID controller, the modified atti-
tude motion is tracked even in the presence of a constant
disturbance torque. We prove that under a specific track-
ability condition, also the desired attitude motion can
be exactly tracked almost globally. By means of estab-
lished cascade arguments [15,12], we demonstrate that
our solution ensures almost-global asymptotic tracking
(AGAT), which is the strongest result one can obtain on
SO(3)×R3 with continuous time-invariant control laws
[9]. Furthermore, the proposed control law improves the
transient performance, in terms of position overshoot,
with respect to the most common solution in the litera-
ture, as it is shown in a numerical example.

Notations. For A ∈ Rn×n, the minimum and max-
imum eigenvalues are denoted as λm(A) and λM (A),

respectively, and skew(A) := A−AT

2 is the skew-
symmetric part of A. The i-th canonical base in Rn
is ei := [0 · · · 1 · · · 0]T , while the identity element in
Rn×n is In := [e1 · · · en]. Given the vectors a, b we often
denote (a, b) := [aT , bT ]T . Given a bounded function
f : R → Rn, we denote the positive constants fm
and fM as lower and upper bounds of f , respectively,
such that fm ≤ ‖f(t)‖ ≤ fM ∀t ∈ R. The hat map
·̂ : R3 → so (3) is an isomorphism between R3 and
so (3), the space of third order skew-symmetric matri-
ces, such that ω̂y = ω × y, ∀y ∈ R3, where × is the
cross product. The corresponding inverse is the vee map
(·)∨ : so (3) → R3. We will often employ the modi-
fied trace function ΨK(R) := 1

2 tr(K(I3 − R)), where

K = KT ∈ R3×3 is such that tr(K)I3 −K ∈ R3×3
>0 , to

measure attitude errors in SO(3). The time derivative of

ΨK along the flows of Ṙ = Rω̂ is Ψ̇K(R) = eTRω, where

eR := skew(KR−RTK)∨

2 is the left-trivialized derivative
of ΨK . When K has distinct positive eigenvalues, ΨK

is an example of polar Morse function [9].

2 Mathematical modeling

The class of aerial vehicles considered in this work can
be described as rigid bodies subjected to external ac-
tions and with an actuation mechanism that can pro-
duce torque in any direction and thrust in a spherical
sector around the vertical axis of the body frame.

2.1 Dynamical model

The motion of a rigid body is described by the motion of
a body-fixed frame FB = (OB , {b1, b2, b3}) with respect
to an inertial reference frame FI = (OI , {e1, e2, e3}), as
shown in Figure 1 (for the sake of simplicity, we assume
that the inertial frame axes coincide with the canonical
basis ofR3). The configuration of a rigid body is uniquely
and globally defined byG := (R, x) ∈ SO(3)×R3 =:M,
where R := [b1 b2 b3] ∈ SO(3) is the rotation matrix de-
scribing the orientation of FB with respect to FI and

Fig. 1. Reference frames - tilt-rotor quadcopter UAV.

x ∈ R3 is the position vector of the origin OB with re-
spect to OI , resolved in the reference frame FI . The tan-
gent vector to a curve (velocity) at a given configuration
G ∈ M is the pair (ω, v) ∈ TRSO(3) × R3 ' TGM, by
direct identification of R3 with its tangent space TxR3.
The equations of motion of a rigid body moving in a con-
stant gravity field −ge3, actuated by a control wrench
(fc, τc) ∈ R3×R3 and subjected to external disturbances
(fd, τd) ∈ R3 × R3, which include unmodeled dynamics
and aerodynamic effects, are described by the following
system [12]:

ẋ = v (1)

Ṙ = Rω̂ (2)

mv̇ = −mge3 +Rfc + fd (3)

Jω̇ = −ω × Jω + τc + τd, (4)

where m ∈ R>0 and J = JT ∈ R3×3
>0 are the mass and

inertia matrix of the rigid body, respectively. Note that
the control wrench (fc, τc) is defined with components
in the body frame FB .

