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Floyd’s Operator Precedence (OP) languages are a deterministic context-free family having many

desirable properties. They are locally and parallely parsable, and languages having a compatible

structure are closed under Boolean operations, concatenation and star; they properly include the fam-

ily of Visibly Pushdown (or Input Driven) languages. OP languages are based on three relations

between any two consecutive terminal symbols, which assign syntax structure to words. We extend

such relations to k-tuples of consecutive terminal symbols, by using the model of strictly locally

testable regular languages of order k ≥ 3. The new corresponding class of Higher-order Operator

Precedence languages (HOP) properly includes the OP languages, and it is still included in the de-

terministic (also in reverse) context free family. We prove Boolean closure for each subfamily of

structurally compatible HOP languages. In each subfamily, the top language is called max-language.

We show that such languages are defined by a simple cancellation rule and we prove several prop-

erties, in particular that max-languages make an infinite hierarchy ordered by parameter k. HOP

languages are a candidate for replacing OP languages in the various applications where they have

have been successful though sometimes too restrictive.

1 Introduction

We propose a new way of extending the classic language family of operator-precedence (OP) languages,

invented by R. Floyd [11] to design a very efficient parsing algorithm, still used within compilers. It

is worth outlining the main characteristics of OP languages. OP languages have been also exploited

for grammar inference [2], thanks to their lattice-theoretical properties. They offer promise for model-

checking of infinite-state systems due to the Boolean closure, ω-languages, logic and automata charac-

terizations, and the ensuing decidability of relevant problems [17]. Recently, a generator of fast parallel

parsers has been made available [3]. Their bottom-up deterministic parser localizes the edges of the

handle (a factor to be reduced by a grammar rule) by means of three precedence relations, represented

by the tags ⋖,⋗,=̇. (Since our model generalizes OP, we represent the tags as [, ],⊙.) Such relations

are defined between two consecutive terminals (possibly separated by a nonterminal). E.g., the yield

precedence relation a⋖b says that b is the leftmost terminal of the handle and a is the last terminal of the

left context. The no-conflict condition of OP grammars ensures that the edge positions are unambiguous

and the handles can be localized by means of a local test. An OP parser configuration is essentially a

word consisting of alternated terminals and tags, i.e., a tagged word; notice that nonterminal symbols,

although present in the configuration, play no role in determining the handle positions, but are of course

necessary for checking syntactic correctness. In general, any language having the property that handles

can be localized by a local test is called locally parsable and its parser is amenable to parallelization.

If the parser is abstracted as a pushdown automaton, each pair of terminals associated to a left or to

a right edge of a handle, respectively triggers a push or a pop move; i.e., the move choice is driven by

two consecutive input symbols. Therefore, the well-known model of input-driven [21, 4] (or “visibly
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pushdown” [1]) languages is a special case of the OP model, since just one terminal suffices to choose

the move. This is shown in [8], where the precedence relations characterizing the input-driven languages

are computed. The syntax structures permitted by such relations are sometimes too restrictive for the con-

structs of modern languages, e.g., a markup language like HTML5 has special rules that allow dropping

some closing tags.

Since OP grammars, although used by compilers, are sometimes inconvenient or inadequate for

specifying some syntactic constructs, a natural question is: can we increase the generative capacity of

OP grammars, without jeopardizing their nice properties, by allowing the parser to examine more than

two consecutive terminals to determine the handle position? Quite surprisingly, to our knowledge the

question remained unanswered until now, but in the last section we mention some related research.

We intuitively present the main ideas of the new hierarchical family of languages and grammars

called Higher-order Operator Precedence (HOP). Let k ≥ 3 be and odd integer specifying the number

of consecutive terminals and intervening tags to be used for localizing handles: the value of k is 3 for

OP, which thus coincide with the HOP(3) subfamily. The main contributions are: a precise definition of

HOP(k) grammars, a decidable condition for testing whether a grammar has the HOP(k) property, the

proof that the OP family is properly included into the HOP one, and an initial set of nice properties that

carry over from OP to HOP. The Boolean closure of each structurally compatible (this concept cannot be

defined at this point but is standard for OP and input-driven languages) HOP subfamily is determinant for

model checking. Concerning local parsability, we mention in the conclusions how it should be obtained.

Last but not least, our definition of HOP grammars permits to use regular expressions in the right part of

rules, in contrast with the classical definition of OP grammars.

Moreover, we prove that each structurally compatible HOP subfamily has a maximal element, called

max-language. Interestingly, max-languages can be defined by a simple cancellation rule that applies

to tagged words, and iteratively deletes innermost handles by a process called a reduction. Before each

cancellation, the word, completed with tags, has to pass local tests, defined by means of a strictly locally

testable [20] regular language of order k. We prove several properties of the max-language family, in

particular that they form a strict infinite hierarchy ordered by parameter k. Since the model based on

cancellation is simpler, it will be the first presented in this paper, before the HOP grammar model.

Paper organization: Section 2 contains the basic notation and definitions. Section 3 introduces the

max-languages and their basic properties. Section 4 defines the HOP grammars and proves their prop-

erties. Section 5 compares HOP with some related existing models, and lists open problems and future

research directions.

2 Basic definitions

For terms not defined here, we refer to any textbook on formal languages, e.g. [14]. For a generic

alphabet we use the symbol ϒ. The empty word is denoted by ε . Unless stated otherwise, all languages

considered are free from the empty word. For any k ≥ 1, for a word w, |w| ≥ k, let ik(w) and tk(w) be the

prefix and, respectively, the suffix of w of length k. If a word w has length at least k, fk(w) denotes the

set of factors of w of length k, otherwise the empty set. Obviously, ik(w), tk(w) and fk can be extended

to languages. The i-th character of w is denoted by w(i),1 ≤ i ≤ |w|.

A (nondeterministic) finite automaton (FA) is denoted by M = (ϒ,Q,δ , I,T ), where I,T ⊆ Q are

respectively the initial and final states and δ is a relation (or its graph) over Q×ϒ×Q. A (labeled)

path is a sequence q1
a1→ q2

a2→ ···
an−1
→ qn, such that, for each 1 ≤ i < n, (qi,a,qi+1) ∈ δ . The path label

is a1a2 . . .an−1, the path states are the sequence q1q2 . . .qn. An FA is unambiguous if each sentence in
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L(M) is recognized by just one computation.

