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MINIMAL CASTELNUOVO-MUMFORD REGULARITY FOR A GIVEN

HILBERT POLYNOMIAL

F. CIOFFI, P. LELLA, M.G. MARINARI, AND M. ROGGERO

Abstract. LetK be an algebraically closed field of null characteristic and p(z) a Hilbert
polynomial. We look for the minimal Castelnuovo-Mumford regularity mp(z) of closed
subschemes of projective spaces over K with Hilbert polynomial p(z). Experimental
evidences led us to consider the idea that mp(z) could be achieved by schemes having a
suitable minimal Hilbert function. We give a constructive proof of this fact. Moreover,
we are able to compute the minimal Castelnuovo-Mumford regularity m

̺

p(z) of schemes

with Hilbert polynomial p(z) and given regularity ̺ of the Hilbert function, and also the
minimal Castelnuovo-Mumford regularity mu of schemes with Hilbert function u.

These results find applications in the study of Hilbert schemes. They are obtained
by means of minimal Hilbert functions and of two new constructive methods which are
based on the notion of growth-height-lexicographic Borel set and called ideal graft and
extended lifting.

Introduction

This paper deals with the Castelnuovo-Mumford regularity reg(X) of closed subschemes
X of projective spaces over an algebraically closed field K of characteristic zero, with
a given Hilbert polynomial p(z). Hence, a scheme will be understood to be a closed
subscheme of a projective space. We do not establish the dimension of the projective
space in which the schemes are embedded, although we will be able to give information
also for every given dimension.

As we can read in literature, reg(X) is “one of the fundamental invariants in Commuta-
tive Algebra and Algebraic Geometry”(see [Brodmann(2010)]) and can be also considered
as “a measure of the complexity of computing Gröbner bases”[Bayer and Mumford(1993)].
Both these aspects of the Castelnuovo-Mumford regularity are present in this paper. Thus,
besides the classical definitions of the Castelnuovo-Mumford regularity in terms of ideal
sheaf cohomology and of syzygies, we will also recall its characterization in terms of the
generic initial ideal with respect to the degree reverse lexicographic term order (see Defi-
nition 2.1 and Proposition 4.1).

In his famous paper [Gotzmann(1978)], G. Gotzmann finds a sharp upper bound for
the Castelnuovo-Mumford regularity of schemes with a given Hilbert polynomial. This
upper bound, called Gotzmann number, is fundamental in the study of Hilbert schemes
and determines a finite range of possible values for the Castelnuovo-Mumford regularity,
given a Hilbert polynomial. Here, we tackle the following question posed by E. Ballico

2000 Mathematics Subject Classification. 14Q99, 68W30, 11Y55.
Key words and phrases. Castelnuovo-Mumford regularity, Hilbert polynomial, regularity of a Hilbert

function, minimal function, Borel ideal, closed projective subschemes.
The first and fourth authors were supported by the PRIN 2010-11 Geometria delle varietà algebriche,
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in a private conversation: what is the minimal value mp(z) of the Castelnuovo-Mumford
regularity of closed subschemes of projective spaces with given Hilbert polynomial p(z)?

Here, we provide a complete answer to the posed question, because we give a sharp
lower bound for the Castelnuovo-Mumford regularity of schemes with a given Hilbert
polynomial, thus narrowing the range in which the Castelnuovo-Mumford regularity of
a scheme with a given Hilbert polynomial can vary. This additional information can
have many significant applications. To offer an example, it can be applied to the study
described in [Ballico et al(2011)], from which the question considered in our manuscript
arised. In that paper explicit equations and inequalities defining the open locus of the
Hilbert scheme of points with bounded regularity are obtained: our result tells when such
an open subset is non-empty.

To reach our aim, we study the minimal functions and develop two new constructive
methods, which we think can have further applications also in more general contexts as,
for example, the study of liftings and that of general hypersurface sections.