3 Control problem: trajectory tracking in
SO(3)×R3 under thrust vectoring constraints

The thrust-vectoring limitation of the actuation mecha-
nism are now formally defined. In the following, the con-
trol torque τc is assumed to span R3, i.e., the rotational
dynamics is fully actuated. However, the control force fc
spans only the spherical sector, around the third body
axis b3, defined as:

0 < cos (θM ) ≤ fTc (t)e3
‖fc(t)‖

:= cos(θc(t))

‖fc(t)‖ ≤ fM ∀t ≥ 0. (5)

These assumptions may be reasonable approximations
for UAVs like the tilt-rotor quadcopter in Figure 1 [5].
Let us now consider a smooth desired trajectory t 7→
(Rd(t), xd(t)) =: Gd(t) ∈ M that is assigned as a func-
tion of time and the corresponding tangent vector that
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is given by t 7→ ξd(t) := (vd(t), ωd(t)) ∈ TGd
M, where

ωd(t) = (RTd (t)Ṙd(t))
∨ ∈ R3 is the desired (body) angu-

lar velocity and vd(t) = ẋd(t) ∈ R3 is the desired (iner-
tial) translational velocity. Due to the thrust vectoring
limitation in (5), an arbitrary full-pose trajectory inM
cannot be followed. This can be understood by inspect-
ing the inputs at steady state obtained by inverting the
system dynamics:

fnc (t) := mRTd (t)(v̇d(t) + ge3) (6)

τnc (t) := Jω̇d(t) + ωd(t)× Jωd(t), (7)

in which, for simplicity, we assumed nominal conditions,
i.e., (fd, τd) = (0, 0). Clearly, whereas equation (7) is al-
ways fulfilled for any sufficiently smooth trajectory, the
control force (6) may not be compatible with constraint
(5) for a given desired attitude motion Rd(t) and a given
vector m(v̇d(t)+ge3). As a consequence, the control ob-
jective must be relaxed to deal with the platform un-
deractuation. In particular, since position tracking is of
utmost importance in applications involving aerial vehi-
cles, we will devise a strategy that always ensures posi-
tion tracking and that tries to achieve the attitude track-
ing objective at best. In this regard, equation (6) pro-
vides a useful hint: it is always possible to find a rotation
matrix such that the resulting control force is inside the
cone region defined by (5). Therefore, it is assumed that
the actual attitude reference is at least a twice differen-
tiable curve defined as:

t 7→ Ra(t) ∈ SO(3) ∩ C2, (8)

which will be computed dynamically in order to satisfy
the cone region constraint (5) and to be as close as pos-
sible to the desired attitude t 7→ Rd(t).

4 Control law design

In this section we propose a control law that ensures uni-
form global asymptotic tracking (UGAT) for the posi-
tion dynamics described by equations (1), (3) under the
constraint (5). Furthermore, we show that, when the de-
sired full-pose trajectory satisfies a specific trackability
condition, the desired attitude motion can be tracked as
well from almost-all initial conditions in TSO(3).

4.1 Position subsystem

First we consider the position dynamics and assume fd =
0 for control design purposes, under the assumption that
its contribution is mild in the flight regimes of interest.
One can follow the approach in [6] to account for this
term; nonetheless, we will verify our solution by taking
fd into account. By assuming the dynamics in (1), (3),
the configuration errors for the position and velocity are
defined in the inertial frame as

ex := x− xd, ev := v − vd. (9)

fc
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Fig. 2. Spherical sector and control force definition.