An extended context-free (ECF) grammar is a 4-tuple G = (VN ,ϒ,P,S), where ϒ is the terminal

alphabet, VN is the nonterminal alphabet, P is the set of rules, and S ⊆VN is the set of axioms. Each rule

has the form X → RX , where X ∈VN and RX is a regular language over the alphabet V = ϒ∪VN . RX will

be defined by means of an unambiguous FA, MX = (V,QX ,δX , IX ,TX). We safely assume that for each

nonterminal X there is exactly one rule, to be written as X → MX or X → RX . A rule X → RX is a copy

rule if ∃Y ∈VN : Y ∈ RX ; we assume that there are no copy rules. A context-free (CF) grammar is an ECF

grammar such that for each rule X → RX , RX is a finite language over V .

The derivation relation ⇒⊆V ∗×V ∗ is defined as follows for an ECF grammar: u ⇒ v if u = u′Xu′′,

v = u′wu′′, X → RX ∈ P, and w ∈ RX .

A word is X -grammatical if it derives from a nonterminal symbol X . If X is an axiom, the word is

sentential. The language generated by G starting from a nonterminal X is denoted by L(G,X)⊆ ϒ+ and

L(G) =
⋃

X∈S L(G,X).
The usual assumption that all parts of a CF grammar are productive can be reformulated for ECF

grammars by combining reduction (as in a CF grammar) and trimming of the MX FA for each rule

X → MX , but we omit details for brevity.

An ECF grammar is in operator (normal) form if for all rules X → RX and for each x ∈ RX , f2(x)∩
VNVN = /0, i.e. it is impossible to find two adjacent nonterminals. Throughout the paper we only consider

ECF grammars in operator form.

Let G = (VN ,ϒ,P,S) and assume that {(,)}∩ϒ = /0. The parenthesis grammar G() is defined by the

4-tuple (VN ,ϒ∪{(,)},P′,S) where P′ = {X → (RX) | X → RX ∈ P}. Let σ ′ be the homomorphism which

erases parentheses, a grammar G is structurally ambiguous if there exist w,z ∈ L(G()),w 6= z, such that

σ ′(w) = σ ′(z). Two grammars G′ and G′′ are structurally equivalent if L(G′
()) = L(G′′

()).

Strict local testability and tagged languages Words of length k are called k-words. The following

definition, equivalent to the classical ones (e.g., in [20],[5]), assumes that any input word x ∈ ϒ+ is

enclosed between two special words of sufficient length, called end-words and denoted by #©. Let # be a

character, tacitly assumed to be in ϒ and used only in the end-words. We actually use two different end-

words, without or with tags, depending on the context: #©∈ #+ (e.g. in Definition 2.1) or #©∈ (#⊙)∗#,

(e.g. in Definition 2.2).

Definition 2.1. Let k ≥ 2 be an integer, called width. A language L is k-strictly locally testable, if there

exists a k-word set Fk ⊆ ϒk such that L = {x ∈ ϒ∗ | fk ( #©x #©) ⊆ Fk}; then we write L = SLT(Fk). A

language is strictly locally testable (SLT) if it is k-strictly locally testable for some k.

We assume that the three characters, called tags, [, ], and ⊙ are distinct from terminals and nonter-

minals characters and we denote them as ∆ = {[, ],⊙}. For any alphabet, the projection σ erases all the

tags, i.e. σ(x) = ε , if x ∈ ∆, otherwise σ(x) = x. Here we apply the SLT definition to words that contain

tags and are the base of our models. Let Σ be the terminal alphabet. A tagged word starts with a terminal

and alternates tags and terminals.

Definition 2.2 (tagged word and tagged language). Let here and throughout the paper k ≥ 3 be an odd

integer. A tagged word is a word w in the set Σ(∆Σ)∗, denoted by Σ�. A tagged sub-word of w is a factor

of w that is a tagged word. A tagged language is a set of tagged words. Let Σ�k = {w ∈ Σ� | |w| = k}.

We call tagged k-word any word in Σ�k. The set of all tagged k-words that occur in w is denoted by

ϕk(w).
A language L ⊆ Σ� is a k-strictly locally testable tagged language if there exists a set of tagged

k-words Φk ⊆ Σ�k such that L =
{

w ∈ Σ� | ϕk ( #© [ w ] #©)⊆ Φk

}
. In that case we write L = SLT(Φk).

The k-word set Fk ⊆ (Σ∪∆)k derived from Φk is Fk =
⋃

x∈SLT(Φk) fk(x).
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A tagged k-word set Φk is conflictual if, and only if, ∃x,y ∈ Φk,x 6= y, such that σ(x) = σ(y).

E.g., SLT({#[a, a⊙b, b⊙a, a]#}) = (a⊙b⊙)∗a.

We observe that, for each word w ∈ Σ�, the set ϕk(w) is included in fk(w). E.g., from Φ3 = {#[a, a⊙
b, b⊙a, a]#} we derive the 3-word set F3 = Φ3 ∪{[a⊙, [a], ⊙b⊙, ⊙a⊙, ⊙a]}. Yet, although Φk ⊂ Fk,

the languages defined by strict local testing obviously coincide: SLT(Fk) = SLT(Φk).
In what follows all tagged word sets considered are not conflictual, unless stated otherwise. An

important remark is that for every word w over Σ, σ−1(w)∩SLT(Φk) is either empty or a singleton: the

tagged word corresponding to w.

The following technical lemma is useful for later proofs.

Lemma 2.3. Let w ∈ Σ�k; let s′,s′′ ∈ ∆ be two distinct tags. Then, for every 3 ≤ h ≤ k+ 2, the tagged

word set ϕh(ws′ws′′w) is conflictual.

Proof. Let w= a1s2a3 . . . sk−1ak. It suffices to observe that the conflicting tagged h-words th(a1s2a3 . . . sk−1

aks′a1) and th(a1s2a3 . . . sk−1aks′′a1) are contained in ϕh(ws′ws′′w).

An immediate corollary: when w = a ∈ Σ, for any sufficiently long word z ∈ a(∆a)∗, if z contains

two distinct tags, the set ϕk(z) is conflictual.

3 Reductions and maximal languages

We show that the SLT tagged words, defined by a set Φ of (non-conflictual) k-words, can be interpreted

as defining another language over the terminal alphabet; the language is context-free but not necessarily

regular, and is called maximal language or max-language. We anticipate from Section 4 the reason of

the name “max-language”: such languages belong to the family of Higher-order Operator Precedence

languages (Definition 4.3), and they include any other HOP language that is structurally compatible. We

first define the reduction process, then we prove some properties of the language family.

Consider a set Φk ⊆ Σ�k and a word w over Σ; let x ∈ SLT(Φ) be the tagged word corresponding

to w, if it exists. Word w belongs to the max-language if x reduces to a specified word by the repeated

application of a reduction operation. A reduction cancels from the current x a sub-word of a special form

called a handle, replaces it with a tag, and thus produces a new tagged word. All the tagged words thus

obtained by successive reductions must belong to SLT(Φ).