In some cases, to find the value of mp(z) is almost immediate. For example, for a
constant Hilbert polynomial p(z) = d > 1, we obtain mp(z) = 2. Indeed, having K an

infinite cardinality, there exists a scheme X ⊂ Pd−1
K of d points in generic position, that

has Hilbert function (1, d, d, . . .) (for instance, see [Geramita et al(1983), Theorem 2.5]).
However, in general, the posed question has not such a straightforward answer. Some

preliminary results highlight the role played in this context by the regularity ̺X of the
Hilbert function HX of the scheme X . Indeed, they suggest that, if reg(X) = mp(z), then
the integers ̺X and HX(̺X −1) are small with respect to the corresponding ones of other
schemes with greater Castelnuovo-Mumford regularities (Lemma 2.4 and Proposition 2.5).
These facts together with experimental evidences encourage us to look for an answer by
focusing on the following two key ideas: to find a suitable notion of minimal function and
to consider the minimal Castelnuovo-Mumford regularity m̺

p(z) of schemes, by choosing

also the regularity ̺ of the Hilbert function. We gained the experimental evidences sup-
porting our ideas by a pencil-and-paper work and by using the applet that is available at
http://www.personalweb.unito.it/paolo.lella/HSC/Borel-fixed ideals.html to
compute suitable Borel-fixed ideals. Some of our experiments are reproduced here as
examples.

We develop the study of minimal functions with given regularity generalizing a con-
struction that L. G. Roberts introduced in a special case (see [Roberts(1982)]). The
minimal functions have very nice properties due to their purely combinatorial structure
(see Theorem 3.9) and turn out to be sufficient for a complete description of minimal
Castelnuovo-Mumford regularities, in the following sense.

Theorem A. Let S(p(z), ̺) be the set of schemes with given Hilbert polynomial p(z)
and regularity ̺ of their Hilbert functions. If S(p(z), ̺) is non-empty, then it contains a
scheme X such that both its Hilbert function HX and its Castelnuovo-Mumford regularity
reg(X) are minimal for schemes in S(p(z), ̺).

In [Caviglia and Sbarra(2014), Theorem 3.2], the authors observe that Theorem A holds
on fields of any characteristic.

In order to find mp(z), we compare the integers m̺
p(z), as ̺ varies among all values for

the regularities of Hilbert functions of schemes with the given Hilbert polynomial p(z).
Our analysis allows us to prove the following statement, which is even stronger than the
one suggested by the preliminary results.

http://www.personalweb.unito.it/paolo.lella/HSC/Borel-fixed_ideals.html
http://www.personalweb.unito.it/paolo.lella/HSC/Borel-fixed_ideals.html
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Theorem B. Let ̺ and ̺′ be the regularities of two Hilbert functions of schemes with
Hilbert polynomial p(z). Then,

• ̺ < ̺′ =⇒ m̺
p(z) 6 m̺′

p(z);

• if ̺ < mp(z) − 1 then m̺
p(z) = mp(z); especially, mp(z) = m̺

p(z) for the minimal

possible ̺;
• if ̺ ≥ mp(z) − 1 then m̺

p(z) = ̺+ 1 or m̺
p(z) = ̺+ 2.

The above results are collected in Theorem 7.1 and Corollary 7.2. Their proofs are based
on two new constructive methods we conceived by exploiting the features of the growth-
height-lexicographic Borel sets, which have been introduced by D. Mall in [Mall(1997),
Mall(2000)]. Both these methods combine together properties of two schemes X1 and
X2, returning a new scheme with Hilbert function and Castelnuovo-Mumford regularity
depending on those of X1 and X2. They differ by the numerical hypotheses they require
to be applied.

The first method, called ideal graft constructs a scheme with the Hilbert function of
X1 and the Castelnuovo-Mumford regularity depending on that of X2. This method has
a special role in the comparison of the integers m̺

p(z) (Theorem 5.2 and Corollary 5.3).

The second method, called expanded lifting, computes a scheme having
Hilbert function of X1 and hyperplane section with the Hilbert function of X2. Moreover,
the expanded lifting has a total control on the Castelnuovo-Mumford regularity of the
constructed scheme (see Theorem 6.4).