By introducing the attitude error Re := RTaR, we pro-
pose the following control force:

fc := c(Re)R
T
a f

d
c , (10)

where

fdc := K(ex, ev) +m (v̇d + ge3) (11)

and Ki(ex, ev) := −σMoi

(
evi + kxiσMii

(exi + evi)
)
,

i = 1, 2, 3, is a nested saturation stabilizer, in which
σM : R→ R denotes a properly selected twice differen-
tiable version of the standard saturation function and
Moi , Mii ∈ R>0 are suitably chosen saturation levels
[15]. Notice that fdc is the control force, with compo-
nents defined in the inertial frame, required to track
the position trajectory. The function c : SO(3)→ R is a
scaling factor with the following properties:

lim
Re→I3

c(Re) = 1, 0 < c(Re) ≤ cM , ∀Re ∈ SO(3)

(12)
where cM is a strictly positive scalar. A possible selection

is c(Re) :=
`−(1−cos(eT3 Ree3))

` with ` > 2, which satisfies
the properties in (12) with cM = 1. With respect to the
standard choice c(Re) = 1, our expression scales down
the control force when the attitude error is large and
therefore reduces the position overshoot (see Section 6.2
for further details about c(Re)). The closed-loop position
error dynamics is conveniently written by adding and
subtracting the term fdc in equation (9) to get:

ėx = ev (13)

mėv = K(ex, ev) + ∆R(Re, Ra)fdc (ex, ev, v̇d(t)) (14)

where ∆R(Re, Ra) := c(Re)RaReR
T
a − I3 weighs the

mismatch between the desired control force fdc and the
one actually delivered in the inertial frame, i.e., Rfc.
Therefore, the position error subsystem is a double inte-
grator perturbed by a term dependent on tracking errors
and, in particular, that is vanishing for Re → I3.

4.2 Reference attitude computation

This section presents the strategy to compute the refer-
ence attitude motion, described by the time evolution of
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Fig. 3. Third relative axis br3 and its planar component b⊥r3 .

the rotation matrix Ra, to deal with the platform under-
actuation. Building on the ideas developed in Section 3,
we will exploit the fact that it is always possible to find a
set of attitude configurations Ra that makes fc compati-
ble with constraint (5). As this set is not a singleton, one
can try to select a reference attitude as close as possible
to the desired one. Differently from the static planning
of [5], our strategy is based on a dynamic computation
of the reference attitude motion that tracks t 7→ Rd(t) as
long as the control force satisfies constraint (5). There-
fore, Ra will depend both on terms related to position
errors and on terms related to the desired trajectory. A
convenient choice is to decompose the reference rotation
matrix Ra by exploiting the group operation in SO (3)
as follows:

Ra := RcRr (15)

where Rr is a relative rotation matrix, whose role will
be addressed in the next section (4.2.1), and Rc is a
rotation matrix defined following standard strategies.
For instance, a possible selection is [10]:

Rc :=
[
bc1 bc2 bc3

]
bc3 :=

fdc
‖fdc ‖

, bc2 :=
bc3 × bd
‖bc3 × bd‖

, bc1 := bc2 × bc3 , (16)

in which bd(t) = [ cos(ψd(t)) sin(ψd(t)) 0 ]
T

and ψd(t) is the
desired yaw angle (which may be extracted from Rd(t)).
The definition of the base orientation (16) becomes in-
determinate in the degenerate cases when ‖fdc ‖ = 0
and bc3 is parallel to bd [10]. Next, we propose a so-
lution such that these conditions can be avoided al-
together. Let us assume that the lower bound on the
third component of fdc in (11) is greater than zero, i.e.,
fdm3

:= m inft≥0 |v̇d3(t)+g| > 0. Then, by inspecting the

expression of fdc , if one selects KM3
= Mo3 < fdm3

, it is

easily proved that ‖fdc (t)‖ ≥ |fdc3(t)| ≥ fdm3
−KM3 > 0.

Note that ‖bc3×bd‖ does not vanish either, because bd(t)
belongs the horizontal plane (e1, e2) and the third com-
ponent of bc3(t) is different from zero ∀t ≥ 0.

4.2.1 Relative attitude

The idea behind the decomposition of the reference at-
titude in (15) is that Rr ∈ SO(3) can be exploited as an

additional degree of freedom to try to track the desired
attitude motion t 7→ Rd(t) while satisfying constraint
(5). We address these issues separately, by first consid-
ering the thrust vectoring constraint. As Rr ∈ SO(3),
it can be generated, dynamically, by applying an input
ω̂r ∈ so(3) as follows:

Ṙr = ω̂rRr. (17)

Notice that the rotation matrix Rr := [br1 br2 br3 ] has
components with respect to the frameFc defined by (16).