Definition 3.1 (maximal language). Let Φ ⊆ Σ�k. A handle is a word of the form [x] where x ∈
(Σ−{#}) · (⊙(Σ−{#}))∗, i.e., a handle is a tagged word enclosed between the tags [ and ], and not

containing symbols in {[, ],#}.

A reduction is a binary relation Φ⊆ (Σ∪∆)+× (Σ∪∆)+ between tagged words, defined as:

w[u]z Φ wsz if, and only if, w[u]z ∈ SLT(Φ) where [u] is a handle, and ∃s ∈ ∆ : wsz ∈ SLT(Φ). (1)

The handle [u] is called reducible. A reduction is called leftmost if no handle occurs in w. The definition

of rightmost reduction is similar. Observe that at most one tag s may satisfy Condition (1) since Φ is

non-conflictual. The subscript Φ may be dropped from Φ when clear from context;
∗
 is the reflexive

and transitive closure of .

The tagged maximal language defined by Φ via reduction is Red(Φ) = {w ∈ Σ� | #© [ w ] #©
∗
 Φ #©⊙

#©}. The maximal language defined by Φ, is Red(Φ) = σ
(
Red(Φ)

)
.

We say that languages Red(Φ) and Red(Φ) are in the families Red(k) and Red(k) respectively; a

language is in the Red family if it is in Red(k) for some k.
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Notice that in Definition 3.1 the reductions may be applied in any order, without affecting Red(Φ).

Example 3.2. This and the following examples were checked by a program. The Dyck language (without

ε) over the alphabet {a,a′,b,b′}, which can be easily extended to an arbitrary number of matching

pairs, is a Red(3) language defined by the tagged word set Φ = {# ⊙ #, b′]a′, a′]b′, #[b, b′[b, b[b,
a′]a′, #[a, b′]#, a⊙a′, a[b, b[a, b′[a, a′[b, b′]b′, a′]#, b⊙b′, a′[a, a[a}. Word aaa′a′aa′ is recognized

by the following reductions, respectively leftmost and rightmost:

#©[a[a⊙a′]a′[a⊙a′] #© #©[a⊙a′[a⊙a′] #© #©[a[a⊙a′]a′[a⊙a′] #© #©[a[a⊙a′]a′] #©
 #©[a⊙a′] #© #©⊙ #©  #©[a⊙a′] #© #©⊙ #©

Some elementary properties of max-languages come next.

Lemma 3.3. 1. ∄x,y ∈ Red(Φ), x 6= y: σ(x) = σ(y). (Unambiguity)

2. ∀x,y, if x ∈ Red(Φ) and #© [ x ] #©
∗
 Φ #© [ y ] #©, then y ∈ Red(Φ). (Closure under )

3. Let Fh = σ(Φ) (hence h = ⌈k/2⌉). Then SLT(Fh)⊇ Red(Φ). (Refinement over SLT)

Proof. Stat. 1. and 2. follow from Definition 3.1. Define the tagged k-words set Φ̂ = σ−1(Fh)∩Σ�k,

which clearly includes Φ. From the identity SLT(Fh) = σ(SLT(Φ̂)), Stat. 3 follows.

Example 3.4. This is a running example. L = {an(cb+)n | n > 0} is a Red(3) language specified by

Φ = {#⊙#, #[a, b]#, b]c, c⊙b, b⊙b, a⊙ c, a[a}. The reduction steps for word aaacbbbbcbcbbb are:

#©[a[a[a⊙ c⊙b⊙b⊙b⊙b]c⊙b]c⊙b⊙b⊙b] #© 
#©[a[a⊙ c⊙b]c⊙b⊙b⊙b] #© #©[a⊙ c⊙b⊙b⊙b] #© #©⊙ #©

Therefore [a[a[a⊙ c⊙b⊙b⊙b⊙b]c⊙b]c⊙ b⊙b⊙b] ∈ Red(Φ) and aaacbbbbcbcbbb ∈ Red(Φ). On

the other hand, word aacbb is not accepted because it is not the content of a tagged word that reduces

to #© ⊙ #©, in particular, the reduction of handle [a⊙ c⊙ b⊙ b] in #©[a[a⊙ c⊙ b⊙ b] #© is not possible

because there is not a tag s such that as# ∈ SLT(Φ).

First, we compare Red with REG, the family of regular languages.

Theorem 3.5. The family of Red languages strictly includes the SLT family and is incomparable with

the REG family.

Proof. Inclusion SLT ⊆ Red: The mapping (̃·) : Σ+ → Σ� is defined by z̃ = z(1)⊙ z(2)⊙·· ·⊙ z(|z|), for

any z ∈ Σ+. Given a set Fj, j ≥ 2 defining an SLT language over Σ, we define the set Φk, k = 2 j−1: it

contains, for every u∈Fj∩(Σ−{#})+, the tagged word ũ, and, for every w= # j1 v# j2 ∈Fj, j1+ |v|+ j2 =
j, the tagged word w̃ = (#⊙) j1−1#[v(1)⊙ v(2)⊙·· ·⊙ v(|v|)]#(⊙#) j2−1.

We prove that SLT(Fj) ⊆ Red(Φk). Consider any z ∈ SLT(Fj), for simplicity assume |z| ≥ j. Then

˜# j−1z# j−1 = #©[z(1)⊙·· ·⊙ z(|z|)] #© Φk
#©⊙ #©. Since the converse inclusion SLT(Fj)⊇ Red(Φk) is

obvious, it follows that SLT ⊆ Red.

The inclusion SLT ⊂ Red is proved by using L = a∗ba∗∪a+ which is defined by Φ3 = {#[b,a]b,#⊙
#,#[a,b]#,a⊙a,b[a,a]#}. But it is known that L is not locally testable.

The inclusion Red 6⊆ REG is proved by the Dyck languages. To prove REG 6⊆ Red, we consider

R=(aa)+. By Lemma 2.3, a Φk for R may only use one tag, and we first consider the case [ (the case with

] is analogous). For any odd value k ≥ 3, Φk has the form { #©[a, . . .#[a[. . . [a,a[. . . [a, . . .a[. . . [a] #©, . . .},

therefore the handle is always [a] and Red(Φk) necessarily includes also words with an odd number of

a’s. The same conclusion holds in the ⊙ case, since any handle has the form [a⊙ . . .⊙a].
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We prove that family Red is an infinite strict hierarchy.

