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Rational components of Hilbert schemes

Paolo Lella∗ Margherita Roggero∗

Abstract

The Gröbner stratum of a monomial ideal j is an affine variety that parameterizes the
family of all ideals having j as initial ideal (with respect to a fixed term ordering). The
Gröbner strata can be equipped in a natural way with a structure of homogeneous variety
and are in a close connection with Hilbert schemes of subschemes in the projective space
Pn. Using properties of the Gröbner strata we prove some sufficient conditions for the ra-
tionality of components of Hilbnp(z). We show for instance that all the smooth, irreducible
components in Hilbnp(z) (or in its support) and the Reeves and Stillman component HRS

are rational. We also obtain sufficient conditions for isomorphisms between strata cor-
responding to pairs of ideals defining a same subscheme, that can strongly improve an
explicit computation of their equations.

1 Introduction

The aim of the present paper is to investigate effective methods to study the Hilbert scheme

of subschemes in the projective space Pn, both on the theoretical and the computational

point of view, using Gröbner basis tools. Several authors have been working in this direction

during last years (for instance [3, 21]), but our motivations mainly refer to some ideas and

hints contained in the paper [19] by Notari and Spreafico. In order to get a stratification of

Hilbnp(z), they introduce some affine varieties St(j) (here called Gröbner strata) parameterizing

families of ideals in k[X0, . . . ,Xn] having the same initial ideal j with respect to a fixed term

ordering on the monomials. When only homogeneous ideals in k[X0, . . . ,Xn] are concerned,

we write Sth(j). The ideal defining a Gröbner stratum springs out from a procedure based on

Buchberger’s algorithm, but involves a reduction with respect to a set of polynomials which

is not a Gröbner basis.

It is not difficult to realize that the support of St(j) only depends on the initial data (the

term ordering, the ideal j, etc.), but one cannot be beforehand sure that different choices in

the reduction steps always lead to the same ideal. In other words it is not clear if Gröbner

strata are scheme-theoretically well defined. This is a crucial point that is underlined for

instance in [21, Section 3]. In fact, if anyone wants to deduce properties of an Hilbert scheme

using a Gröbner stratum, it is necessary to consider carefully the non-reduced structures,

because Hilbnp(z) can have non-reduced components (see [12, 14, 18]). A first achievement in

this paper is the following result (see Theorem 3.6):

Theorem A. The ideal defining St(j) does not depend on the reduction choices.
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In fact we exhibit an equivalent, but intrinsic definition for the ideal of St(j), which by

the way also allows a great simplification in the procedure for an explicit computation of this

ideal.

A meaningful property that all Gröbner strata enjoy is that they are homogeneous with

respect to some non-standard grading. Homogeneous varieties are of a very special type:

for instance they can be isomorphically embedded in the Zariski tangent space at the origin,

which is of course the smallest affine space in which such an embedding can be done. Therefore

a smooth homogeneous variety has to be isomorphic to an affine space; in fact, the variety

has the same dimension as the space in which it can be embedded. Moreover one can obtain

directly the ideal of St(j) in the “minimal embedding” in the Zariski tangent space, through

a preliminary detection of a maximal set of “eliminable variables” (we briefly resume this

method in § 4). This is a second key point in our work, because one of the main difficulties

usually met studying Gröbner strata (and even more Hilbert schemes) is due to the huge

number of variables that their equations involve, even in very simple cases. Besides the

obvious computational gain, we would like to underline the interesting theoretical outcome

of this method: most of our proofs are obtained just using the minimal embedding.

A second useful tool that can simplify the computation of equations defining a stratum

is given in Theorem 4.7. Though the strata corresponding to ideals that define a same

subscheme are in general non-isomorphic, however we show that two of them give rise to

isomorphic strata when they satisfy suitable sufficient condition, so that we can equivalently

take into consideration the most convenient one.

Theorem B. Let j be monomial ideal in k[X0, . . . ,Xn] which is saturated and Borel-fixed

w.r.t. the order on the set of variables X0 ≻ X1 ≻ · · · ≻ Xn.

i) For every m, there is a set of eliminable variables of the ideal defining Sth(j>m), that

contains all variables except at most the ones appearing in polynomials F such that

LT(F ) = XαX
m−|α|
0 , where Xα is a minimal generator of j.

ii) If Xn−1 does not appear in any monomial of degree m + 1 in the monomial basis of j,

then Sth(j>m−1) ≃ Sth(j>m).

iii) Especially, if s is the maximal degree of monomials in the monomial basis of j containing

Xn−1, then Sth(j>s−1) ≃ Sth(j>m) for every m ≥ s.

In § 5 and § 6 we investigate more closely the natural connection between the Gröbner

stratum Sth(j) and the Hilbert scheme Hilbnp(z), where p(z) is the Hilbert polynomial of

k[X0, . . . ,Xn]/j. As for every ideal i whose initial ideal is j, the modules k[X0, . . . ,Xn]/i and

k[X0, . . . ,Xn]/j share the same Hilbert function, there is an obvious set-theoretic inclusion

Sth(j) ⊆ Hilb
n
p(z). However it is not a simple task to understand if this inclusion is an

algebraic embedding or not. The paper [19] deals with the same question, but mainly concerns

Gröbner strata of saturated ideals with respect to the term ordering DegRevLex: note that

every subscheme Z in Pn can be defined by the saturated ideal I(Z). In this paper we prefer

to consider a slightly different approach, modeled on the classical construction of the Hilbert

schemes (see for instance [1, 11]). For every Z ∈ Hilbnp(z) we consider the ideal I(Z)>r, where

r is the Gotzmann number of p(z). As r is the worst Castelnuovo-Mumford regularity for

all Z ∈ Hilbnp(z), the Gröbner strata (with respect to any term ordering) of monomial ideals

generated in degree r cover Hilbnp(z).
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Moreover, the subset of Hilbnp(z) corresponding to Sth(j>r) always contains the one cor-

responding to Sth(j) and the inclusion can be strict, because points in Sth(j) correspond to

ideals defining subschemes in Pn with the same Hilbert function as the subscheme Z = V(j),

while being in Sth(j>r) only requires the same Hilbert polynomial. An interesting example of

this type is that of the lexicographic saturated ideal L such that k[X0, . . . ,Xn]/L has Hilbert

polynomial p(z) and whose regularity is indeed the Gotzmann number r of p(z): in § 7 we

show that Sth(L>r) is isomorphic to an open subset of the Reeves and Stillman component

HRS of Hilbnp(z), while in general Sth(L) corresponds to a locally closed subscheme of lower

dimension (see [22, Remark 4.8]).

The main reason of our setting is contained in Theorem 6.3. Let p(z) be any admissible

Hilbert polynomial in Pn with Gotzmann number r and let ≺ be a fixed term ordering on

monomials of k[X0, . . . ,Xn]. Following the classical construction, we consider Hilbnp(z) as a

subscheme of a projective space through the Plücker embedding of the grassmannian G(t,M),

where M = dimk(k[X0, . . . ,Xn]r) and t = M − p(r). The simple remark that the Plücker

coordinates correspond to sets of t distinct monomials of degree r (that we can write in

decreasing order with respect to ≺), allows us to get a lexicographic total order on them. If

j0 is a monomial ideal generated in degree r such that k[X0, . . . ,Xn]/j0 has Hilbert polynomial

p(z) with Gotzmann number r, then we show that Sth(j0) is the locally closed subscheme of

Hilbnp(z) given by the conditions that the Plücker coordinate corresponding to the monomial

basis of j0 does not vanish and the bigger ones vanish.

As a consequence we are able to prove that every irreducible and reduced component of

Hilbnp(z) (or of its support) has an open subset which is a homogeneous affine variety (with

respect to a non-standard grading). Especially, if j is generated by the t largest degree r

monomials (we call it a (r,≺)-segment ideal), then Sth(j) is naturally isomorphic to an open

subset of Hilbnp(z). Therefore we can easily deduce a few interesting properties of rationality

for the components of Hilbert schemes (see Theorem 6.3 iii), Corollary 6.9, Corollary 6.10,

Corollary 7.1):

Theorem C. Let H be an irreducible component of Hilbnp(z).

• If H is smooth, then it is rational. The same holds for its support SuppH.

• If H contains a smooth point which corresponds to a (r,≺)-segment ideal (where ≺ is

any term ordering), then H is rational. The same holds for SuppH.

• The Reeves and Stillman component HRS of Hilbnp(z) is rational.

The last item can be obtained as a direct consequence of the previous one, because the

lexicographic saturated ideal L corresponds to a smooth point in HRS , as proved by Reeves

and Stillman in [20], and L>r is a (r, Lex)-segment ideal. However, we can also get a new

proof of this fact, not applying the quoted result by Reeves and Stillman, but proving that

Sth(L>r) is isomorphic to an affine space using our method based on the minimal embedding

(see Theorem 7.3).

In § 8 we present a pseudo-code description of the procedures based on our results, that

can be implemented using one of the several softwares for symbolic computation. With

such a procedure we are able to write equations for some Gröbner strata corresponding to

the Hilbert scheme Hilb34z. In this way we find a computational confirmation of the results

obtained by Gotzmann in [9], namely thatHilb34z has two components of dimensions 23 and 16
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respectively and also some improvements. In fact, we also show that both components of that

Hilbert scheme are rational (because each of them contains a smooth point corresponding to

a segment ideal), they have transversal intersection (studied using a third segment ideal) and

finally that the forth segment ideal allowed by the Hilbert polynomial p(z) = 4z is singular

point whose stratum has dimension 23 and embedding dimension 27.

The paper is organized as follows. § 2 contains some general notation.

In § 3, we take up the construction of Gröbner strata made in [22] and prove that they

are well defined (Theorem 3.6).