Cone region constraint handling

The following proposition confirms that by properly
computing Ra(t), the control force will be kept inside
the cone defined by the spherical sector constraint (5).

Proposition 1 Consider the unit vectors bc3 := Rce3
(16) and ba3 := Rae3. If cos(θa) := bTc3ba3 is kept larger
than cos(θM ) > 0 ∀t ≥ 0 then, the spherical sector con-
straint in equation (5) is satisfied.

PROOF. By substituting the definition of the control
force (10) in equation (5), we get:

cos(θc) =
eT3 fc
‖fc‖

=
c(Re)e

T
3 R

T
a f

d
c

‖c(Re)RTa fdc ‖
= bTa3bc3 = cos(θa).

(18)
Thanks to this equivalence, the spherical sector con-
straint is satisfied as long as cos(θa) ≥ cos(θM ) (See Fig-
ure 2 for a visual interpretation).

Furthermore, with the decomposition (15) in place, con-
straint (5) can be satisfied by keeping the cosine of the
relative angle θr (Figure 3) greater than cos(θM ). Indeed,
considering Proposition 1, we have cos(θc) = cos(θa),
and the following equality holds ∀t ≥ 0:

cos(θa) = bTc3Rae3 = bTc3RcRre3 = eT3 br3 =: cos(θr).
(19)

To keep cos(θr) ≥ cos(θM ), we propose the following
expression for the angular velocity input ωr:

ωr := br3 × ProjG(br3 , ω̄r × br3) + (ω̄Tr br3)br3 , (20)

where ω̄r ∈ R3 and ProjG : S2×R3 → R3 is a sufficiently
smooth projection operator that removes the radial com-
ponent of the angular velocity in the plane defined by
bc1 , bc2 , so that the axis br3 will never leave the cone asso-
ciated to the spherical sector (5) (while keeping br3 ∈ S2,
see Appendix A.1 for details). Basically, the planar com-

ponents of b⊥r3 := [ br31 br32 ]
T

are kept within a circle
of radius δ := sin(θM ). According to equation (20), the
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component of ω̄r along br3 is preserved, whereas the pla-

nar component of ḃr3 , i.e., ḃ⊥r3 := ((I3 − br3bTr3)ω̄r)
⊥ is

modified only when br3 is trying to leave the cone as-
sociated to (5). The projection operator starts working
when

‖b⊥r3‖ ∈
(

δ√
1+ε

, δ
]
∧ (ḃ⊥r3)T b⊥r3 > 0, (21)

where ε ∈ (0, 1) is a design parameter, enabling a smooth
transition towards the bound δ. Hence, the br3 axis is
kept inside the cone defined by the angle θM around bc3
and, by referring to (19), it is possible to infer that

cos(θc(t)) = cos(θr(t)) ≥ cos(θM ) ∀t ≥ 0. (22)

As a consequence, if br3 is inside the cone described by
(5) at initial time, it will never leave it: for instance, it
is enough to choose Rr(0) = I3.

Desired attitude tracking

By applying a generic input t 7→ ω̄r(t) ∈ R3 ∩ C1
through equation (20), we obtain a reference attitude
motion Ra(t) whose third axis never gets out from a
cone around bc3 with an angle θM , thus satisfying equa-
tion (5). However, Ra(t) will be different from Rd(t).