Theorem 3.6. For every k ≥ 5, the language family Red(k) strictly includes Red(k−2).

Proof. Consider the languages L(h) = (ahb)+, a ≥ 1. It is easy to verify that for k = 2h+ 1, L(h) is in

Red(k). E.g., L(2) = Red({#⊙#[a, b]#⊙#, b]a⊙a, a⊙b]a, a⊙a⊙b, #[a⊙a, a⊙b]#, #⊙#⊙#}).
We prove that L(h) is not in Red(k− 2). Assume by contradiction that L(h) = Red(Φk−2), for some

Φk−2, and consider y ∈ L(h) and y′ ∈ Red(Φk−2), such that y = σ(y′). The word y′ contains a tagged

sub-word w = as1 . . .ash−1a, si ∈ ∆, and two cases are possible.

• ∃1 ≤ i < j ≤ h−1 such that si 6= s j. By Lemma 2.3, the set ϕk−2(w) is conflictual.

• All si in w are identical. But this means that, if ahb ∈ Red(Φk−2) (by hypothesis), then also ah+1b ∈
Red(Φk−2), which is not in L(h).

The Red family is not closed under the following operations, as proved by witnesses:

Intersection: {anbnc∗ | n > 0}= Red({b[c, c]#, a⊙b, c⊙ c, #⊙#, #[a, b]#, b]b, a[a }) and {a∗bncn |
n > 0} = Red({#[b, a]b, c]#, c]c, #⊙ #, b[b, #[a, a⊙ a, b⊙ c}), and their intersection is not context-

free.

Set difference: (a∗ba∗ ∪ a+)− a+. The first language is in Red(3) (see the proof of Theorem 3.5) and

requires #©[a and a] #© because words may begin and end with a. Since unlimited runs of a are possible,

Lemma 2.3 imposes the same tag between any pair of a’s, hence the resulting Red language necessarily

contains a+, a contradiction.

Concatenation: a∗b = Red({#[b, a⊙b, #⊙#, #[a, b]#, a⊙a}) concatenated with a+ is similar to the

witness for set difference.

Intersection with regular set: {a,b}+ ∩ (aa)+, see Theorem 3.5.

The language family of the next section contains Red and has better closure properties.

4 Generalization of operator-precedence languages

We introduce a new family of languages, called HOP(k), standing for Higher-order Operator Precedence

languages of order k ≥ 3. The HOP(k) condition is decidable for grammars; HOP(k) languages are

deterministic, also in reverse. With respect to existing families, we start from the operator-precedence

(OP) languages, defined by Floyd [11], and prove that they are the same as the new family HOP(3), when

the grammar rules are in non-extended CF form. We prove the Boolean closure property for the family

of HOP(k) languages having the same set Φk of tagged k-words. The top element in such family is the

Red language (also known as max-language) defined by Φk.

Operator Precedence Grammars An Operator Precedence grammar1 [11] is characterized by three

OP relations over Σ2, denoted by ⋗,
.
=, ⋖, that are used to assign a structure to the words (see e.g. [13]

for the classical parsing algorithm).

Example 4.1. Consider the following operator grammar (with rules specified for brevity by regular

expressions) and its OP relations:

G1 = {S → XbX ∪bX , X → aa∗} a
.
= a, a⋗b, b⋖a.

By default, #⋖ x and x⋗#, for any x ∈ Σ, and #
.
= #. A grammar is OP if at most one relation exists be-

tween any two terminal symbols. To parse word aaaba, the bottom-up OP parser executes the following

1Floyd’s definition uses CF grammars, but it is straightforward to extend it to ECF grammars.
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reduction steps:

#⋖a
.
= a

.
= a⋗b⋖a⋗# ⇐=G1

#
X
⋖ b⋖a⋗# ⇐=G1

#
X
⋖ b

X
⋗ # ⇐=G1

#
S.
= # (2)

If we substitute the OP relation symbols with tags, the above OP relations are encoded by the tagged 3-

words Φ3 = {a⊙a,a[b,b]a,#[a,a]#,#⊙#,#[b,b]#}. The OP property implies that Φ3 is non-conflictual.

Notice that each word in (2) (disregarding the #’s) belongs to Red(Φ3). Recalling Definition 3.1, we

observe that a⊙a⊙a]b[a ∈ Red(Φ3), therefore aaaba ∈ Red(Φ3). Moreover, Red(Φ3) = a∗ba∗∪a+ ⊃
L(G1).

Our generalization of OP grammars is based on the idea of using tagged k-words, with k ≥ 3, for

assigning a syntactic structure to words. The test for a grammar to be OP [11] is quite simple, but the

wider contexts needed when k > 3, impose a more involved device for the no-conflict check. For that we

define a grammar, called tagged, obtained from the original grammar by inserting tags into rules.

Definition 4.2 (Tagged grammar). Let G = (VN ,Σ,P,S) be a grammar. Define a language substitution

ρ : V → P

(
V ∪∆∪ (Σ∪∆)2

)
such that

ρ(a) = {a, a⊙, a], [a} ,a ∈ Σ; ρ(X) = {X}∪∆, X ∈VN .

Let R be the regular language defined by R = (VN ∪{[}) ·Σ · ((VN ∪{⊙}) ·Σ)∗ · (VN ∪{]}). We construct

from G the tagged grammar associated to G, denoted by G = (VN ,Σ∪∆,P,S). For each rule X → RX ∈ P,

G has the rule X → RX where RX = ρ(RX)∩R.

The idea underlying G’s definition is to insert tags into the rules of P, so that G’s structure becomes

visible in the tagged words generated by G. Tagged grammars are akin to the classical parenthesis

grammars [19], yet their representation of nested structures is more parsimonious, since a single “[” tag

(analogously a “]”) can represent many open (resp. closed) parentheses. Notice that σ(L(G)) ⊇ L(G),
since tagged grammar rules exist, which replace a nonterminal with a tag. Such rules may generate words

that, after deleting the tags, are not in L(G). To illustrate, going back to G1 of Example 4.1, grammar

G1 has the rules {S → (X ∪ [)b(X∪ ]), X → [a(⊙a)∗]} and generates the word [b], while σ([b]) /∈ L(G1).
With the help of the tagged grammar G, we can compute all the tagged k-words that may occur in parsing

any valid word for grammar G (exemplified in (2)). Then, we can check whether they are conflictual or

not. In the latter case, grammar G fulfills the next Definition 4.3 of HOP(k) grammar.

Returning to Example 4.1, the tagged 3-words ϕ3

(
#L(G1)#

)
coincide with the set Φ3 encoding the

precedence relations. As observed, since G1 is an OP grammar, Φ3 is nonconflictual, and G1 is a HOP(3)

grammar as well. The formalization follows.