In § 4 we discuss the main properties of Gröbner strata as homogeneous varieties with

respect to a non-standard grading and we obtain some useful criterion in order to know

when Borel-fixed monomial ideals with the same saturation define the same Gröbner stratum

(Theorem 4.7).

In § 5, we focus our attention on ideals generated in degree r, where r is the Gotzmann

number of their Hilbert polynomials, and prove that their Gröbner strata can be defined by

minors of suitable matrices (Proposition 5.5).

§ 6 represents the heart of the work. We show that there is a close connection between

the above quoted matrices defining Gröbner strata and those appearing in the classical con-

struction of Hilbert schemes and obtain as a consequence the main results of the paper about

rational components (Theorem 6.3 iii)).

Finally, in § 7, we prove the rationality of the Reeves-Stillman component HRS of Hilbnp(z)
using our method, based on the minimal embedding and in § 8 we apply this same method

in order to perform some explicit computations about Hilb34z.

2 Notation

Throughout the paper, we will consider the following general notation.

1. During the construction of Gröbner strata, we work on a field k of any characteristic,

whereas when we study the Hilbert scheme, we will suppose that k is algebraically

closed.

2. k[X0, . . . ,Xn] is the polynomial ring in the set of variables X0, . . . ,Xn that we will often

denote by the compact notation X, so that k[X] := k[X0, . . . ,Xn]; we will denote by

Xα the generic monomial in k[X], where α represents a multi-index (α0, . . . , αn), that

is Xα := Xα0

0 · · ·X
αn
n . j will be a monomial ideal in k[X] with basis {Xγ1 , . . . ,Xγt}

and Syz(j) its k[X]-module of syzygies.

Xα | Xγ means that Xα divides Xγ , that is there exists a monomial Xβ such that

Xα ·Xβ = Xγ . If such monomial does not exist, we will write Xα ∤ Xγ .

≺ will be a fixed term ordering on the set TX of monomials in k[X] and we always

assume that X0 ≻ · · · ≻ Xn. As the term order ≺ is fixed, we often omit to indicate

it. Given a monomial Xα, we refer with min(Xα) as the smallest variable dividing the

monomial, that is min(Xα) = min{Xi s.t. Xi | X
α}. We will denote also by ≺ its

extension to the multiplicative group of Laurent monomials TX and the corresponding

total ordering on Zn+1 given by α ≺ β ⇔ Xα ≺ Xβ.

For every polynomial F in k[X] (or k[X,C], k[C]), LT(F ) is its leading term with respect

to the fixed term ordering; in the same way, if a is an ideal, LT(a) is its initial ideal.
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3. We will introduce a second set of variables Ciα that we will denote with C. So k[X,C]

will be the polynomial ring in the variables X and C and TX,C the corresponding set

of monomials. The term ordering on TX,C will be induced by the term ordering on TX

and it will be an elimination ordering of the variables X that will coincide with ≺ on

TX : so we will denote by the same symbol ≺ also this term orderings on TX,C and its

restriction to TC .

4. Let G be any polynomial in k[C,X]. An X-monomial of G is a monomial of TX that

appears in G considered as a polynomial in the variables X with coefficients in the ring

k[C]; the X-coefficients of G are the elements of k[C] that are coefficients of an X-

monomial. Note that the X-coefficients are polynomials, but not necessary monomials.

5. Given any subscheme Z in Pn, we will denote by SuppZ its support and by I(Z) the

saturated ideal in k[X] that defines Z. Given any ideal a, we will denote by V(a) the

affine scheme Spec (k[X]/a).

6. Hilbnp(z) will denote the Hilbert scheme parameterizing all subschemes Z in Pn with

Hilbert polynomial p(z). r will be the Gotzmann number of p(z), that is the worst

Castelnuovo-Mumford regularity among subschemes parameterized by Hilbnp(z). When

we write that an ideal i ⊂ k[X] belongs to Hilbnp(z), we will mean that i is generated in

degree r and that the Hilbert polynomial of Proj k[X]/i is p(z). By abuse of notation

we will say that any such ideal i has Hilbert polynomial p(z) referring to the Hilbert

polynomial of the quotient, even if the real Hilbert polynomial of i is
(

z+n
n

)

− p(z).

3 The ideal of a Gröbner Stratum

Now we introduce the Gröbner strata and prove some properties, generalizing definitions and

results of the paper [22].

Definition 3.1. The tail of Xγ with respect to j (and to the fixed term ordering ≺) is the

set of monomials:

T≺
γ =

{

Xα ∈ TX

∣

∣ Xα ≺ Xγ , Xα /∈ j
}

(3.1)

Every ideal i such that LT(i) = j = (Xγ1 , . . . ,Xγt) has a reduced Gröbner basis of the

type {f1, . . . , ft} where:

fi = Xγi +
∑

Xα∈T≺
γi

ciαX
α (3.2)

and ciα ∈ k, ciα = 0 except finitely many of them. It is very natural to parameterize the

family of all the ideals i by the coefficients ciα; in this way it corresponds to a subset of kT
≺

,

where T≺ = T≺
γ1
× · · · × T≺

γt .

In many interesting cases, T≺
γi

are finite sets and so kT
≺

is an affine space: this happens

for instance if j is a zero-dimensional ideal or if ≺ is a suitable term ordering; in other cases,

for instance when only homogeneous ideals are concerned, T≺ can be infinite, but we can

restrict our interest to a suitable finite subset. The following definition extends and includes

all the previous cases.
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Definition 3.2. Let us fix T = {T1, . . . , Tt} where Ti is a finite subset of the tail of Xγi with

respect to j. We will denote by St(j, T ) the family of all ideals i in k[X] such that LT(i) = j

and whose reduced Gröbner basis f1, . . . , ft is of the type:

fi = Xγi +
∑

Xα∈Ti

ciαX
α. (3.3)

Moreover we will use the following special notation:

i) St(j), if Ti = T≺
γi

(of course only if T≺
γi

are finite sets): St(j) parameterizes all the ideals

i such that LT(i) = j.

ii) Sth(j), if Ti is the subset of T≺
γi

of the monomials with the same degree as Xγi : Sth(j)

parameterizes all the homogeneous ideals i such that LT(i) = j.

Remark 3.3. It will be clear later that the term ordering affects the construction of a

Gröbner stratum only because it states which monomials can belong to the tails; in fact two

different term orderings giving the same tails will lead to the same Gröbner strata.

Every ideal i in the family St(j, T ) is uniquely determined by a point in the affine space AN

(N =
∑

i |Ti|) where we fix coordinates Ciα corresponding to the coefficients ciα that appear

in (3.3). The subset of AN corresponding to St(j, T ) turns out to be a closed algebraic set.

More precisely, we will see how it can be endowed in a very natural way with a structure

of affine subscheme, possibly reducible or non reduced, that is we will see that it can be

obtained as the subscheme of AN defined by an ideal h(j, T ) in k[C], where C is the set of

variables Ciα.

In the following, we refer to the terminology introduced in Notation 4 for what concerns

the polynomials in k[X,C].

Definition 3.4. We will denote by h(j, T ) and L(j, T ) respectively any ideal in k[C] that can

be obtained in the following way.

• Let B = {F1, . . . , Ft} be the set of polynomials in k[X,C] given by:

Fi = Xγi +
∑

Xα∈Ti

CiαX
α. (3.4)

• Consider any term order in k[X,C] which is an elimination order for the variables X

and that coincides with ≺ for monomials in TX ; there will be no confusion if we denote

it by the same symbol ≺. With respect to such a term order, the leading term of Fi is

Xγi .

• Fix the subset P of {(i, j) | 1 6 i < j 6 m} corresponding to any set of generators for

Syz(j);

• For every (i, j) ∈ P , let Rij be a complete reduction of the S-polynomial S(Fi, Fj) with

respect to B.

• For every (i, j) ∈ P , let Mij be a complete reduction of S(Fi, Fj) with respect to j.
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• h(j, T ) is the ideal in k[C] generated by the X-coefficients of the polynomials Rij ,

(i, j) ∈ P .

• L(j, T ) is the k-vector space in 〈C〉 generated by the X-coefficients of Mij , (i, j) ∈ P .

It is almost evident, that the definition of h(j, T ) is nothing else than Buchberger’s char-

acterization of Gröbner basis if we think to the Ciα’s as constant in k instead of variables.

In fact the variables C do not appear in the leading terms of Fi and so their specialization

in k commutes with reduction with respect to B. Thus (. . . , ciα, . . . ) is a closed point in the

support of V(h(j, T )) in AN if and only if it corresponds to polynomials f1, . . . , fm in k[X]

that are a Gröbner basis. Then the support of V(h(j, T )) is uniquely defined; however a priori

the ideal h(i, T ) could depend on the choices we perform computing it, that is on the choice

of the set P of generators for Syz(j) and on the choice of a reduction for the S-polynomials

S(Fi, Fj) with respect to B (which in general is not uniquely determined).

Thanks again to Buchberger’s criterion, we can prove that in fact h(j, T ) only depends on

j, T and of course ≺ because it can be defined in an equivalent intrinsic way.

Proposition 3.5. Let j ⊆ k[X], B = {F1, . . . , Ft} ⊂ k[X,C] and ≺ be as above and consider

an ideal a in k[C] with Gröbner basis A. The following are equivalent:

i) B ∪A is a Gröbner basis in k[X,C];

ii) a contains the X-coefficients of all the polynomials in the ideal (F1, . . . , Ft)k[X,C] that

are reduced modulo j;

iii) a contains all the X-coefficients of every complete reduction of S(Fi, Fj) with respect to

B for every i, j;

iv) a contains all the X-coefficients of some (even partial) reduction with respect to B of

S(Fi, Fj) for every i, j;

v) a contains all the X-coefficients of some (even partial) reduction with respect to B of

S(Fi, Fj), for every (i, j) corresponding to a set of generators of Syz(j).