Clearly, if cos(θd(t)) ≥ cos(θM ), where cos(θd) :=
eT3 f

n
c

‖fn
c ‖

with fnc defined in equation (6), then, the desired at-
titude is trackable and we would like the reference
attitude Ra to converge to Rd. To tackle this problem,
ω̄r can be used as an intermediate control variable of
a tracking problem on SO (3), in which we define the
reference attitude error as R̄e := RaR

T
d . By selecting

ω̄r := Rrωd − ωc −RrRTd ēR, (23)

where ēR is the left-trivialized derivative of a polar Morse
function Ψa(R̄e), the reference attitude Ra follows the
desired attitude Rd, whenever this is feasible. Finally,
the modified attitude reference and its time derivatives,
which are required to compute the control torque as
shown in Section 4.3, are given by:

Ṙa = Raω̂a (24)

ωa = RTr (ωc + ωr) (25)

ω̇a = −RTr ω̂rωc +RTr (ω̇c + ω̇r) (26)

where ωc and ω̇c are the the angular velocity and acceler-
ation of the frame FC := (OB , {bc1 , bc2 , bc3}). They can
be obtained by taking the first and second time deriva-
tives of Rc(t):

ωc := (RTc Ṙc)
∨, ω̇c := (RTc R̈c − ω̂2

c )∨, (27)

which is possible when assuming t 7→ xd(t) ∈ R3 ∩ C4
and t 7→ Rd(t) ∈ SO(3) ∩ C2.
Before going on, the following result is instrumental in

proving that the desired attitude can be tracked under
a specific condition.

Proposition 2 Consider equations (17), (20) for a
given relative angular velocity t 7→ ω̄r(t) ∈ R3 and
a smooth geometric 1 projection operator ProjG :
S2 × R3 → R3 with the properties in (21). When

‖b⊥r3‖ ≤
δ√
1+ε

or when (ḃ⊥r3)T b⊥r3 ≤ 0, it holds that
ωr = ω̄r.

PROOF. According to (21), ProjG(br3 , ω̄r × br3) =
ω̄r × br3 whenever b⊥r3 is strictly inside the circle

with radius δ√
1+ε

or (ḃ⊥r3)T b⊥r3 ≤ 0 where ḃ⊥r3 :=

((I3 − br3bTr3)ω̄r)
⊥. In this condition, this implies that

equation (20) reads:

ωr = br3 × ProjG(br3 , ω̄r × br3) + (ω̄Tr br3)br3

= br3 × (ω̄r × br3) + (ω̄Tr br3)br3 := ω̄r. (28)

4.3 Attitude subsystem

The objective of the control torque is to track the mod-
ified reference Ra(t). By referring to the attitude errors

Re := RTaR, eω := ω −RTe ωa, (29)

we can employ the geometric PID law proposed in [11]:

τc := −kReR − kωeω − kIωI + τf (Re, eω, ωd) (30)

ω̇I := − 1
2 (êωωI − J−1(ĴωIeω + ĴeωωI)) + J−1eR,

where eR is the left-trivialized derivative of a polar Morse
function ΨR (see the Notations section) whilst τf is a
feedforward torque to obtain an autonomous closed-loop
(see [11] for more details).

5 Main result

In this section we present the main contribution of this
work. With respect to [6], we provide an explicit track-
ability condition for the desired trajectory. Then, un-
der this condition, we prove that the proposed control
law guarantees AGAT while accounting for the spherical
sector constraint (5). When the trackability condition
is not satisfied, only UGAT for the position subsystem
is achieved while the attitude R(t) converges uniformly
to Ra(t) from almost all initial conditions in TSO(3).
The proof hinges on the analysis of the cascaded con-
nection between the attitude and position error subsys-
tems, which is realized through the term ∆Rfdc in equa-
tion(14).

1 See Appendix A.1 for the definition of the geometric pro-
jection operator
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Theorem 3 Consider the system described by equations
(1)-(4), subjected to constraint (5), with the control laws
(10), (30), assume a constant disturbance torque τd ∈
L∞, fd = 0 and a reference attitude motion defined by
(24), (25) complemented with (20), (23). Given a desired
attitude motion t 7→ Rd(t) ∈ SO(3) ∩ C2 and a position
trajectory t 7→ xd(t) ∈ R3 ∩ C4 with a bounded accel-
eration profile v̇d(·) ∈ L∞ such that supt≥0 ‖m(v̇d(t) +
ge3)‖ < fM and m inft≥0 |v̇d3(t)− g| > 0, if there exists
t̄ ≥ 0 for which

eT3 f
n
c (t)