Definition 4.3 (Higher-order Operator Precedence grammars). Let k ≥ 3 be an odd integer. A grammar

G, having G as associated tagged grammar, is a higher-order operator precedence grammar of order k

(in short HOP(k)) if

∄u,v ∈ ϕk

(
#©L(G) #©

)
such that u 6= v and σ(u) = σ(v) (3)

This means that the set of all tagged k-words occurring in any sentence of L(G) is nonconflictual. The

union of the families HOP(k) for all values of k is denoted by HOP. The family of grammars HOP(k)
having the same set Φ of tagged k-words is denoted by HOP(k,Φ). Identical notations denote the corre-

sponding language families, when no confusion arises.

The decidability of Condition (3) for a given grammar and a fixed value of k is obvious. With an

abuse of terminology, we also say that ϕk(L(G)) are the tagged k-words of grammar G.
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Theorem 4.4. The family OP of operator precedence languages coincides with the family HOP(3), and

is properly included within the HOP family.

Proof. The proof formalizes the already stated fact that OP relations are encoded by tagged 3-words. Let

G be an ECF grammar. For all letters a,b ∈ Σ we show that the following relations hold:

a=̇b ⇐⇒ a⊙b ∈ ϕ3(L(G)), a⋖b ⇐⇒ a[b ∈ ϕ3(L(G)), a⋗b ⇐⇒ a]b ∈ ϕ3(L(G)).

If a⋗ b, from the definition of OP grammar [11], it follows that there are a sentential word uXv with

i1(v) = b, and an X -grammatical word w such that t1(w) = a or t2(w) = aY with Y ∈VN . In both cases,

for the tagged grammar G (see Definition 4.2), either the substitution ρ(a) = a] or ρ(Y ) = ] causes the

3-word a]b to be in Φ3, the tagged k-words of grammar G. (Notice that a wrong choice for the symbol

returned by ρ(Y ), i.e. [ and ⊙, is neutralized by the intersection with language R and does not show up

in the tagged grammar.) Conversely, it is obvious that a]b ∈ Φ3 implies a⋗b.

We omit the similar case a⋖ b, and examine the case a=̇b, which happens if there exists a rule

containing in the right part as factor ab or aY b. The respective substitutions ρ(a) = a⊙ and ρ(Y ) = ⊙
produce the 3-word a⊙b ∈ Φ3. The converse is also immediate. It follows that, for every pair a,b ∈ Σ,

grammar G violates the OP condition if, and only if, the HOP condition is false for k = 3.

On the other hand, we show a HOP language that is not an OP language. Let L = {an(baab)n | n≥ 1}.

For any grammar of L, by applying a pumping lemma, it is clear that the relations a⋖ a and b⋗ b are

unavoidable, i.e., the 3-words a[a,b]b are necessarily present in Φ3. But it can be checked that, no matter

how we choose the other precedence relations, either there is a conflict or the language generated by the

grammar fails to be L; this can be exhaustively proved by examining all possible non-conflictual choices

of Φ3 ⊂ Σ�3.

On the other hand, it is possible to check that the grammar G2 : S → aSbaab∪ abaab is in HOP(7),

and its tagged 7-words are

Φ7 =





#⊙#[a⊙b, a⊙a⊙b]#, #[a[a⊙b, a[a⊙b⊙a, b]b⊙a⊙a, a⊙b]b⊙a,
a⊙a⊙b]b, a⊙b]#⊙#, a[a[a[a, b⊙a⊙a⊙b, #[a⊙b⊙a, #⊙#⊙#⊙#,
a[a[a⊙b, #⊙#⊙#[a, b]#⊙#⊙#, #⊙#[a[a, #[a[a[a, a⊙b⊙a⊙a



 .

It is known that OP grammars are structurally unambiguous, and that OP languages are CF determin-

istic and reverse-deterministic. Since such properties immediately follow from the bottom-up parser for

OP grammars, which is easily extended to HOP(k) grammars without changing the essential operations,

the same properties hold for any value of k.

Theorem 4.5. Every HOP grammar is structurally unambiguous. The HOP language family is properly

included within the deterministic and reverse-deterministic CF languages.

Proof. We only need to prove the last statement. Let L = {anban | n ≥ 1}, which is deterministic and

reverse deterministic. For any grammar G of L, a straightforward application of the pumping lemma

shows that, for any k ≥ 3, ϕk(L(G)) includes a word as1as2 . . .a containing two distinct tags “[” and “]”,

therefore it also includes two conflictual k-words, because of the remark following Lemma 2.3.

We show the significant connection between the HOP languages and the Red languages, which moti-

vates their appellation of max-languages.

Max-grammars We prove by a fairly articulate construction that if L is a max-language, i.e. L =
Red(Φk), for some Φk ⊆ Σ�k, then L is generated by a grammar G ∈ HOP(k,Φk). Moreover, L is the

largest language in HOP(k,Φk).
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Preliminarily, we define, for an arbitrary SLT language over a generic alphabet ϒ, a nondetermin-

istic FA which is symmetrical w.r.t. the scanning direction; this property contrasts with the standard

deterministic sliding-window device, e.g., in [5].

Definition 4.6 (symmetrical FA). Let Fk be a k-word set. The k-symmetrical automaton A associated to

Fk is obtained by trimming the FA A0 = (ϒ,Q,δ , I,T ) where:

• Q = {(β ,α) ∈ ϒk−1 ×ϒk−1 | β ,α ∈ fk−1(Fk)}

• (β ,α)
a
→ (β ′,α ′) ∈ δ if, and only if, β ′ = tk−1(β a)∧α = ik−1(aα ′)

• I = {(tk−1( #©),α) ∈ Q}, T = {(β , ik−1( #©)) ∈ Q}.

Intuitively, β and α represent the look-back and look-ahead (k−1)-words of state (β ,α).
See Figure 1 for illustration. Two relevant properties of the symmetrical FA A are:

1. L(A) = SLT(Fk), since, on each accepting path, the k-factors are by construction those of Fk.

2. The automaton A is unambiguous. Consider a word x = uyv, and assume by contradiction that

there are two accepting paths in A, with state sequences πuπyπv, πuπ ′
yπv and the same label x

(u and v could be ε). But, by construction of A, if πy = q1q2 . . .qt and π ′
y = q′1q′2 . . .q

′
t , then

q1 = (tk−1(u), ik−1(y)) and also q′1 = (tk−1(u), ik−1(y)). This holds for every subsequent step, hence

π ′
y = πy, so the two paths must be identical.