Our final result gives a recursive procedure to compute the minimal Castelnuovo-
Mumford regularity mu of a scheme with a Hilbert function u and provides very strict
lower and upper bounds for mu (see Theorem 7.4). This computation allows to deter-
mine m̺

p(z), mp(z) and also the minimal Castelnuovo-Mumford regularity of schemes with

Hilbert polynomial p(z) that are embedded in a given projective space Pn
K .

The paper is organized in the following way. In section 1, we set some notation about
monomial ideals. In section 2, we recall some basic definitions and classical results about
Hilbert functions and Castelnuovo-Mumford regularity. We also introduce some new
preliminary results (Propositions 2.5 and 2.7). In section 3, we introduce the minimal
functions with given regularities, studying their combinatorial properties in relation with
the existence of schemes with given Hilbert polynomials and Hilbert function regularity
(see Theorem 3.9). Moreover, we describe a closed formula for the minimum ̺ such that
S(p(z), ̺) 6= ∅ (see Proposition 3.11).

In section 4, we recall the notion of growth-height-lexicographic Borel set, which is
crucial for the description of the two constructive methods ideal graft and expanded
lifting, which we propose and describe in sections 5 and 6, respectively. In section 7, we
provide the proofs of our main results.

As a natural consequence of the computational point of view that supported this paper,
all our results produce some constructive methods. In the appendix A, we describe the
main algorithmic procedures to compute the minimal Castelnuovo-Mumford regularities
that arise from our exposition.

1. General setting

Let K be an algebraically closed field of characteristic 0, S := K[x0 . . . , xn] =
⊕

t≥0 St

be the ring of polynomials over K in n+1 variables with x0 < x1 < . . . < xn, where St is
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the K-vector space of the homogeneous polynomials of degree t, and Pn
K = ProjS be the

n-dimensional projective space over K.
For a subset M ⊆ S we set Mt := M ∩ St. For a homogeneous ideal I of S, we denote

by I≤t the ideal generated by the polynomials of I of degree ≤ t.
A term of S is a power product xα := xα0

0 xα1
1 . . . xαn

n , where α0, α1, . . . , αn are non
negative integers, and T := {xα0

0 xα1
1 . . . xαn

n | (α0, α1 . . . , αn) ∈ Nn+1} is the multiplicative
monoid of all terms of S. For a monomial ideal J , we denote by N (J) the sous-escalier
of J , i.e. the set of all terms outside J .

In our setting, the graded term orders deglex and degrevlex are defined saying that,
given two terms xα and xβ of T of the same degree t, xα is less than xβ with respect to:

deglex order, if αk < βk, where k = max{i ∈ {0, . . . , n} : αi 6= βi};
degrevlex order, if αh > βh, where h = min{i ∈ {0, . . . , n} : αi 6= βi}.

Given a degree t, a set B ⊂ Tt is a lex-segment if it consists of the |B| highest terms
of Tt with respect to the deglex order. Given a subset A ⊂ Tt, a lex-segment in A is the
intersection of a lex-segment of Tt and A. A monomial ideal J is a lex-segment ideal if Jt

is a lex-segment for every integer t.

2. Hilbert function and Castelnuovo-Mumford regularity

For a homogeneous ideal I ⊂ S, the Hilbert function of the graded algebra S/I is
denoted by HS/I and its Hilbert polynomial is denoted by pS/I(z) ∈ Q[z]. The regularity of
the Hilbert function of S/I is the integer ̺S/I := min{t ∈ N | HS/I(t

′) = pS/I(t
′), ∀ t′ ≥ t}.

We set ∆0HS/I(t) := HS/I(t) and, when S/I is not Artinian, we let
∆iHS/I(0) := 1 and ∆iHS/I(t) := ∆i−1HS/I(t) − ∆i−1HS/I(t − 1), for each 1 ≤ i ≤
dimKrull(S/I) and for t > 0, calling it i-th derivative of H ; we use an analogous notation
for Hilbert polynomials.

We define the function ΣHS/I : N −→ N letting ΣHS/I(0) := 1 and ΣHS/I(t) :=
ΣHS/I(t− 1) +HS/I(t) for each t ≥ 1, and call it integral of HS/I(t); we use an analogous
notation for Hilbert polynomials.