‖fnc (t)‖
≥ cos(θ̄M ) ∀t ≥ t̄ ≥ 0, (31)

where fnc is defined in equation (6), θ̄M := arcsin
(

δ√
1+ε

)
,

δ := sin(θM ) and ε ∈ (0, 1) is a design parameter,
then, there exist control gains kxi , kR, kω, kI and sat-
uration levels Moi , Mii (i = 1, 2, 3) such that the tra-
jectory t 7→ (Re(t), eω(t), ex(t), ev(t), Ra(t)) converges
to (I3, 0, 0, 0, Rd(t)) with basin of attraction containing
almost-all (Re, eω) ∈ TSO(3), (ex, ev) ∈ R3 × R3 and
Ra ∈ {R ∈ SO(3) : eT3 R

TRc(0)e3 ≥ cos(θM )}.

PROOF. The proof is based on the small signal ISS
property of the nested saturation stabilizer used in
equation (11) and on the selection of the scaling fac-
tor c(Re) satisfying (12). Combining the equations of
motion and the control laws with the definition of the
errors, the closed-loop dynamics is a cascade intercon-
nection in which the (autonomous) attitude error sub-
system perturbs the position error dynamics through
the interconnection term ∆Rfdc . Then, the output of
the position error subsystem is used to generate the
reference attitude Ra(t) according to equations (24)-
(25) and (20), (23), which is evolving on the compact
manifold SO(3) and it is well defined by selecting
Mo3 < m inft≥0 |v̇d3(t) + g| (see the reasoning below
equation (16)). By applying the control torque in equa-
tion (30) to the attitude dynamics (2),(4), the equi-
librium point (Re, eω) = (I3, 0) is AGAS for any suffi-
ciently smooth reference, as the one computed according
to (24), (25) and (20),(23), following the results in [11].
It can be shown, taking similar steps as in the proof of
[7, Prop. 4], that the interconnection term is bounded
as ‖∆R (Re, Ra) fdc ‖ ≤ γ (ΨkRI3 (Re)) f

d
cM where γ(·)

is a class-K∞ function and fdcM :=
√

3
∑3
i=1Moi +

supt≥0 ‖m(v̇d + ge3)‖. By considering (10) and (12),

we get ‖fc‖ = |c(Re)|‖RTa fdc ‖ ≤ cMf
d
cM and the bound

on the control force magnitude in (5) is satisfied by se-

lecting
√

3
∑3
i=1Moi ≤ fM − supt≥0 ‖m(v̇d(t) + ge3)‖,

which is possible thanks to the assumption that fM >
supt≥0 ‖m(v̇d(t) + ge3)‖. By considering Proposition 1,

eT3 R
T
a (0)Rc(0)e3 = cos(θa(0)) = cos(θc(0)) ≥ cos(θM ),

and the constraint (5) is satisfied at t = 0. Thanks to the
properties of the projection operator in equation (22),

cos(θc(t)) ≥ cos(θM )∀t ≥ 0 and constraint (5) is satis-
fied. Then, we can invoke arguments similar to the proof
of [12, Prop. 4] or [15, Thm. 7.4] to conclude the stabil-
ity of the cascade and the UGAS of the zero equilibrium
of the position error dynamics. We can prove that, un-
der the trackability condition (31), Ra(t) → Rd(t), by
showing that there is a time instant starting from which
the time derivative of the Lyapunov function Ψa(R̄e),
from which ēR in equation (23) is computed, is strictly
negative definite along the trajectories of the system.
By direct computation, one gets:

Ψ̇a(R̄e) =
(
RTd ēR

)T
(ωa − ωd)

=
(
RTd ēR

)T (
RTr (ωc + ωr)− ωd

)
. (32)

When considering equation (31) and the uniform conver-
gence of the tracking error (Re, eω, ex, ev) to (I3, 0, 0, 0),
there will be a time t̃ ≥ 0 starting from which the pro-
jection operator is not working, namely ProjG(br3 , ω̄r ×
br3) = ω̄r × br3 , because at least one of the conditions
in (21) is satisfied. In this case, through Proposition
2, ωr = ω̄r and, by substituting the definition (23) of

ω̄r in equation (32), Ψ̇a(R̄e) = −‖ēR‖2 ∀t ≥ t̃ and
Ra(t)→ Rd(t).