Given Φ ⊆ Σ�k, we construct a grammar, denoted by GΦ, that generates the max-language Red(Φ).
The construction is also illustrated in Example 4.8.

Definition 4.7 (max-grammar construction). Let Φ⊆ Σ�k, and let AΦ = (Σ∪∆,Q,δ , I,T) be the symmet-

rical automaton recognizing SLT(Φ). The grammar GΦ = (Σ∪∆,VN ,P,S) called tagged max-grammar,

is obtained by reducing (in the sense of trimming the useless parts) the grammar constructed as follows.

• VN is a subset of Q × Q such that (q1,q2) ∈ VN if q1 = (β1, [γ1) and q2 = (γ2],α2), for some

β1,γ1,γ2,α2. Thus a nonterminal X is also identified by (β1, [γ1,γ2],α2).

• The axiom set is S = I×T .

• Each rule X → RX ∈ P is such that the right part is defined by MX = (V ∪∆,QX ,δX ,{pI},{pT }),
an FA where QX ⊆ Q, next specified.

Let X = (βX ,αX ,β
′
X ,α

′
X ). Then: pI = (βX ,αX), pT = (β ′

X ,α
′
X ),

• The graph of the transition relation is δX = (δ ∪δ ′)−δ ′′, where

δ ′ =




(β1,α3)

(β1,α1,β2,α2)
−→ (β3,α2)

(β1,α1,β2,α2) ∈VN ,

(β1,α3)
⊙

−→ (β3,α2) ∈ δ ∨

(β1,α3) = pI ∧ (β1,α3)
[

−→ (β3,α2) ∈ δ ∨

(β3,α2) = pT ∧ (β1,α3)
]

−→ (β3,α2) ∈ δ





δ ′′ =

{
q′

[
−→ q′′ ∈ δ q′ 6= pI

}
∪

{
q′

]
−→ q′′ ∈ δ q′′ 6= pT

}
∪

{
q′

x
−→ pI ∈ δ

}
∪
{

pT
x

−→ q′ ∈ δ
}
.

Intuitively, δ ′ adds transitions with nonterminal labels between any two states already linked by a tag-

labeled transition, which are “compatible” with the nonterminal name (i.e. with the same look-back and

look-ahead). The transitions δ ′′ to be deleted are: those labeled by tags “[“ or “]” that are not initial or

final, and those reentering the initial or final states.
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Define the max-grammar as GΦ = (VN ,Σ,{X → σ(RX) | X → RX ∈ P} ,S).
The grammar graph Γ(GΦ) of GΦ is a graph containing all the arcs and states of the symmetrical

automaton AΦ associated to Φ, together with all the arcs labelled by nonterminals, defined by the above

construction of δ ′.

The grammar graph synthetically represents all the rules of the max-grammar GΦ and will be used in

the proof of the forthcoming lemma. Each rule right part is a subgraph starting with a label “[“, ending

with a label “]”, and containing only terminals and ⊙ tags; the rule left part is denoted by the pair of

initial and final states of the subgraph.

Example 4.8. We show the construction of the max-grammar for the tagged 3-word set Φ = {#⊙ #,
#[a, b]#, b]c, c⊙ b, b ⊙ b, a⊙ c, a[a} of Example 3.4. Its symmetrical automaton AΦ is reported

in Figure 1 (i). The nonterminals are included in the set {(⊙#, [a),([a, [a)} ×{(b],c⊙),(b],#⊙)}, but

(⊙#, [a,b],c⊙) and ([a, [a,b],#⊙) are unreachable, because they are neither axioms nor they are transition

labels in the grammar graph. Thus only two nonterminals are left: the axiom X = (⊙#, [a,b],#⊙) and Y =
([a, [a,b],c⊙) which occurs on the transition from ([a,⊙c) to (a⊙,c⊙). The two rules of the resulting

grammar are X → [a(⊙∪Y )c⊙ (b⊙)∗b] and Y → [a(⊙∪Y )c⊙ (b⊙)∗b] and their automata are show in

Figure 1 (ii) and (iii), respectively.

By construction, the rules of any tagged max-grammar GΦ have some properties worth noting:

1. For each rule X → MX , RX ⊆ (VN ∪{[}) ·Σ · ((VN ∪{⊙}) ·Σ)∗ · (VN ∪{]}). This fact implies that

GΦ and GΦ are in operator form.

2. For each rule X → MX in P, MX is an unambiguous FA.

We prove that the languages defined by max-grammars and by reductions of Definition 3.1 coincide.

Lemma 4.9. Let Φ ⊆ Σ�k, and let GΦ and GΦ be the max-grammars of Definition 4.7. Then L(GΦ) =
Red(Φ) and L(GΦ) = Red(Φ).

Proof. It suffices to consider GΦ, since GΦ has the same structure. We need also the symmetrical FA AΦ,

and the grammar graph Γ(GΦ). Notice that AΦ and Γ(GΦ) have the same set of states, and that AΦ is a

sub-graph of Γ(GΦ), which only differs by the absence of nonterminally-labeled arcs.

We say that two words w and w′ are equivalent on a sequence of states π = q1,q2, . . . ,qn (or path

equivalent), written w ≡π w′, iff in Γ(GΦ) there exist two paths, both with the state sequence π , such that

w and w′ are their labels.

We start from a string w(0) ∈ SLT(Φ); we will show that, for some m > 0 and for some axiom W ∈ S:

w(0)
 Φ w(1)

 Φ . . . Φ w(m) = #©⊙ #© iff w̃(0) ⇐=GΦ
w̃(1) ⇐=GΦ

. . .⇐=GΦ
w̃(m) =W,

where w̃(0) = w(0), and ∀i, ∃πi : w̃(i) ≡πi
w(i).

We prove the theorem by induction on the reduction steps.

Base case: Consider w̃(0): it is by definition w̃(0) = w(0), hence ∃π : w̃(0) ≡π w(0).

Induction case: First, we prove that w(t)
 Φ w(t+1) implies w̃(t) ⇐=GΦ

w̃(t+1) with w̃(t+1) ≡πt+1
w(t+1).