Proof. i) ⇒ ii): let G a polynomial in (F1, . . . , Ft)k[X,C] which is reduced modulo j. By

hypothesis, G must be reducible to 0 through B ∪A, so that the next step of reduction have

to be performed just using A. But any step of reduction through A does not change the

X-monomials and only modifies the X-coefficients; then G
A
−→ 0, that is every X-coefficient

in G can be reduced to 0 using A: this shows that all the X-coefficients in G belong to a.

ii)⇒ iii), iii)⇒ iv) and iv)⇒ v) are obvious.

v) ⇒ i): we can check that B ∪ A is a Gröbner basis using the refined Buchberger

criterion (see for instance [4, Theorem 9, pag. 104]). If A = {a1, . . . , ar}, a set of generators

for Syz(Xγ1 , . . . ,Xγt , LT(a1), . . . , LT(ar)) can be obtained as the union of a set of generators

for Syz(Xγ1 , . . . ,Xγt), a set of generators for Syz(LT(a1), . . . , LT(ar)) and the obvious syzygies

of (Xγi , LT(aj)). Then:

• S(ai, aj)
B∪A
−→ 0, since A is a Gröbner basis and A ⊆ B ∪ A;

• S(ai, Fj)
B∪A
−→ 0, since the leading terms of ai and Fj are coprime and ai, Fj ∈ B ∪ A;

7



• S(Fi, Fj)
B∪A
−→ 0 in at least one way, by hypothesis.

There are many ideals a fulfilling the equivalent conditions of Proposition 3.5: for instance

we can consider the irrelevant maximal ideal in k[C] or any ideal obtained accordingly with

condition iv. Moreover, if a satisfies those conditions and a′ ⊃ a, then also a′ does, and if the

ideals al satisfy the conditions, then also their intersection
⋂

al does. As a consequence of

these remarks we obtain the proof of the uniqueness of the ideal h(j, T ) given by Definition

3.4.

Theorem 3.6. Let j and T as above. Then:

i) h(j, T ) is uniquely defined; in fact h(j, T ) =
⋂

a, a satisfying the equivalent conditions of

Proposition 3.5

ii) L(j, T ) is uniquely defined.

Proof. i): h is one of the ideals a, because it satisfies condition v); on the other hand, if a

satisfies condition iii), then clearly a ⊇ h.

For ii) it is sufficient to observe that the generators for L(i, T ) are the degree 1 homoge-

neous components (here “homogeneous” is related to the usual grading of k[C] that is the

Z-grading with variables of degree 1) of the generators of h(i, T ) given in its construction

(Definition 3.4).

By abuse of notation we will denote by the same symbol St(j, T ) the family of ideals and

the subscheme in AN given by the ideal h(i, T ). Note that h(i, T ) is not always a prime ideal

and so St(j, T ) is not necessarily irreducible nor reduced, as the following trivial example

shows.

Example 3.7. Let j = (x2, xy) ⊂ k[x, y] and ≺ be any term ordering. Let us choose

T =
{

Tx2 = ∅, Txy = {y}
}

and construct the ideal of the Gröbner stratum St(j, T ) according

to Definition 3.4:

{F1 = x2, F2 = xy + Cy}, S12 = yF1 − xF2 = −Cxy
{F1,F2}
−→ R12 = −Cxy + CF2 = C2y.

Then h(j, T ) = (C2) that is St(j, T ) is a double point in the affine space A1.

4 Gröbner strata are homogeneous varieties

In this section we will see how every Gröbner stratum St(j, T ) is in a very natural way

homogeneous with respect to a suitable non-standard grading on k[C], so that we can apply

the nice properties typical of this kind of schemes and especially those obtained in [22] and

in [8].

For the meaning of j, k[X], {Xγ1 , . . . ,Xγt} and ≺ we refer to Notation 2 and for k[X,C],

{F1, . . . , Ft}, St(j, T ), h(i, T ) to the previous section.

First of all, we recall the definitions and properties that we will use more often.

Definition 4.1. We will consider k[X,C] and k[C] as graded ring over the totally ordered

group (Zn+1,+,≺) with grading λ given by λ(Xα) = α and λ(Ciα) = γi − α.

8



As we will use also the usual grading over Z where all the variables have degree 1, we

will always write explicitly the symbol λ when the above defined grading is concerned (so,

λ-degree l with l ∈ Zn+1, λ-homogeneous of degree l etc.) and leave the simple terms when

the usual grading is involved (so, degree r with r ∈ Z, homogeneous of degree r etc.).

Proposition 4.2. (See [22, Lemma 2.8])

i) The grading λ is positive.

ii) h(j, T ) is a λ-homogeneous ideal.

Proof. i) Let us observe that all the variables have λ-degree higher than that of the constant

1. In fact λ(Xi) ≻ λ(1) because ≺ is a term ordering and λ(Ciα) ≻ λ(1) because, Xγi ≻ Xα

by definition of tails. As well known, this condition is equivalent to the positivity of the

grading (see [15, Chapter 4]).

ii) We observe that λ on TC is the restriction of the grading on TX,C . Every monomial that

appears in Fi is of the type CiαX
α and so its λ-degree is λ(CiαX

α) = λ(Ciα) + λ(Xα) = γi.

Thus all the polynomials Fi are λ-homogeneous and then also the S-polynomials S(Fi, Fj)

and their reductions are λ-homogeneous. Finally, the X-coefficients in any λ-homogeneous

polynomial (which are polynomials in k[C]) are λ-homogeneous.

We now recall some properties of L(j, T ) (see also [22, Proposition 2.4] and [8, Theorem

3.2]).

Proposition 4.3. The linear space V(L(j, T )) can be naturally identified with the Zariski

tangent space to St(j, T ) at the origin.

If C ′′ ⊂ C is any subset of ed := dimV(L(j, T )) variables such that L(j, T )⊕〈C ′′〉 = 〈C〉,

then h(j, T ) ∩ k[C ′′] defines a λ-homogeneous subvariety in Aed isomorphic to St(h, T ).

We may summarize the previous result saying that St(h, T ) can be embedded in its Zariski

tangent space at the origin. This explains the following terminology.

Definition 4.4. The number ed is the embedding dimension of St(j, T ). The complement

C ′ := C \ C ′′ is a maximal set of eliminable variables for h(j, T ).

Corollary 4.5. In the above notation, the following statements are equivalent:

1. St(j, T ) ≃ Aed ;

2. St(j, T ) is smooth;

3. the origin is a smooth point for St(j, T );

4. ed 6 dimSt(j, T ).

Note that in general a maximal set of eliminable variables (and so its complementary) is

not uniquely determined. However, if Ciα ∈ L(j, T ), then Ciα belongs to any set of eliminable

variables; on the other hand, if Ciα does not appear in any element of L(j, T ), then Ciα does

not belong to any set of eliminable variables.

There is an easy criterion that allows us to decide if a variable is eliminable or not.

9



Criterion 4.6. Let LT(Fi) = Xγi , LT(Fj) = Xγj and let Ciβ be a variable appearing in the

tail of Fi. Using the reduction with respect to j of a λ-homogeneous polynomial XδFi−XηFj

we can see that:

i) if Xδ+β /∈ j and Xδ+β−η is not a monomial that appears in Fj , then Ciβ ∈ L(j, T );

ii) if Xδ+β /∈ j and Xβ′

= Xδ+β−η is a monomial that appears in Fj , then Ciβ − Cjβ′ ∈

L(j, T )

Moreover if Ciβ−Cjβ′ ∈ L(j, T ), then every maximal set of eliminable variables must contain

at least either one of them.

In most cases the number N = |C| is very big and h(j, T ) needs a lot of generators so

that finding it explicitly is a very heavy computation. On the contrary L(j, T ) is very fast to

compute and so we can easily obtain a set of eliminable variables C ′; a forgoing knowledge of

C ′ allows a simpler computation of the ideal h(j, T ) ∩ k[C \C ′] that gives St(j, T ) embedded

in the affine space of minimal dimension Aed .

Furthermore, in many interesting cases we can greatly bring down the number of involved

variables thanks to another kind of argument.

Theorem 4.7. Let j ⊂ k[X0, . . . ,Xn] be a Borel-fixed saturated monomial ideal with basis B,

m any integer and hm := h(j>m) the ideal of Sth(j>m) as in Definition 3.4.

i) There is a set of eliminable variables for hm that contains all variables except at most the

ones appearing in polynomials Fi whose leading term is either Xγ ∈ B≥m or XαX
m−|α|
n ,

where Xα ∈ B<m.

ii) Sth(j>m−1) is a closed subscheme of Sth(j>m). More precisely Sth(j>m−1) ≃ Sth(j>m, T )

where T contains the complete tail of a monomial in the basis of j>m if it is not divided

by Xn, and a tail containing only monomials divided by Xn otherwise.

iii) If Xn−1 does not appear in any monomial of degree m + 1 in the monomial basis of j,

then Sth(j>m−1) ≃ Sth(j>m).

iv) If Xn−1 appears in N monomials of degree m + 1 in the monomial basis of j, then

edSth(j>m) > ed Sth(j>m−1) +NM , where M is the number of monomials of the basis

of j of degree smaller than m+ 1.

v) Sth(j>m−1) 6≃ Sth(j>m) if and only if Xn−1 appears in monomials of degree m+1 in the

monomial basis of j and j>m−1 6= j>m.

vi) If s is the maximal degree of a monomial divided by Xn−1 in the monomial basis of j,

then Sth(j>s−1) ≃ Sth(j>m) for every m > s.

Proof. i) Let us consider any monomial Xη in the monomial basis of j>m which does not

belong to B>m and such it that could be written as Xη = XαXǫ where Xα is a minimal

generator of j of degree d < m and Xǫ is a monomial of degree m − d, Xǫ 6= Xm−d
n . Then

among the polynomials Fi there are:

F = XαXm−d
n +

∑

CβX
β ,

F ′ = Xα+ε +
∑

C ′
δX

δ .