Recall that, given two positive integers a and t, the binomial expansion of a in base t
is the unique writing

(1) a =
(
k(t)
t

)
+
(
k(t−1)
t−1

)
+ . . .+

(
k(j)
j

)
=: at

where k(t) > k(t − 1) > . . . > k(j) ≥ j ≥ 1. We use the convention that a binomial
coefficient

(
n
m

)
is null whenever either n < m or m < 0 and

(
n
0

)
= 1, for all n ≥ 0.

Referring to [Robbiano(1990)], we let

(at)
+
+ :=

(
k(t)+1
t+1

)
+
(
k(t−1)+1

t

)
+ . . .+

(
k(j)+1
j+1

)
, and

(at)
−
− :=

(
k(t)−1
t−1

)
+
(
k(t−1)−1

t−2

)
+ . . .+

(
k(j)−1
j−1

)
.

For convenience, we also set ((at)
−
−)

+
+ := (((at)

−
−)t−1)

+
+. By an easy computation one gets

(for example, see [Robbiano(1990), Proposition 4.9])

(2) ((at)
−
−)

+
+ =

{
a, if j > 1
a + k(2)− k(1), if j = 1

,

hence, ((at)
−
−)

+
+ ≥ a. Moreover, [Robbiano(1990), Prop. 4.3(a) and 4.6(b)]

(3) ((a+ 1)t)
+
+ = (at)

+
+ + 1 + k(1) and ((a+ 1)t)

−
− =

{
(at)

−
− + 1 if j > 1

(at)
−
− if j = 1.
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A numerical function H : N → N is admissible (or an O-sequence) if H(0) = 1 and
H(t + 1) ≤ (H(t)t)

+
+. In particular, if H(t) = 0, then H(t + h) = 0 for every h > 0. We

will say that H is admissible in t if H(t+ 1) ≤ (H(t)t)
+
+.

Due to [Macaulay(1926)], a numerical function H is admissible if, and only if, it is the
Hilbert function of S/I, for a suitable homogeneous ideal I.

Definition 2.1. A homogeneous ideal I is m-regular if the i-th syzygy module of I is
generated in degree ≤ m+ i. The regularity reg(I) of I is the smallest integer m for which
I is m-regular. The saturation of I is Isat := {f ∈ S | ∀ i ∈ 0, . . . , n, ∃ ki : x

ki
i f ∈ I} and

I is saturated if I = Isat.
With the common notation of the ideal sheaf cohomology, given a scheme X ⊂ Pn

K

and its (saturated) defining ideal I = I(X), the Castelnuovo-Mumford regularity of X is
reg(X) := min{t ∈ N | H i(IX(t

′− i)) = 0, ∀ t′ ≥ t, ∀i > 0} and it is equal to reg(I). Also,
we set HX(t) := HS/I(t), pX(z) := pS/I(z), ̺X := ̺S/I .

If the dimension of a scheme X ⊂ Pn
K is k > 0, let h ∈ S1 be a general linear form

that is not a zero-divisor on S/I and J = (I, h), where I := I(X). It is well known
that the first derivative of the Hilbert function of a projective scheme is admissible, and
the converse is true by [Geramita et al(1983), Corollary 3.4]. Indeed, let Z ⊂ Pn−1

K be
the scheme of dimension k − 1 defined by the saturated ideal J sat/(h) = (I, h)sat/(h),
i.e. the general hyperplane section of X . Since the linear form h is not a zero-divisor

on S/I, we have the short exact sequence 0 → (S/I)t−1
·h
−→ (S/I)t → (S/J)t → 0 that

gives HS/J(t) = ∆HS/I(t), in particular pS/(I,h) = ∆pS/I , and then ̺S/J = ̺X + 1, so
∆HX(t) = HS/J(t) ≥ HZ(t) for every t and HS/J(t) = HZ(t) for t ≥ max{̺Z , ̺S/J}.