To perform the reduction, we need a handle, let it be called x, such that w(t) = uxv  w(t+1) = usv,

s ∈ ∆. By induction hypothesis, we know that w̃(t) ≡πt
w(t) = uxv, therefore w̃(t) = ũx̃ṽ with ũ ≡π ′

t
u,

x̃ ≡π ′′
t

x, and ṽ ≡π ′′′
t

v, with πt = π ′
t π

′′
t π ′′′

t . The equivalence x̃ ≡π ′′
t

x, with x handle, implies that there

is a right part of a rule X → MX ∈ P, such that x̃ ∈ RX . Hence, w̃(t) ⇐=GΦ
w̃(t+1) = ũX ṽ and X =

(tk−1( #©u), ik−1(xv #©), tk−1( #©ux), ik−1(v #©)). The reduction relation implies that in AΦ (and therefore

also in Γ(GΦ)) there is a path with states πt+1 and labels w(t+1): call π ′
t+1 the states of its prefix with

label u, and π ′′
t+1 those of its suffix with label v. Let us call qu the last state of π ′

t+1 and qv the first state
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]
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Figure 1: (i) Symmetrical FA AΦ of Example 3.4. (ii) Automaton of the rule X → [a(⊙∪Y )c⊙ (b⊙)∗b]
of Example 4.8. (iii) Automaton of the rule Y → [a(⊙∪Y )c⊙ (b⊙)∗b] of Example 4.8.
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of π ′′
t+1. By construction of GΦ, in Γ(GΦ) there is a transition qu

X
−→ qv, while in AΦ there is qu

s
−→ qv.

From this it follows w̃(t+1) ≡π ′
t+1π ′′

t+1
w(t+1).

We now prove that w̃(t) ⇐=GΦ
w̃(t+1) implies w(t)

 Φ w(t+1), with w(t+1) ≡πt+1
w̃(t+1). By defini-

tion of derivation, it is w̃(t) = ũx̃ṽ ⇐=GΦ
w̃(t+1) = ũX ṽ for some X ∈ VN . By induction hypothesis, we

know that ũx̃ṽ = w̃(t) ≡πt
w(t), hence w(t) = uxv with ũ ≡π ′

t
u, x̃ ≡π ′′

t
x, and ṽ ≡π ′′′

t
v, with πt = π ′

t π
′′
t π ′′′

t .

From this it follows that X = (tk−1( #©u), ik−1(xv #©), tk−1( #©ux), ik−1(v #©)), and that x must be an handle.

Therefore, w(t) = uxv w(t+1) = usv, s ∈ ∆, and in AΦ (and in Γ(GΦ)) there is a path with states πt+1

and labels w(t+1): call π ′
t+1 the states of its prefix with label u, and π ′′

t+1 those of its suffix with label v.

Let us call qu the last state of π ′
t+1 and qv the first state of π ′′

t+1. By construction of GΦ, in Γ(GΦ) there is

a transition (qu,X ,qv), while in AΦ there is (qu,s,qv). Hence w̃(t+1) ≡π ′
t+1π ′′

t+1
w(t+1).

Theorem 4.10. Let G be any grammar in the family HOP(k,Φ) and G its tagged version. Let Red(Φ) =
L(GΦ) (respectively Red(Φ) = L(GΦ)) be the max-languages. The following inclusions hold:

L(G)⊆ Red(Φ), L(G)⊆ Red(Φ).

Proof. (Hint) Let G= (VN ,Σ,P,S), G= (VN ,Σ∪∆,P,S), GΦ = (V ′
N ,Σ,P

′,S′) and GΦ = (V ′
N ,Σ∪∆,P

′
,S′).

We prove that if, for X ∈ S, X
+

=⇒G w then, for some Y ′ ∈ S′, Y ′ +
=⇒GΦ

w; we may assume both derivations

are leftmost. If X
+

=⇒G uX1v=⇒G uw1v=w then w1 is the leftmost handle in w, and by definition of max-

grammar, there exists a derivation uZ′v=⇒G uw1v where Z′ is the 4-tuple (tk( #©u), ik(w1v #©), tk( #©uw1),
ik(v #©)).

Then, after the reduction or the derivation step, the position of the leftmost handle in uX1v and in

uZ′v coincide, and we omit the simple inductive arguments that completes the proof.

Clearly, the two derivations of G and of GΦ have the same length and create isomorphic trees, which

only differ in the nonterminal names. By applying the projection σ to both derivations, the inclusion

L(G)⊆ Red(Φ) follows.

Thus, for each set of tagged k-words Φ, the max-language L(GΦ) includes all languages in HOP(k,Φ),
actually also any language in HOP(k,Φ′), where Φ′ ⊆ Φ.

To prove the Boolean closure of HOP(k,Φ), we need the following lemma (the tedious proof is

omitted) which extends Theorem 5 of Knuth [15] from CF to ECF grammars.

Lemma 4.11. Let G(),1 and G(),2 be ECF parenthesis grammars. Then there exists an ECF parenthesis

grammar G() such that L(G()) = L(G(),1)−L(G(),2).

Theorem 4.12. For every k and Φ ⊂ Σ�k, the language family HOP(k,Φ) is closed under union, inter-

section and under relative complement, i.e., L1 −L2 ∈ HOP(k,Φ) if L1,L2 ∈ HOP(k,Φ).

Proof. Let Li = L(Gi) where Gi = (VNi
,Σ,Pi,Si), for i = 1,2. We assume that the nonterminal names of

the two grammars are disjoint.

Union. The grammar G=(VN1
∪VN2

,Σ,P1∪P2,S1∪S2) generates L(G1)∪L(G2) and is in HOP(k,Φ),
since its set of tagged k grams is Φ.

Complement. Let G(),i be the parenthesis grammar of Gi, i = 1,2, and by Lemma 4.11 let G() =
(VN ,Σ,P,S) be the parenthesis grammar such that L(G()) = L(G(),1)− L(G(),2). Since G1 and G2 are

structurally unambiguous by Theorem 4.5, there exists a bijection between the sentences of Li and

L(G(),i), i = 1,2.

Define the grammar G = (VN ,Σ,P,S) obtained from G() by erasing the parentheses from each rule

right part. It is obvious that L(G) = L1−L2 since, if x,y are sentences of G() and σ(x) = σ(y), then x = y.
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It remains to prove that G has the HOP(k) property. Each sentence of L(G) corresponds to one, and only

one, sentence of G(). Since L(G) ⊆ L1, the tagged k-words of grammar G are a subset of the tagged

k-words Φ of grammar G1, which by hypothesis are not conflictual. The closure under intersection is

obvious.

Combining Theorem 4.10 and Theorem 4.12, we have:

Corollary 4.13. For every k and Φ ⊂ Σ�k, the language family HOP(k,Φ) is a Boolean algebra having

as top element the max-language Red(Φ).

Our last result reaffirms for the HOP languages a useful property of OP languages.

Theorem 4.14. For every k and Φ ∈ Σ�k, the language family HOP(k,Φ) is closed under intersection

with regular languages.