6 Numerical results

In this section two simulation examples are presented to
demonstrate the effectiveness of the proposed controller,
when applied to a tilt-rotor quadcopter UAV.
This platform (Figure 1) is an aerial vehicle equipped
with four propellers that can be tilted independently.
It has an over-actuated configuration with eight con-
trol inputs (four angular velocities ωri and four angles
αi, i = 1, 2, 3, 4) that can be exploited to apply the
required control wrench (fc, τc) according to equation
(10) and (30). In particular, the mixer map that relates
the actual inputs and the control wrench is invertible
as shown in [7]. The simulation model is a multi-body
system with nine rigid bodies, developed in the Mod-
elica modeling language, augmented to include the dy-
namics of the tilting servo-actuators (third-order mod-
els) and of the motor/propeller groups (first-order mod-
els) to increase the reliability of the simulation. Further-
more, body-drag and induced-drag forces are accounted
for as well as the aerodynamic damping torque, follow-
ing [2]. Specifically, we consider τd := Daω, where Da =
−diag(0.046, 0.046, 0.019), and a simplified model of the

disturbance force, i.e., fd := −cd‖v‖v−
∑4
i=1 cI

√
Ti(vi−

(vTi ui)ui), in which cd = 0.01, cI = 0.1 are the body
and induced drag coefficients, respectively, vi is the ve-
locity of the hub of the i-th rotor, ui is the unit vector
describing the current orientation of the i-th propeller
axis and Ti is the thrust delivered by the i-th rotor. A

constant torque disturbance τd = [ 0.03 0.03 0.03 ]
T

Nm is
also included to model the effect of unbalanced rotors.
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For the sake of conciseness, only the nominal inertial
values used for control tuning are reported: the UAV
inertia matrix is J = diag (0.0074, 0.0074, 0.05) kgm2

while its mass is m = 1.9kg. The maximum tilt-angle
θM is set to 30◦, which defines the admissible cone re-
gion according to (5). The selected controller gains are
kR = 1.7, kω = 0.5 kI = 0.01, kx = {10, 10, 10}, ` = 2.1
and Ψa := Ψ2kRI3(R̄e), ΨR := ΨI3(Re). The param-
eter of the projection operator is set to ε = 0.05 and
the saturation levels to Lii = 4.5N, Loi = 17N, Mii =
5N, Moi = 18N, for i = 1, 2, 3, according to the defini-
tion of the saturation function in [15, Pag. 129]. In this
way, we ensure that the control force is bounded and its
magnitude never vanishes.

6.1 Eight-shaped trajectory tracking

We consider an eight-shaped trajectory, xd(t) :=[
sin(2ωpt)

3−cos(2ωpt)
2 cos(ωpt)

3−cos(2ωpt)
1

]T
m, ωp = 2π

8 rads−1, and a

rotational maneuverRd(t) := [ td(t) nd(t) bd ] exp(θd(t)ê1)

where td(t) = vd(t)
‖vd(t)‖ is the tangent vector to the curve

xd(t), bd = [ 0 0 1 ]
T

and nd(t) = td(t) × bd. The desired
attitude corresponds to a roll motion around the axis
td, with the profile θd(t) made of two constant segments
of 25◦ and 15◦, connected by smooth curves, as shown
in Figure 5. Notice that the required attitude motion is
close to the angle θM = 30◦ which defines the cone re-
gion in (5). The desired trajectory (dotted line) is shown
in the small box in Figure 4, together with the actual
path followed by the UAV (solid line) for three complete
rounds, starting from a misplaced hovering condition at

x(0) = [ 1.1 0 1 ]
T

m. Figure 4 confirms that the position
error is bounded. The attitude tracking performance
is illustrated in Figure 5, where the inclination angle
of the vehicle θv := arccos(bT3 e3) and the desired angle
θd(t) are shown together with the angle θc(t) between
the control force fc and the third-body axis b3. It is
clear that even in the presence of unmodeled dynamics,
the spherical sector constraint (5) is satisfied. In partic-
ular, the projection operator starts working during the
most demanding phase of the attitude maneuver when
the desired attitude is not tracked exactly in order to
guarantee position tracking: as expected, the position
tracking performance is not deteriorated. Note that
from Theorem 3, when the desired attitude is trackable,
the desired attitude is tracked exactly (up to the effects
of unmodeled disturbances).