This relation between the first derivative of the Hilbert function of X and the Hilbert
function of Z suggests to consider the following partial order.

Definition 2.2 ([Roberts(1982)]). Given two sequences of integers A = (ai)i∈N and B =
(bi)i∈N, we let A � B, if ai ≤ bi for every index i.

Remark 2.3. Let f be a Hilbert function with Hilbert polynomial p(z). If g is an
other Hilbert function with Hilbert polynomial ∆p(z) such that g � ∆f , then

∑
g � f .

Moreover,
∑

g has Hilbert polynomial p(z)− c, where c is a non-negative integer. If t is
the minimal integer such that g(t) < ∆f(t), then

∑
g(t) < f(t) for every t ≥ t.

By cohomological arguments, one gets reg(X) ≥ reg(Z) and reg(X) ≥ ̺X +1, for every
scheme X . In particular, the following result tells how ̺X and reg(Z) determine reg(X).

Lemma 2.4 ([Cioffi et al(2009), Lemma 3.6]). With the above notation, we have reg(X) =
max {reg(Z), ̺X + 1}.

For a Cohen-Macaulay scheme W ⊂ Pn
K of dimension k and degree d, the Castelnuovo-

Mumford regularity is reg(W ) = ̺W +k+1 ≤ d (e.g. [Bayer and Stillman(1987)]). More-
over, if X ⊂ Pn

K is a scheme of odd dimension k with the same Hilbert function as a
Cohen-Macaulay scheme, then reg(X) > ̺X + 1 [Cioffi and Di Gennaro(2011), Proposi-
tion 2.4], even if the characteristic of K is positive. By exploiting the proof of that result
we obtain the following more general statement.

Proposition 2.5. If X ⊂ Pn
K is a scheme with HX(̺X−1) > pX(̺X−1), then reg(X) >

̺X + 1.
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Proof. Let Z be a general hyperplane section of X . By the hypothesis we get HZ(̺X) ≤
∆HX(̺X) < ∆pX(̺X) = pZ(̺X). Hence, we obtain ̺Z > ̺X and reg(X) ≥ reg(Z) ≥
̺Z + 1 > ̺X + 1. �

Polynomials p(z) ∈ Q[z] that are Hilbert polynomials of schemes are called admissible
and are completely characterized in [Hartshorne(1966)].

The Gotzmann number r of an admissible polynomial p(z) is the best upper bound for
the Castelnuovo-Mumford regularity of a scheme having p(z) as Hilbert polynomial and
is computable by using the following unique form of an admissible polynomial:

(4) p(z) =
(
z+k1
k1

)
+
(
z+k2−1

k2

)
+ . . .+

(
z+kr−(r−1)

kr

)
,

with r, ki ∈ N, k1 ≥ k2 ≥ . . . ≥ kr ≥ 0 [Gotzmann(1978)]. We refer to [Green(2010)] for
an overview of these arguments. For a constant polynomial p(z) = d we have r = d.

A polynomial with Gotzmann number r = 1 is of type p(z) =
(
h+z
z

)
and is the Hilbert

polynomial of a linear variety X . From now, p(z) is an admissible Hilbert polynomial
with Gotzmann number r > 1.

Notation 2.6. We will need the following notation:

• S(p(z), ̺) is the set of schemes with Hilbert polynomial p(z) and regularity ̺ of
the Hilbert function.
• F (p(z), ̺) is the set of the Hilbert functions of the schemes in S(p(z), ̺) and we
let F (p(z)) := ∪̺F (p(z), ̺).
• For every u ∈ F (p(z), ̺), mu is the minimal possible Castelnuovo-Mumford regu-
larity of a scheme with Hilbert function u;
• M(p(z), ̺) := {mu : u ∈ F (p(z), ̺)} and m̺

p(z) := minM(p(z), ̺).

• ̺p(z) is the minimal integer ̺ such that F (p(z), ̺) 6= ∅.
• ̺p(z) is defined in (5) and its meaning is explained by Propositions 2.7 and 3.2.

• f and m are defined in (8).