10



We have to prove that all the variables C ′ that appear in F ′ can be eliminated.

The S-polynomial of F and F ′ is:

S(F,F ′) = Xp
nF

′ −Xε′F =
∑

C ′
δX

δXp
n −

∑

CβX
β+ε′ .

No monomial XδXp
n in the first summand belongs to j>m because Xδ /∈ j and j is saturated

and Borel-fixed. Thus, the linear part of the coefficient of XδXp
n in the reduction of this

S-polynomial will be either C ′
δ or C ′

δ −Cβ . Then C ′ is a set of eliminable variables for j>m.

ii) The first part of this statement is a special case of general facts proved in [11, §3].

We directly prove the second part (which implies the first one). Here we denote by Xα

and Xγ the monomials in the basis of j>m−1 of degree m− 1 and ≥ m respectively, and we

set:

Gα := Xα +
∑

CαδX
δ

Gγ := Xγ +
∑

CγηX
η

where Xδ varies among all monomials of degree m− 1 in the tail of Xα and Xη among those

of the same degree as Xγ in its tail. Applying the procedure described in Definition 3.4 on

the set of polynomials G we define Sth(j>m−1) by an ideal h ⊂ k[C].

The basis of j>m is made by monomials of the following three types:

• monomials Xγ of degree ≥ m, that also belong to the basis of j>m−1;

• monomials XαXn such that Xα is any monomial of degree m− 1 in the basis of j>m−1;

• monomials XαXi of degree m such that Xα is as above and min(Xα) ≥ Xi 6= Xn.

We set:

Fαn := XαXn +
∑

CαδX
δXn

Fαi := XαXi +
∑

C ′
αiτX

τ |τ | = m Xτ ≺ XαXi

Fγ := Xγ +
∑

CγηX
η

Note that we use the same names for some of the coefficients that appears in polynomials F

and G, so that Fαn = XnGα and Fγ = Gγ . Applying the procedure described in Definition

3.4 on the set of polynomials F we obtain an ideal h′ ⊂ k[C,C ′] defining Sth(j>m, T ).

Thanks to i) we know that C ′ is a set of eliminable variables for h′ and so Sth(j>m, T ) is

also defined by h = h′ ∩ k[C]. The statement follows once we show that h = h.

In order to eliminate the variables C ′ we consider every monomial XαXi = LM(Fαi) and

reduce it using the polynomials G. In this way we obtain a polynomial Hαi ∈ (G)k[X,C] such

that XαXi+Hαi is completely reduced w.r.t. j. Then also XαXiXn+HαiXn+
∑

C ′
αiτX

τXn

(i.e. FαiXn+HαiXn) is reduced modulo j and moreover it belongs to (F )k[X,C,C ′] because

XnG ⊆ (F )k[X,C,C ′]. Its X-coefficients belong to h′, because the ideal h′ is generated by the

X-coefficient of the polynomials in (F )k[X,C,C ′]) that are reduced modulo jm−1 or modulo j,

which is the same (Proposition 3.5 ii and Theorem 3.6). The X-coefficients of FαiXn+HαiXn

are also the X-coefficients of Fαi +Hαi, and are precisely the set of polynomials of the type

11



C ′
αiτ−φαiτ (C) that allow us to eliminate the variables C ′. So the elimination of C ′ is obtained

simply putting C ′
αiτ = φαiτ (C). In this way Fαi becomes −Hαi that belongs to (G)k[X,C].

The ideal h, obtained from h′ eliminating C ′, can also be obtained first eliminating

C ′ and after taking X-coefficients, because the procedure of eliminating C ′ and that of

taking X-coefficients commute. So h is generated by the X-coefficients of polynomials in

(XnGα,−Hαi, Gγ)k[X,C] that are reduced modulo j.

Hence h ⊆ h because (XnGα,−Hαi, Gγ)k[X,C] ⊂ (G)k[X,C].

On the other hand, Xn(G)k[X,C] = (XnGα,XnGγ)k[X,C] ⊂ (XnGα, Gγ)k[X,C]. More-

over two polynomials Q and XnQ have the same X-coefficients and either one is reduced

modulo j if and only the other is. Hence we obtain the opposite inclusion h ⊆ h and conclude.

iii) We use ii) and prove that in the present hypothesis, Sth(j>m) ≃ Sth(j>m, T ), where

T is defined as in ii). Following Definition 3.4, we obtain the ideal hm of Sth(j>m) using:

F ′′
αn := XαXn +

∑

CαδX
δXn +

∑

C ′′
ασX

σ , Xn ∤ Xσ

Fαi := XαXi +
∑

C ′
αiτX

τ

Fγ := Xγ +
∑

CγηX
η = Gγ .

Note that Fαi and Fγ are as in ii), but all the degree m monomials of the tail of XnX
α

appear in F ′′
αn, and not only those divided by Xn.

For every monomial Xα of degree m − 1 in the basis of jm−1, let us consider the S-

polynomial:

S(F ′′
αn, Fαn−1) =

∑

CαδX
δXn−1Xn +

∑

C ′′
ασX

σXn−1 −
∑

C ′
αiτX

τXn.

By our hypothesis no monomial appearing in it belongs to jm. In fact XσXn−1 ∈ j if and only

if it is a minimal generator of j, which is excluded by hypothesis because its degree is m+1,

or it is of the type XαXa with Xα minimal generator of jm and Xa = min(XσXn−1) = Xn−1,

while Xσ /∈ jm. Then S(F ′′
αn, Fαn−1) is already reduced with respect to jm and so its X-

coefficients belong to hm. Especially, as both XδXn−1Xn and XτXn are multiple of Xn,

while XσXn−1 is not, the coefficient of XσXn−1 is simply C ′′
ασ so that each C ′′

ασ belongs

to hm. Hence we can eliminate all the variables C ′′, just putting them equal to 0. In this

way F ′′
αn becomes Fαn as in (4.7) and Sth(j>m) ≃ Sth(j>m, T ), where T is as in ii), and we

conclude because Sth(j>m, T ) ≃ Sth(j>m−1).

iv) By ii), we know that edSth(j>m) > edSth(j>m, T ) = Sth(j>m−1), where the tails

defined in T contain only monomials divided by Xn. Let us now consider a monomial Xα

among the generators of j of degree smaller than m+ 1 and a generator Xγ of degree m+ 1

divided by Xn−1. Computing the stratum Sth(j>m), in the tail of XαX
m−|α|
n there is the

monomial Xβ = Xγ/Xn−1 not belonging to T . Let us call D the coefficient of Xβ , that is

F = XαXm−|α|
n + . . . +DXβ + . . . .

Thinking about the syzygies of the ideal j, it is easy to see that in any S-polynomial, F is

surely multiplied by a monomial Xδ divided at least by one variable Xi, i < n. Therefore in

every S-polynomial the monomial XβXδ = (XβXi)X
δ′ belongs to j because of the Borel-fixed

hypothesis, so that it can be reduced. Finally there is no equation involving the variable D, so

it is free and it cannot be eliminated. Repeating the reasoning for the M minimal generators

12



of degree smaller than m+ 1 and for the N generators divided by Xn−1 of degree m+ 1, we

obtain the thesis.

v) straightforward applying iv). vi) straightforward applying iii).

With the following examples, we want to underline again the not so crucial role played

by term ordering in this construction (Example 4.8) and we want to show (Example 4.9

and Example 4.10) that the estimate of growth of the embedding dimension of the stratum

introduced in Theorem 4.7 iv) is a lower bound.

Example 4.8. Let us consider the ideals i = (X0,X
2
1 ,X1X2) and j = i>2 = (X2

0 ,X0X1,

X0X2,X0X3,X
2
1 ,X1X2) in the ring k[X0,X1,X2,X3] and the strata of the ideal j according

to two different term orderings: Sth(j, Lex) and Sth(j, DegRevLex). In the first case there are

at first 24 new variables C, whereas in the second case they are 23, so we may guess that the

family of the ideals with initial ideal j w.r.t. Lex could be different from the family of the

ideals with initial ideal j w.r.t. DegRevLex.

However applying Theorem 4.7, we can see that Sth(j, Lex) ≃ Sth(i, Lex) and

Sth(j, DegRevLex) ≃ Sth(i, DegRevLex). Now the tails of the 3 monomials that generate i are

the same w.r.t. both term orders and then (see Remark 3.3)

Sth(j, Lex) ≃ Sth(i, Lex) = Sth(i, DegRevLex) ≃ Sth(j, DegRevLex).

Example 4.9. Let us consider the polynomial ring k[X0,X1,X2,X3], the ideal j = (X2
0 ,

X0X1,X0X
4
2 ,X

7
1 ,X

6
1X

2
2 ) and any term ordering given by a matrix with first row (23, 5, 2, 1).

By the previous theorem we know that

Sth(j) ≃ Sth(j>3), Sth(j>4) ≃ Sth(j>5) ≃ Sth(j>6), Sth(j>7) ≃ Sth(j>m), ∀ m > 8

and

ed Sth(j>4) > edSth(j) + 2 edSth(j>7) > edSth(j>4) + 3

By a direct computation, we find edSth(j) = 46, edSth(j>4) = 50 and edSth(j>7) = 56.

Example 4.10. There are at most two possible classes of isomorphism for the strata

Sth(L>m), where L is a lexicographic ideal: Sth(L) and Sth(L>r−1), where r is the maximal

degree of a minimal generator, in fact the variable Xn−1 appears (if it does) only in the

generator of degree r. Called b the number of generators of degree r, applying Theorem 4.7

iv), we have

edSth(L>r−1) > edSth(L) + n− b.