6.2 Large attitude error recovery

We consider now the case of an attitude recovery ma-
neuver in order to show the benefit that can be gained
by exploiting the scaling factor c(Re) introduced in the
control force (10). When the attitude error is large, the
control force fc delivered according to (10) is directed
along a direction that is pushing the UAV away from the

desired trajectory (to account for (5)) and, with the se-
lection c(Re) = 1, it may have a large magnitude to com-
pensate for gravity, desired acceleration and position er-
rors. Indeed, to handle the platform underactuation, the
control force fc is necessarily delivered inside the spher-
ical sector and cannot instantaneously be set equal to
the desired control force fdc defined in (11). Therefore,
in this condition, it is convenient to scale the magnitude
of fc while waiting for the attitude error decrease. To
highlight this, we consider the case of a quadcopter be-
ing dropped with the reference plane perpendicular to

the ground: x(0) = [ 0 0 1 ]
T

m, v(0) = [ 0.5 0 0 ]
T

ms−1

and R(0) = exp
(
π
2 ê2
)
, ω(0) = [ 0 0 0 ]

T
rads−1. The set-

point is the hovering condition at x(0) = [ 0 0 1 ]
T

m. At
the initial time, the desired force fdc (0) is almost directed
along e3; however, due to constraint (5), the control force
(10) is delivered inside a cone around b3, which is aligned
with e2 at the initial time. Clearly, in this condition,
the inevitable position overshoot depends on ‖fc‖ =
c(Re)‖fdc ‖. In this simulation we compare the perfor-

mance of our solution, i.e., c(Re) :=
`−(1−cos(eT3 Ree3))

` ,
with the standard choice c(Re) = 1 [6,12]. It is worth re-
marking that the approach in [10] cannot be tested since
it would result in ‖fc‖ = 0 N. Note that at the initial
time our approach provides c(Re(0)) ≈ 0.5. With re-
spect to the previous simulation, kx = {15, 15, 15} and
kI = 0.05. Figure 6 shows that the percentage difference
of overshoot in the position tracking is reduced of about
20%.
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Fig. 4. (A) Position tracking error - ex.

7 Conclusions

In this paper, the problem of designing a control law for
UAVs with thrust vectoring capabilities has been ad-
dressed. Geometric control theory has been exploited
to develop a control law which guarantees AGAT on
SO(3) × R3 when the desired motion is trackable, even
in the presence of actuation constraints. Specifically, the
total control force is kept within a spherical sector de-
fined by the maximum tilt-angle and deliverable thrust
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of the propulsive system. This is obtained by relaxing
the attitude tracking objective: a reference attitude is
computed as the output of a controller that tries to track
the desired attitude motion while keeping into account
the thrust vectoring limitation. Numerical simulations
have been performed to test the control law.
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A Appendix

A.1 Geometric projection operator

To keep t 7→ br3(t) in S2, it is possible to define
ProjG : S2 × R3 → R3 as follows: the projection op-
erator Proj(y, ẏ) : Rn × Rn → Rn proposed in [3]

is used for the planar components of br3 , i.e., ḃ⊥r3 :=

Proj⊥G(br3 , ω̄r × br3) := Proj(b⊥r3 , (ω̄r × br3)⊥), then, the
dynamics of the out-of-plane component is assigned as

ḃr33 := ProjG3
(br3 , ω̄r × br3) := −

br31
ḃr31

+br32
ḃr32√

1−b2r31
−b2r32

.
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