Proposition 2.7. The set Πp(z) := {1 ≤ t ≤ r : (p(t + h)t+h)
+
+ ≥ p(t + h + 1) ≥

1, ∀ h ≥ 0} is non-empty and the minimal regularity of the admissible functions with
Hilbert polynomial p(z) is lower bounded by

(5) ̺p(z) :=

{
0, if min Πp(z) = 1 and p(0) = 1
min Πp(z), otherwise.

Moreover,

(i) ̺p(z) ≥ max{̺p(z), ̺∆p(z) − 1}
(ii) if ̺p(z) > 0, then ̺p(z)+c ≤ ̺p(z) and ̺p(z)+c ≤ ̺p(z) for every c > 0.

Proof. Observe that (p(r + h)r+h)
+
+ = p(r + h + 1), for every h ≥ 0, by the well-known

fact that the Gotzmann number r of an admissible polynomial p(z) is the regularity of
the unique saturated lex-segment ideal with Hilbert polynomial p(z) (for example, see
[Green(2010), Proposition 3.7]). Hence, the set Πp(z) is non-empty.

Let f be an admissible function with Hilbert polynomial p(z) and regularity ̺. Then,
for every s ≥ ̺, we have (p(s)s)

+
+ = (f(s)s)

+
+ ≥ f(s+1)s+1 = p(s+1)s+1 ≥ 1 and s ∈ Πp(z).

Hence, the regularity of a Hilbert function with Hilbert polynomial p(z) is lower bounded
by ̺p(z).
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For the assertion (i), if g is a function of F (p(z), ̺p(z)), then ̺p(z) ≥ ̺p(z) and ∆g is
admissible with regularity ̺p(z) + 1, hence ̺∆p(z) ≤ ̺p(z) + 1. For (ii), we obtain both
̺p(z)+c ≤ ̺p(z) and ̺p(z)+c ≤ ̺p(z) by ∆(p(z) + c) = ∆p(z) and by the first formula of (3),

because ((p(t) + c)t)
+
+ ≥ (p(t)t)

+
+ + c ≥ p(t+ 1) + c, for every t ≥ ̺p(z). �

3. Minimal functions

In this section, we will prove there exists the minimum of the Hilbert functions with
Hilbert polynomial p(z) and regularity ̺, for every ̺ ≥ ̺p(z), with respect to the partial
order � of Definition 2.2. Each of these minimal functions will be of the following type.

Definition 3.1. For every ̺ ≥ ̺p(z), we let

(6) f ̺
p(z)(t) :=

{
p(t), if t ≥ ̺
(f ̺

p(z)(t+ 1)t+1)
−
−, otherwise

(7) g̺p(z)(t) :=





p(t), if t ≥ ̺
p(t) + 1, if t = ̺− 1
(g̺p(z)(t+ 1)t+1)

−
−, otherwise.

Proposition 3.2. For every integer ̺p(z) ≤ ̺ ≤ r − 1, f ̺
p(z) is admissible, hence ̺p(z) is

the minimal regularity of Hilbert functions with Hilbert polynomial p(z). Moreover, f ̺
p(z) �

f ̺+1
p(z) and f ̺

p(z) is the minimal Hilbert function with Hilbert polynomial p(z) and regularity

≤ ̺. In particular, f
̺p(z)
p(z) has regularity ̺p(z) and, if ̺ > ̺p(z), then f ̺

p(z)(̺−1) ≤ p(̺−1).

Proof. By Proposition 2.7, the regularity of every Hilbert function with Hilbert polynomial
p(z) is lower bounded by ̺p(z).

With the notation introduced in formula (1), for a positive integer a, (at)
−
− is the

smallest integer b such that a ≤ (bt−1)
+
+, thanks to formula (2). Hence, by construction

the numerical function f ̺
p(z) is the minimal Hilbert function with Hilbert polynomial p(z).