If the monomial of maximal degree in the basis does not contain the variable Xn−1, we

have Sth(L>m) ≃ Sth(L), ∀ m.

We conclude this section with a result similar to the one stated in Theorem 4.7 that

concerns only the case of homogeneous Gröbner strata w.r.t. DegRevLex.

Proposition 4.11. Let j be a Borel-fixed saturated monomial ideal and let ≺ be the DegRevLex

term ordering. Then

Sth(j) ≃ Sth(j>m), ∀ m.
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Proof. The arguments to achieve the proof are very similar to the arguments used in the

proof of Theorem 4.7. First of all let us consider the monomials

Fα = Xα +
∑

CαβX
β

corresponding to the monomial basis Bj of j and the ideal h(j) ⊂ k[C] of the stratum Sth(j).

In order to compute Sth(j>m), we have to consider again polynomials Fα as before if

|α| > m, Xα ∈ Bj and new polynomials Gαε such that LT(Gαε) = Xα+ε, ∀ Xα ∈ Bj, |α| < m,

and ∀ Xε of degree m−|α|, especially XαX
m−|α|
n . Then by the definition itself of DegRevLex,

the tail of XαX
m−|α|
n contains exactly the monomials in the tail of Xα multiplied by X

m−|α|
n .

So we can write

Gαε =

{

Xα+ε +
∑

Eε
αδX

δ, ∀ Xε 6= X
m−|α|
n ,

XαX
m−|α|
n +

∑

CαβX
βX

m−|α|
n = X

m−|α|
n Fα, if Xε = X

m−|α|
n

hence h(j>m) ⊂ k[C,E] (note that in the present case variables D do not appear by construc-

tion).

By Theorem 4.7 i), we know that all the variables E can be eliminated. By the same

reasoning used in the proof of Theorem 4.7 ii), the ideal h = h(j>m) ∩ k[C] contains the

X-coefficients of a set of S-polynomials corresponding to a set of the S-polynomials of the

monomial basis of j: so Sth(j) ≃ Sth(j>m).

5 Gröbner strata and regularity

In the present and following sections k[X], ≺ and j = (Xγ1 , . . . ,Xγt) will be as in the previous,

but from now on we will consider only homogeneous ideals (with respect to the usual grading)

and Ti will be the complete homogeneous tail of Xγi so that the only involved strata will be

the homogeneous strata Sth(j) introduced in Definition 3.2 ii). Since every tail is fixed by ≺,

we will simply denote ideals defining Gröbner strata by h(j).

Let p(z) be any admissible Hilbert polynomial for subschemes in Pn. Our goal is to show

that the Hilbert scheme Hilbnp(z) can be covered by homogeneous strata of the type Sth(j). In

order to prove that, it is convenient to think of Hilbnp(z) and Sth(j) as schemes parameterizing

the same kind of objects, namely homogeneous ideals in k[X]; as many ideals define the same

subscheme Z ⊂ Pn, the problem is to select a unique ideal in k[X] for every subscheme Z.

The most common choice is to associate to Z the only homogeneous saturated ideal I(Z)

such that Z = Proj (k[X]/I(Z)); this point of view is that assumed for instance in [19] and

in [22], where homogeneous strata of saturated ideals are considered.

Here we prefer a different approach, that directly calls back to the explicit construction

of Hilbert schemes (see for instance [1, 11, 23]).

Definition 5.1. Given an admissible Hilbert polynomial p(z) for subschemes in Pn, we will

denote by r the Gotzmann number of p(z), that is the worst regularity of saturated ideals

defining subschemes in Hilbnp(z). Moreover we set: M :=
(

n+r
n

)

, t := M−p(r), M1 :=
(

n+r+1
n

)

and t1 := M1 − p(r + 1).

Macaulay’s Theorem states that r is the regularity of the lexsegment ideal with Hilbert

polynomial p(z) (for the definition and the main properties of regularity and for some conse-

quences, we refer to [10]).
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As Z = Proj (k[X]/I(Z)) = Proj (k[X]/I(Z)>r), Z can be uniquely identified by the ideal

I(Z)>r, which is generated by t linearly independent degree r homogeneous polynomials

F1, . . . , Ft or, more precisely, by the t-dimensional k-vector space I(Z)r: Hilb
n
p(z) can be

realized as a closed subscheme in the grassmannian of the t-dimensional vector spaces in

k[X]r. A t-dimensional vector space in k[X]r gives a point in Hilbnp(z) if and only if it

generates an ideal i having p(z) as Hilbert polynomial.

Notation 5.2. From now on, i ∈ Hilbnp(z) will mean that i = I(Z)>r for some closed sub-

scheme Z in Pn with Hilbert polynomial p(z). Equivalently we can say that i ∈ Hilbnp(z) if

and only if i is an homogeneous ideal in k[X] with Hilbert polynomial p(z) (for the meaning

of “Hilbert polynomial of i” see Notation 6) which is generated in degree r, where r is the

Gotzmann number of p(z).

Remark 5.3. If i ∈ Hilbnp(z), then i is r-regular and it has a free resolution of the type:

0 → k[X](−r − λ)nλ → . . . → k[X](−r − 1)n1 → k[X](−r)n0 → i → 0 (5.1)

([6, Theorem 1.2]). Then we can find a set of generators for the first syzygies Syz(i) in degree

r + 1.

If we take into consideration the homogeneous Gröbner strata Sth(j) and select the mono-

mial ideal j in Hilbnp(z), we obtain the intended direct relation between Gröbner strata and

Hilbert schemes.

Lemma 5.4. If j ∈ Hilbnp(z), then (at least set-theoretically) Sth(j) ⊆ Hilb
n
p(z).

Proof. Let i be any ideal in Sth(j). By hypothesis LT(i) = j and then i and j share the same

Hilbert function. Therefore i is generated in degree r and has Hilbert polynomial p(z) and

then i ∈ Hilbnp(z).

Now we will see that the set-theoretic inclusions are in fact algebraic maps and that for

some ideals they are open injections. The crucial point is that the stratum structure (and so

its injection in the Hilbert scheme) depends on the ideal j and not on the the corresponding

subscheme Z = Proj (k[X]/j). This is not so surprising because the choice of the ideal fixes

all the allowed deformations, but we want to stress this issue because in [19] the authors

underestimated this fact and they made a wrong choice (proof of Corollary 4.4). In fact the

stratum of the saturated lexicographic ideal L with Hilbert polynomial p(z) is not in general

isomorphic to an open subset of Hilbnp(z) (see [22] and Example 4.10), whereas, as we will see,

the stratum of its truncation L′ = L>r is an open subset of the Reeves-Stillman component

of Hilbnp(z).

Let j be a monomial ideal in Hilbnp(z). As seen in § 3 every ideal i such that LT(i) = j

has a (unique) reduced Gröbner basis {f1, . . . , ft} where fi is as in Definition 3.2 ii). Not

every ideal generated by t polynomials of such a type has j as initial ideal. In order to obtain

equations for Sth(j) we consider the coefficients ciα appearing in the fi as new variables; more

precisely let C = {Ciα, i = 1, . . . , t, Xα ∈ k[X]r \ jr and Xα ≺ Xγi} be new variables and

consider t polynomials in k[X,C] of the following type:

Fi = Xγi +
∑

Xα∈Ti

CiαX
α (5.2)
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where Ti = Tγi ∩ k[X]r (Definition 3.1). We obtain the ideal h(j) of Sth(j) collecting the

X-coefficients of some complete reduction with respect to F1, . . . , Ft of all the S-polynomials

S(Fi, Fj), corresponding to a set of generators for Syz(j) (see Theorem 3.6 and Proposition

3.5 v)).

Proposition 5.5. In the above notation, let j be a monomial ideal in Hilbnp(z) and let A be

the t(n + 1) ×M1 matrix whose entries are the X-coefficients of XjFi, for all j = 0, . . . , n

and i = 1, . . . , t.

Then the ideal h(j) of the homogeneous stratum Sth(j) is generated by the (t1+1)×(t1+1)

minors of A.

Proof. By abuse of notation we write in the same way a polynomial and the rows of its X-

coefficients. As in Definition 3.4 we consider a term order on TX,C which is an elimination

order of the variables X and coincides with the fixed term ordering ≺ on TX . It is quite

evident by elementary arguments of linear algebra, that the ideal a ⊆ k[C], generated by all

(t1 +1)× (t1 +1) minors, does not change if we perform some row reduction on A. Let P be

a set of t1 rows whose leading terms are a basis of jr+1. If XhFi /∈ P, then it has the same

leading term than one in P, say XkFj ; we can substitute XhFi with XhFi −XkFj . In this

way the rows not in P become precisely all the S-polynomials S(Fi, Fj) that have X-degree

r + 1.

At the end of this sequence of row reductions, we can write the matrix as follows:
(

D E

S L

)

(5.3)

where D is a t1 × t1 upper-triangular matrix with 1’s along the main diagonal, whose rows

correspond to P and whose columns correspond to monomials in jr+1.

Using rows in P, we now perform a sequence of rows reductions on the following ones, in

order to annihilate all the coefficients of monomials in jr+1, that is the entries of the submatrix

S: if a(C) is the first non-zero entry in a row not in P and its column corresponds to the

monomial Xγ ∈ jr+1, we add to this row −a(C)XkFj , where XkFj ∈ P and LT(XkFj) = Xγ .

This is nothing else than a step of reduction with respect to {F1, . . . , Ft}. At the end of this

second turn of rows reductions, we can write the matrix as follows:
(

D E

0 R

)

(5.4)

where the rows in (D | E) are unchanged whereas the rows in (0 | R) are the X-coefficients of

complete reductions of S-polynomials in X-degree r + 1. Then a is generated by the entries

of R and so a ⊂ h(j).