Proof. (Hint) Let us consider a grammar G0 ∈ HOP(k,Φ) and a regular language R0. We first add tags

to R0 through the language substitution η : Σ2 → P(Σ ·∆ ·Σ), such that η(ab) = {a}∆{b}. Consider

the regular language R1 = η(R0) and an FA M1 = (Σ∪∆,QR,δR, IR,TR) that recognizes R1. Let AΦ be

the symmetrical automaton recognizing SLT(Φ). We apply the classic “product” construction for the

language intersection of the two FA AΦ and M1; let the product machine be (Σ∪∆,Q,δ , I,T ). Note

that a state of Q consists of three components (β1,α1,q1): the look-back β1 and look ahead α1, where

β1,α1 ∈ (Σ∪∆)k−1 come from the states of AΦ, while the state q1 comes from QR.

By extending the construction presented in Definition 4.7, we proceed now to define the grammar

G1 = (Σ∪∆,VN ,P,S) for Red(Φ)∩R1 as follows.

– VN is a subset of Q×Q such that (β1, [γ1,q1,γ2],α2,q2) ∈VN , for some β1,γ1,γ2,α2, q1, q2.

– S ⊆ VN and X ∈ S if, and only if, X = (γ1 ⊙ #,α1,q1,β1,#⊙ γ2,q2), for some γ1,γ2,α1,β1, q1 ∈ IR,

q2 ∈ FR.

– Each rule X →MX ∈P is such that the right part is an FA MX = (Σ∪∆,QX ,δX ,{pI},{pT }) where QX ⊆
Q. (For each X there exists only one MX .) Let X = (βX ,αX ,qX ,β

′
X ,α

′
X ,q

′
X ). Then: pI = (βX ,αX ,qX ),

pT = (β ′
X ,α

′
X ,q

′
X ), δX = (δ ∪δ ′)−δ ′′,

δ ′ =




(β1,α3,q1)

(β1,α1,q1,β2,α2,q2)
−→ (β3,α2,q2)

(β1,α1,q1,β2,α2,q2) ∈VN ,

(β1,α3,q1)
⊙

−→ (β3,α2,q2) ∈ δ ∨

(β1,α3,q1) = pI ∧ (β1,α3,q1)
[

−→ (β3,α2,q2) ∈ δ ∨

(β3,α2,q2) = pT ∧ (β1,α3,q1)
]

−→ (β3,α2,q2) ∈ δ





δ ′′ =

{
q′

[
−→ q′′ ∈ δ q′ 6= pI

}
∪

{
q′

]
−→ q′′ ∈ δ q′′ 6= pT

}
∪

{
q′

x
−→ pI ∈ δ

}
∪
{

pT
x

−→ q′ ∈ δ
}
.

It is easy to see that L(G1) = Red(Φ)∩R1. If we remove tags by taking G2 = (VN ,Σ,{X → σ(RX) |
X → RX ∈ P},S), we see that G2 ∈ HOP(k,Φ) by construction, and L(G2) = Red(Φ)∩R0. By Cor. 4.13,

L(G0)∩L(G2) = L(G0)∩R0 is in HOP(k,Φ).

5 Related work and conclusion

Earlier attempts have been made to generalize the operator precedence model and other similar grammar

models. We discuss some relevant works and explain how they differ from the higher-order operator

precedence model.
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Floyd himself proposed the bounded-context grammars [12], which use left and right contexts of

bounded length to localize the edges of the handle; unfortunately, the contexts contain also nonterminals

and so lose the closure properties of OP languages as well as the possibility to do local parsing.

Chain-driven languages [7] are a recent extension of OP languages, which shares with HOP the

idea of specifying the syntax structure by non-conflictual tags, but differs in technical ways we cannot

describe here. The resulting family offers some significant gain in expressive capacity over OP, enjoys

local parsability, but it has poor closure properties, and cannot be easily formulated for contexts larger

than one terminal. Notice that the automata-theoretic approach presented in [7] can be naturally applied

to HOP languages for proving their local parsability.

Since HOP extend the OP language family, which in turn include the input-driven (or VP) lan-

guage [8] family, it is interesting to compare the HOP family with the recent extension of VP languages,

recognized by tinput-driven pushdown automata (TDPDA) [16], which enjoy similar closure proper-

ties. The families HOP and TDPDA are incomparable: on one side, the language {anban | n ≥ 1} ∈
TDPDA−HOP, on the other side, TDPDA only recognize real-time languages, and thus fail the non-

realtime language which is {ambncndm | n,m ≥ 1}∪{amb+edm | m ≥ 1} ∈ HOP(3). Moreover the tinput

parser is not suitable for local parsing, because it must operate from left to right, starting from the first

character.

Recalling that OP grammars have been applied in early grammar inference studies, we mention two

loosely related language classes motivated by grammar inference research, which strives to discover ex-

pressive grammar types having good learnability properties. Within the so-called distributional approach,

several authors have introduced various grammar types based on a common idea: that the syntax class

of a word v is determined by the left and right contexts of occurrence, the context lengths being finite

integers k and ℓ. Two examples are: the (k, ℓ) substitutable CF languages [22] characterized by the impli-

cation x1vy1uz1, x1vy2uz1, x2vy1uz2 ∈ L implies x2vy2uz2 ∈ L where |v| = k and |u| = ℓ; and the related

hierarchies of languages studied in [18]. A closer comparison of HOP and language classes motivated

by grammar inference would be interesting.

Since HOP is a new language model, its properties have been only partially studied. Thus, it remains

to be seen whether other known theoretical properties of OP languages (such as the closure under con-

catenation and star or the invariance with respect to the CF non-counting property [6]) continue to hold

for HOP.

We finish by discussing the potential for applications. First, the enhanced generative capacity of

higher degree HOP grammars in comparison to OP grammars may in principle ease the task of writing

syntactic specifications, but, of course, this needs to be evaluated for realistic cases. We are confident

that the practical parallel parsing algorithm in [3] can be extended from OP to HOP grammars.

To apply HOP to model-checking of infinite-state systems, the model has to be extended to ω-

languages and logically characterized, as recently done for OP languages in [17].

Last, for grammar inference: we observe that it would be possible to define a partial order based

on language inclusion, within each subfamily of HOP(k) languages closed under Boolean operation,

i.e., structurally compatible. Such a partially ordered set of grammars and languages, having the max-

grammar as top element, is already known [10, 9] for the OP case, and its lattice-theoretical properties

have been exploited for inferring grammars using just positive information sequences [2]. The availabil-

ity of the k-ordered hierarchy may then enrich the learnable grammar space.
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