We can see that this inclusion is in fact an equality taking in mind Remark 5.3 and

Proposition 3.5 v): the first one says that Syz(j) is generated in degree r + 1 and the second

one that in this case h(j) is generated by the X-coefficients of complete reductions of the

S-polynomials S(Fi, Fj) of X-degree r + 1.

The following corollary just express in an explicit way two properties contained in the

proof of Proposition 5.5.

Corollary 5.6. In the above notation:
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• the ideal h(j) is generated by the entries of the submatrix R in (5.4);

• the vector space L(j) is generated by the entries of the submatrix L in (5.3).

As already said in the Remark 3.3, this theorem shows one more time that Gröbner strata

equations are substantially independent of the term ordering, that sets only which monomials

can appear in the tails Ti.

6 Gröbner strata that are open subsets of an Hilbert scheme

In the present section we will prove that every homogeneous Gröbner stratum Sth(j), where

j ∈ Hilbnp(z), can be naturally identified with a locally closed subscheme of Hilbnp(z) and that

it is an open subset of Hilbnp(z) if j is generated by the first t monomials in k[X] with respect

to the fixed term ordering ≺. As a consequence we obtain the main results of the paper about

the rationality of some components of Hilbnp(z).

For the meaning of p(z), r, t, M , t1, M1 and i ∈ Hilbnp(z) we refer to Definition 5.1 and

Notation 5.2.

First of all we recall how equations defining Hilbnp(z) are usually obtained (see for instance

[1, 11]). Every ideal i ∈ Hilbnp(z) is generated by the t-dimensional vector space ir. On

the other hand, thanks to Gotzmann’s Persistence Theorem (see for instance [10, Theorem

3.8]), a t-dimensional vector space V ⊂ k[X]r generates an ideal i ∈ Hilbnp(z) if and only if

dimk〈X0V, . . . ,XnV 〉 = t1.

Therefore Hilbnp(z) can be thought as the subscheme of the grassmannian G(t,M) defined

by the previous condition. Moreover by the Plücker embedding of the grassmannian in a

projective space Pq, Hilbnp(z) becomes a closed subscheme (not necessarily irreducible and

reduced) of Pq.

Here we are not interested in finding explicit equations for Hilbnp(z) in Pq, but only equa-

tions defining each open subset U ∩Hilbnp(z), where U is the open subset of G(t,M) given by

a non-vanishing Plücker coordinate.

Definition 6.1. Thinking of k[X]r as the vector space generated by its monomials, we can

identify every Plücker coordinate with a suitable monomial ideal j generated by t monomials

of degree r. We will denote by Uj and Hj respectively the open subsets of G(t,M) and of

Hilbnp(z) where the Plücker coordinate corresponding to j does not vanish.

In a natural way Uj is isomorphic to the affine space At(M−t). In fact, if j = (Xγ1 , . . . ,Xγt),

every point in Uj is uniquely identified by the reduced, ordered set of generators 〈g1, . . . , gt〉

of the type gi = Xγi +
∑

ciαX
α, where ciα ∈ k and Xα is any monomial in k[X]r \ j. Then

we consider on At(M−t) the coordinates Ciα. Note that each Ciα naturally corresponds to the

Plücker coordinate j′ = (Xγ1 , . . . ,Xγi−1 ,Xα,Xγi+1 , . . . Xγt) (but of course not all the Plücker

coordinates are of this type).

Now we can mimic the construction of Gröbner strata and obtain the defining ideal of Hj

as a subscheme of At(M−t). Let us consider the set of variables C = {Ciα, i = 1, . . . , t, Xα ∈

k[X]r \ j} and t polynomials G1, . . . , Gt in k[X,C ] of the type:

Gi = Xγi +
∑

CiαX
α (6.1)

and let B be the (n+1)t×M1 matrix whose entries are the X-coefficients of the polynomials

XjGi. Then consider the ideal b(j) ⊂ k[C] generated by the (t1 + 1)× (t1 + 1) minors in B.
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Proposition 6.2. b(j) is the ideal of Hj as a closed subscheme of At(M−t).

Proof. Every ideal i ∈ Uj can be obtained from (G1, . . . , Gt) specializing (in a unique way) the

variables Ciα to ciα ∈ k. Obviously not all the specializations give ideals i ∈ Hj, that is with

Hilbert polynomial p(z) (more precisely, such that k[X0, . . . ,Xn]/i has Hilbert polynomial

p(z)), because we have to ask both dimk(ir) = t and dimk ir+1 = t1: thanks to Gotzmann’s

persistence we know that these two necessary conditions are also sufficient.

In the open subset Uj the first condition always holds and the rank of every specialization

of B is > t1 by Macaulay estimate of the growth of ideals (see [10, Section 3] or [15, Corollary

5.5.28]). Therefore Hj is given by the condition rk (B) 6 t1.

We can order the set of Plücker coordinates in the following way. We write the tmonomials

corresponding to each Plücker coordinate in decreasing order with respect to ≺; if j1 =

( Xα1 ≻ · · · ≻ Xαt) and j2 = ( Xβ1 ≻ · · · ≻ Xβt), then j1 ≻ j2 if Xαi = Xβi for every i lower

than some s and Xαs ≻ Xβs .

It is now easy to compare, for the same monomial ideal j ∈ Hilbnp(z), the Gröbner stratum

Sth(j) and the open subset Hj. We underline that for our purpose it will be sufficient to

consider the open subsets Hj corresponding to monomial ideals j ∈ Hilbnp(z), because (scheme-

theoretically) they cover Hilbnp(z). In fact, if i ∈ Hilbnp(z), then also LT(i) ∈ Hilbnp(z) and so

i ∈ HLT(i).

Theorem 6.3. Let p(z) be any admissible Hilbert polynomial in Pn with Gotzmann number

r. Let us fix any term ordering ≺ on TX .

i) If j is a monomial ideal in Hilbnp(z), then Sth(j) is naturally isomorphic to the locally

closed subscheme of Hilbnp(z) given by the conditions that the Plücker coordinate corre-

sponding to j does not vanish and the preceding ones vanish.

ii) For every isolated, irreducible component H of Hilbnp(z), there is a monomial ideal j ∈

Hilbnp(z) such that an irreducible component of SuppSth(j) is an open subset of SuppH.

Then SuppH has an open subset which is a homogeneous affine variety with respect to

a non-standard positive grading.

iii) Every smooth irreducible component H of Hilbnp(z) is rational. The same holds for every

smooth, irreducible component of SuppHilbnp(z).

Proof. i) We obtain the two affine varieties Sth(j) and Hj in a quite similar way (for Sth(j) see

Proposition 5.5 and for Hj see Proposition 6.2). The only difference comes from the definition

of the set of polynomials F1, . . . , Ft given in (5.2), leading to equations for Sth(j), and the set

of polynomials G1, . . . , Gt given in (6.1), leading to equations for Hj: in Gi the sum is over all

the degree r monomials Xα /∈ j whereas in Fi we also assume that Xα ≺ LT(Fi). Therefore we

can think of Sth(j) as the affine subscheme defined by the ideal h(j) in the ring k[X,C ], where

C = {Ciα | i = 0, . . . , n, Xα ∈ k[X]r \ j} generated by h(j) and by
(

Ciα | X
α ≻ LT(Fi)

)

,

namely h(j) = h(j)k[C] + (C \ C). Now we can conclude because the Plücker coordinates

higher than j vanish if and only if all the Ciα such that Xα ≻ LT(Fi) vanish.

ii) As j varies among the finite set of the monomial ideals in Hilbnp(z), the Gröbner strata

Sth(j) give a set theoretical covering of Hilbnp(z) by locally closed subschemes. Then there is a

suitable ideal j such that an irreducible component of SuppSth(j) is an open subset of H. We
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have seen in the previous sections that Sth(j) has a structure of homogeneous affine scheme

with respect to a non-standard positive grading λ. Then also its support and the irreducible

components of the support are homogeneous (see [2, Section IV.3.3] and [8, Corollary 2.7]).

iii) If H is a smooth, irreducible component of either Hilbnp(z) or SuppHilbnp(z), then it

is also reduced. Thanks to the previous item we know that an open subset of H is an affine

homogeneous variety with respect to a positive grading. Moreover this open subset is also

smooth and so it is isomorphic to an affine space, by Corollary 4.5.

Remark 6.4. Let j be a monomial ideal in Hilbnp(z) and let b(j) ⊂ k[C] the ideal of Hj.

It is possible to define a grading λ′ on k[C] such that b(j) becomes homogeneous, by the

analogous definition: λ′(Ciα) = γi − α if Ciα appears in Gi (6.1). However this grading λ′ is

not necessarily positive and so it gives less interesting consequences.

If an irreducible component H of Hilbnp(z) is also reduced, Theorem 6.3 insures that there

is an open subset of H which has the structure of homogeneous variety with respect to a

positive grading induced from that of a suitable Gröbner stratum Sth(j).

On the other hand, in the case of a non-reduced component we only know that the support

of a suitable open subset is homogeneous with respect to a positive grading, but this does

not imply that the open subset itself is homogeneous.

Now we consider a special case in which we obtain a positive grading on an open subset

of an irreducible component of Hilbnp(z), even if not reduced.

Definition 6.5. Given any term order ≺ in TX , a (m,≺)-segment is a subset S of k[X]m
containing the first |S| monomials of degree m with respect to ≺, namely such that:

∀ Xβ ∈ k[X]m, ∀ Xγ ∈ S : Xβ ≻ Xγ ⇒ Xβ ∈ S.

An (m,≺)-segment ideal is a monomial ideal j which is generated by a (m,≺)-segment.

If L is the saturated lexsegment ideal, then for everym > r (that is for everym higher than

the regularity of L), the ideal L>m is a (m, Lex)-segment ideal. This property does not hold in

general if the term ordering is not Lex, so that j>m could be a (m,≺)-segment ideal and j>m+1

could not be a (m+ 1,≺)-segment ideal. A trivial case is for instance that of the ideal (X0)

in k[X0,X1,X2] which is (1, DegRevLex)-segment ideal, whereas (X0)>2 = (X2
0 ,X0X1,X0X2)

is not a (2, DegRevLex)-segment ideal, because it contains X0X2 and does not contain X2
1 .

The definition of (m,≺)-segment ideal is not equivalent, but it is very close to that of

extremal ideal given in [24].

Corollary 6.6. Let j be (r,≺)-segment ideal in the grassmannian G(t,M).

If j does not belong to Hilbnp(z), then the open subset Hj is empty.

Proof. Any point i ∈ Hj should belong to the Gröbner stratum Sth(j), that is it should share

the same Hilbert polynomial of j, which is not p(z).

The first of the following examples highlights both that Theorem 6.3 does not hold for

a monomial ideal j that belongs to G(t,M) but not to Hilbnp(z) and that Corollary 6.6 does

not hold for a monomial ideal j in G(t,M) which is not a segment. Moreover Example 6.8

presents a concrete case of empty Hj as discussed in the previous corollary.
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Example 6.7. Let us consider the constant Hilbert polynomial p(z) = 2 on P2. As well

known, Hilb22 is irreducible of dimension 4. The monomial ideal j = (X2
0 ,X0X1,X

2
1 ,X

2
2 ) is

generated by 4 monomials of degree 2, but does not belong to Hilb22 because its radical is

the irrelevant maximal ideal. However, Hj is non-empty because it contains for instance all

the reduced subschemes given by couples of points P [1 : a : b], Q[1 : a′ : b′] ∈ P2 such that

ab′ 6= a′b. By the way, Sth(j) cannot have any common point with Hilb22.

Example 6.8. In the example presented at the end of § 8 the complete list of Borel ideals

in k[X0,X1,X2,X3] with Hilbert polynomial p(z) = 4z is presented. None of them is the

(6, DegRevLex)-segment ideal j containing all the t = 60 degree 6 monomials except the

p(6) = 24 lowest with respect to the term ordering DegRevLex. As r = 6 is the Gotzmann

number of 4z and M = 84, then j belongs to G(t,M) and does not to Hilb34z (j has constant

Hilbert polynomial equal to 24). Hence Hj is empty.

Corollary 6.9. Let p(z) any admissible Hilbert polynomial in Pn with Gotzmann number r

and let H be an isolated, irreducible component of Hilbnp(z).

If H contains a point corresponding to an (r,≺)-segment ideal j ∈ Hilbnp(z) with respect

to some term ordering ≺ on TX , then Sth(j) is an open subset of H, so that H has an open

subset which is an homogeneous affine variety with respect to a non-standard positive grading.

Proof. If j is a (r,≺)-segment ideal, then there are no Plücker coordinates preceding that

corresponding to j. Thus Sth(j) ∼= Hj (see Theorem 6.3) and so Hj is an affine homogeneous

scheme with respect to a positive grading.

Corollary 6.10. Let j ∈ Hilbnp(z) be (r,≺)-segment ideal and let H be an irreducible compo-

nent of Hilbnp(z) containing j. If either of the following condition holds:

i) Sth(j) is an affine space,

ii) j is a smooth point of Sth(j) ,

iii) j is a smooth point of Hilbnp(z),

then H is rational.

Proof. Straightforward consequence of the previous result and of Corollary 4.5.

7 Gröbner stratum of the lexsegment ideal

In this paragraph the term ordering ≺ will be the lexicographic term ordering Lex.

As a first application to the results obtained in § 6, we take into consideration the lex-

icographic ideal L. For every admissible Hilbert function p(z) on Pn, Hilbnp(z) contains the

ideal generated by the first t monomials in degree r with respect to the term ordering Lex.

In the paper [20] it is proved that the point of Hilbnp(z) (usually called lexicographic point)

corresponding to the subscheme Proj k[X]/L is smooth and Reeves and Stillman get the proof

by a computation of the Zariski tangent space dimension. The only component of Hilbnp(z)
containing the lexicographic point is usually denoted by HRS . As a consequence of the quoted

result by Reeves and Stillman and of Corollary 6.10, we then obtain:

Corollary 7.1. The Reeves and Stillman component HRS of Hilbnp(z) is rational.
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However we prefer to present here a new, self-contained proof, in order to explain how

our technique can be used as a theoretical, as well as a computational, tool.

First of all, we recall briefly the notation used in [20]. Moving from [16], Reeves and

Stillman work with lexicographic saturated ideals of the type:

L(a0, . . . , an−1) = (X
an−1+1
0 ,X

an−1

0 X
an−2+1
1 , . . . ,X

an−1

0 · · ·Xa1
n−2X

a0
n−1).

Since we are going to prove the same result, we will assume a quite similar notation, but not

the same because in this paper we consider ideals generated in degree r instead of saturated

ideals.

Notation 7.2. We refer with L(a0, . . . , an−1) to the lexsegment ideal generated by all mono-

mials of degree r =
∑

aj that precede (greater than or equal to) the monomial X
an−1

0 · · ·Xa0
n−1

in the Lex term ordering:

L(a0, . . . , an−1) = (Xr
0 ,X

r−1
0 X1, . . . ,X

an−1

0 · · ·Xa0
n−1).

Note that r is precisely the Gotzmann number of the Hilbert polynomial of L (more precisely

of k[X]/L).

Theorem 7.3. The homogeneous Gröbner stratum Sth(L(a0, . . . , an−1)) of the lexicographic

ideal L(a0, . . . , an−1) ∈ Hilb
n
p(z) is isomorphic to an affine space. Therefore the component

HRS of Hilbnp(z) is rational.

Proof. Thanks to Corollary 6.10 we obtain the complete statement proving that the homoge-

neous Gröbner stratum Sth(L(a0, . . . , an−1)) is an affine space, that is showing that a same

number is both a lower-bound for its dimension and an upper-bound for its embedding di-

mension; the first part corresponds to Theorem 4.1 of [20] (here in terms of initial ideals) and

the second one corresponds to Theorem 3.3 of [20].

We proceed by induction on the number n of variables and on the Gotzmann number r.

In order to obtain an upper-bound for the embedding dimension we look for a maximal set

of eliminable variables C ′ ⊂ C, using Criterion 4.6. IfXα1 ≻ · · · ≻ Xαm is the monomial basis

of the saturation l of L(a0, . . . , an−1), then we can assume that the polynomials F1, . . . , Ft ∈

k[X,C] (that we use in order to construct Sth(L(a0, . . . , an−1)): see Definition 3.4) are ordered

so that LT(Fi) = XαiX
r−|αi|
n for i = 1, . . . ,m. Thanks to Theorem 4.7 we can start the

construction of C ′, putting inside all the variables appearing in Fj for every j > m.

We divide the proof in 3 steps.

Step 1 The zero-dimensional case: Sth(L(a0, 0, . . . , 0)) ≃ Ana0 .

Claim 1i: dimSth(L(a0, 0, . . . , 0)) > na0.

Let us denote L(a0, 0, . . . , 0) by L. The zero-dimensional scheme Z of a0 general points in

Pn has Gotzmann number a0 and Hilbert polynomial p(z) = a0. Moreover LT
(

I(Z)>a0

)

⊇ L,

because for every monomial Xγ � Xa1
1 we can find some homogeneous polynomial of the

type Xγ −
∑a0

j=1 bjX
a0−j
n−1 Xj

n vanishing in the a0 points of Z: we can find the bj ’s solving a

a0 × a0 linear system with a Vandermonde associated matrix. As both LT
(

I(Z)>a0

)

and L

are generated in degree a0, they coincide; so I(Z)>r ∈ Sth(L) and we conclude since we can

choose Z in a family of dimension na0.

Claim 1ii: ed Sth(L(a0, 0, . . . , 0)) 6 na0.
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The saturation of L is the ideal (X0,X1, . . . ,Xn−2,X
a0
n−1), which is generated by nmonomials;

moreover there are only a0 monomials of degree a0 not contained in L): Corollary 4.7 leads

to the conclusion.

Step 2: If Sth(L(0, a1, . . . , an−1)) ≃ AK then Sth(L(a0, a1, . . . , an−1)) ≃ AK+na0 .

Claim 2i: dimSth(L(a0, a1, . . . , an−1)) > dimSth(L(0, a1, . . . , an−1)) + na0 = K + na0.

Let us denote L(a0, a1, . . . , an−1) by L and L(0, a1, . . . , an−1) by L1. Let Y be any closed

subscheme in Pn such that I(Y )>r ∈ Sth(L1) and consider the set Z of a0 points in Pn. If

we choose the a0 points in Z general enough, then I(Z ∪Y ) = I(Z) · I(Y ). Then we conclude

thanks to the previous step, as LT(I(Z)) = L(a0, 0, . . . , 0) and L = L1 · L(a0, 0, . . . , 0).

Claim 2ii: ed Sth(L(a0, a1, . . . , an−1)) 6 ed Sth(L(0, a1, . . . , an−1)) + na0 = K + na0.

First of all, let us consider all the polynomials Fi such that Xr−a0
n | LT(Fi) and the set

of variables Ciβ appearing in them such that Xβ = Xβ1Xr−a1
n for some monomial Xβ1 /∈ L1:

a multiple of Xβ belongs to L if and only the corresponding multiple of Xβ1 belongs to

L1. Then Fi = Xr−a0
n F1i + . . . , where the Fi1’s are the polynomials that appear in the

definition of Sth(L1). Using the S-polynomials involving couples of such polynomials we see

that L(L1) ⊆ L(L); thus all the variables Ciβ of this type are eliminable, except at most

K = ed L1 of them.

Moreover, for every i 6 n there are a0 variables Ciβ such that Xβ /∈ L, Xβ ∈ L1: the are

X
an−1

0 · · ·Xa1
n−2X

a0−j
n−1 Xj

n, j = 1, . . . , a0.

If we specialize to 0 all the variables of the two above considered types, the embedding

dimension drops at most by ed Sth(L1) + na0 = K + na0.

Now it will be sufficient to verify that all the remaining variables Ciβ are eliminable, using

Criterion 4.6.

Assume that Xβ ≺ X
an−1

0 · · ·Xa1
n−2 and Xr−a0

n ∤ Xβ.

• If i > n, all the variables are eliminable using those appearing in F1, . . . , Fn, thanks to

Corollary 4.7.

• If i < n, using S(Fi, Fj), where LT(Fj) = XαiX
r−|αi|
n−1 , we see that Ciβ ∈ L(L).

• If i = n, using S(Fn, Fn−1) = Xn−2X
a0−1
n Fn−Xa0

n−1Fn−1, we see that Cnβ ∈ L(L) (note

that by the previous idem Cn−1,β′ ∈ L(L)).

Step 3: If L(0, a1, . . . , an−1) ≃ AK1 then L(0, a1, . . . , ad) ≃ AK2 where d is the maximal

index < n such that ad 6= 0 and K2 = K1 + (n − d)(d + 1) +
(

an−1+n
n

)

− 1 (or K2 =

K1 +
(

an−1+n
n

)

− 1 if d does not exist).

Here we compare the ideal L = L(0, a1, . . . , an−1) in k[X] and the ideal L1 = L(0, a1, . . . , ad)

in k[X0, . . . ,Xd]. Observe that both l := sat(L) and l1 := sat(L1) fulfill the hypothesis of

Theorem 4.7 ii) (see also Example 4.10); then it holds Sth(L) ≃ Sth(l) and Sth(L1) ≃ Sth(l1).

The statement for the saturated ideals l and l1 is proved using the same technique as above

in [22, Proposition 4.5].
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8 Algorithms and Examples

In this final section we exhibit a pseudo-code description of the algorithms to compute the

ideal of Gröbner stratum (Algorithm 1) and its embedding dimension (Algorithm 2) and then

we apply our technique to the Hilbert scheme Hilb34z.

Algorithms

The following two algorithms are mainly based on Proposition 5.5 and Corollary 5.6.

Algorithm 1 Computing the ideal h(j) of Sth(j)

1: procedure GröbnerStratum(j,≺)
2: Compute Bj minimal monomial basis of j;
3: G ← ∅;
4: for all Xα ∈ Bj do

5: Compute Fα = Xα +
∑

CαβX
β, Xβ /∈ j, Xα ≻ Xβ, |α| = |β|;

6: G ← G ∪ {Fα};
7: end for

8: Compute Syz(j) basis of the syzygies of Bj;
9: C ← ∅;

10: for all (. . . ,Xδi , . . . ,Xδj , . . .) ∈ Syz(j) do
11: S ← XδiFαi

−XδjFαj
;

12: Compute the reduction Sred of S w.r.t. the set of polynomials G;
13: Collect the set R of the X-coefficients of Sred;
14: C ← C ∪R;
15: end for

16: h← 0;
17: while C 6= ∅ do
18: g ← min(C); ⊲ The minimun w.r.t. the λ-grading induced by ≺ on k[C]
19: if L(g) = 0 then ⊲ g has no linear part
20: h← h+ g;
21: else

22: Use g to eliminate one variable from all the polynomials in C;
23: end if

24: C ← C \ {g};
25: end while

26: return h;
27: end procedure
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Algorithm 2 Computing the embedding dimension of Sth(j)

1: procedure EmbeddingDimension(j,≺)
2: Execute lines 2 – 8 of GröbnerStratum(j,≺)
3: L← 0;
4: for all (. . . ,Xδi , . . . ,Xδj , . . .) ∈ Syz(j) do
5: S ← XδiFαi

−XδjFαj
;

6: Compute the reduction Sred of S w.r.t. the monomial ideal j;
7: Collect the set R of the linear X-coefficients of Sred;
8: L← L+ 〈R〉;
9: end for

10: return (dim k[C]1 − dimL);
11: end procedure

Example: Hilb3
4z

In [9], Gotzmann consider the complete list of the Borel-fixed, saturated, monomial ideals of

k[X0,X1,X2,X3] corresponding to points of Hilb34z. They are:

b3 = (X2
0 ,X0X1,X

3
1 ),

b4 = (X2
0 ,X0X1,X0X

2
2 ,X

4
1 ),

b5 = (X2
0 ,X0X1,X0X2,X

5
1 ,X

4
1X2),

b6 = (X0,X
5
1 ,X

4
1X

2
2 ).

The index s in bs is the regularity of the ideal. Moving from this point, Gotzmann proves

that there are two irreducible components: the first containing b3 with dimension 16 and the

second (the Reeves-Stillman one) containing b6 with dimension 23. Here we obtain a com-

putational confirmation of this result. Furthermore we also prove that the two components

are reduced, rational and that they have a transversal intersection.

Since the Gotzmann number of the Hilbert polynomial p(z) = 4z is 6, to deduce informa-

tions about Hilb34z using the results obtained in § 6, we have to consider the truncated ideals

js = (bs)>6.

In the case char k = 0, a Borel ideal i is characterized by the combinatorial property

XiX
α ∈ i =⇒ Xi−1X

α ∈ i. (8.1)

As shown in [25], the set of monomials of a fixed degree of a Borel ideal i is a filter for

the transitive closure of the partial ordering ≤B induced by the relation (8.1) (XαXi−1 >B

XαXi). For each s, we can look for a term ordering ≺s, obtained refining the partial order

≤B, such that the ideal js becomes a (6,≺s)-segment.

It is possible to achieve this result considering a term ordering given by a matrix of the

type:








1 1 1 1
a b c d
0 1 0 0
0 0 1 0









.

More precisely:

• j3 is a segment w.r.t. ≺3 given by (a, b, c, d) = (3, 2, 1, 1);
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• j4 is a segment w.r.t. ≺4 given by (a, b, c, d) = (15, 5, 2, 1);

• j5 is a segment w.r.t. ≺5 given by (a, b, c, d) = (9, 3, 2, 1);

• j6 is a segment w.r.t. ≺6 given by (a, b, c, d) = (1, 0, 0, 0);

Let us now examine these ideals one at the time.

j6. It is the lexsegment ideal L(2, 4, 0), that is ≺6 is DegLex (or Lex, which is the same

for homogeneous ideals). In the previous section we proved that the Gröbner stratum

Sth(L(2, 4, 0), Lex) is an open subset of Hilb34z and that it is an affine space; an easy compu-

tation gives the dimension 23.

j3. As X2 does not appear in the monomials of the basis of b3, thanks to Theorem 4.7, we

know that Sth(j3,≺3) ≃ Sth(b3,≺3). Using a computer procedure based on Algorithm 1 we

obtain explicit equations for Sth(b3,≺3), finding that it is an affine space of dimension 16,

which is isomorphic to an open subset of the component named HVA by Gotzmann (after

Vainsencher-Avritzer [26]).

j4. Always by Theorem 4.7, we can compute Sth(b4,≺4) instead of Sth(j4,≺4). Using the

same computer procedure as below, we compute that initially there are 44 variables C, but

20 of them can be eliminated and the minimal embedding realizes Sth((b4),≺4) as an affine

subscheme S of A24 given by an ideal h. Moreover h is the product of a principal ideal

(K) (more precisely K is the coefficient of the monomial X3
1 in the polynomial Fi such that

LT(Fi) = X0X
2
2 ) and an ideal h1. The ideal (K) defines an hyperplane in A24, which is an open

subscheme of the HRS component (its dimension is 23). The other ideal h1 defines an open

subscheme of HAV . Looking at h1 it is possible to see that there are some more eliminable

variables and that the minimal embedding gives an isomorphism with A16. Looking at the

ideals (K) and h1, it is easy to check that they have a transversal intersection that is the

hyperplane defined by K does not contain the Zariski tangent space to HAV at each point in

HRS ∩HAV .

j5. Applying Theorem 4.7, we compute the structure of the open subset Hb5 of Hilb34z by

the computation of Sth((b5)>4,≺5). In this case there are 344 new variables C: 317 are

eliminable, so that the embedding dimension is 27, that is the point corresponding to b5 is

singular in the Hilbert scheme Hilb34z. Going through the computation, we find a Gröbner

basis of the ideal h((b5)>4) defined by 9 polynomials. The stratum is irreducible (and so

there are no new components): indeed the open subset obtained excluding the hyperplane

defined by the coefficient of the monomial X4
1 of the polynomial with leading term X0X2X

2
3

is isomorphic to an open subset of an affine space of dimension 23, that is to an open subset

of the Reeves-Stillman component. On the other hand cutting the stratum with this same

hyperplane we obtain an equi-dimensional subscheme of dimension 22 and the same degree

than Sth((b5)>4,≺5), which is scheme theoretically the union of two irreducible components

V1 and V2, with the same Hilbert polynomial. One of them can be naturally identified with

the stratum of the saturated ideal b5 in the sense that they are isomorphic and moreover

their points correspond to the same curves in P3 (see Theorem 4.7 ii)): this component is

obtained cutting Sth((b5)>4,≺5) with the hyperplanes defined by the coefficients of X4
1 in the

polynomials with leading term X0X2X
2
3 , X0X1X

2
3 and X2

0X
2
3 respectively (see Theorem 4.7

iv) and v)). The other one V2 can be obtained from V1 up to a special change of coordinates

in P3. Finally we can verify that the singular locus of Sth((b5)>4,≺5) is contained in the

intersection of V1 and V2.
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