Moreover, f
̺p(z)
p(z) has regularity ̺p(z), by definition of ̺p(z). The last assertion holds by

construction, also if ̺p(z) = 0 and ̺ = 1, because in this case f
̺p(z)
p(z) (0) = p(0) = 1. �

Remark 3.3. In [Roberts(1982)], L.G. Roberts introduces the minimal Hilbert function
we denote by f r−1

p(z) , showing that it is the Hilbert function of the so-called tight fan

constructed by Hartshorne and also the Hilbert function of the saturated lex-segment
ideal with the given Hilbert polynomial [Roberts(1982), Lemma 5.1 and Theorem 5.3].
This function attains the equality in the Hyperplane Restriction Theorem due to M. Green
[Green(2010), Theorem 3.4].

Remark 3.4. (1) For every ̺ ≥ r, we can set f ̺
p(z) := f r−1

p(z) , because (p(r + h)r+h)
+
+ =

p(r + h+ 1), for every h ≥ 0, [Green(2010), Proposition 3.7].
(2) If p(z) = d is a constant polynomial, for every 1 ≤ ̺ ≤ d − 1, the corresponding

minimal function f ̺
d has regularity equal to ̺ and every scheme with this Hilbert function

has Castelnuovo-Mumford regularity ̺+ 1, because it is Cohen-Macaulay.

(3) If the regularity of f ̺
p(z) is ̺′ < ̺, then f ̺′

p(z) = f ̺
p(z). For example, if we take the

admissible polynomial p(z) = 5z − 3 with Gotzmann number r = 7, we obtain ̺p(z) = 3
and f 3

p(z) = f 4
p(z) because (p(4)4)

−
− = p(3), so the regularity of f 4

p(z) is 3 < ̺ = 4. On the
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other hand, we have f 4
p(z) 6= f 5

p(z) because p(4) = 17 and f 5
p(z)(4) = 16. Anyway, there

exists the minimal function with regularity ̺ even when the regularity of f ̺
p(z) is strictly

lower than ̺.

Proposition 3.5. For every ̺ ≥ ̺p(z), the function g̺p(z) is admissible and, if the regularity

of f ̺
p(z) is ̺

′ < ̺, then g̺p(z) is the minimal admissible function with regularity ̺ and Hilbert

polynomial p(z). Moreover, f ̺
p(z) � g̺p(z).

Proof. It is enough to argue as in the proof of Proposition 3.2. �

Now, as we announced at the beginning of this section, for every ̺ ≥ ̺p(z) we have
the minimal Hilbert function with regularity ̺, that is either f ̺

p(z) or g
̺
p(z). Anyway, we

are interested in Hilbert functions of schemes, that are admissible functions with also
admissible first derivative.

Example 3.6. If we consider p(z) = 6z2 − 18z + 37 we get ̺p(z) = 1, ∆p(z) = 12z − 24
and ̺∆p(z) = 5, so f 1

p(z) is admissible but its first derivative (1, 24, 12z−24) is not, because

of its behavior in the degrees ̺p(z) ≤ t ≤ ̺∆p(z). For example, ∆f 1
p(z) is not admissible in

2 because ∆f 1
p(z)(2) = 0.

We will show that the construction of a minimal function f ̺
p(z) guarantees the admis-

sibility of the first derivative of the function in the degrees strictly lower than ̺. As a
consequence, we will prove there exists the minimum of F (p(z), ̺) with respect to the
partial order � of Definition 2.2, as soon as F (p(z), ̺) is non-empty, and this minimal
function is either f ̺

p(z) or g
̺
p(z).

The following technical result is used in Lemma 3.8 to detect when the first derivative
of a minimal function f ̺

p(z) is admissible.

Lemma 3.7. Assume that an integer a with binomial expansion
(
k(t)
t

)
+ . . . +

(
k(j)
j

)
in

base t can be written also as a =
(
h(t)
t

)
+
(
h(t−1)
t−1

)
+ . . .+

(
h(j′)
j′

)
with h(u) > h(u− 1), for

every j′ < u ≤ t, and k(t) > h(t). Then a =
(
k(t)
t

)
and the two writings of a are

(
k(t)
t

)

and
∑t

i=0

(
k(t)−1−i

t−i

)
, respectively.

Proof. Let b = k(t). By the definition of binomial expansion we have(
b
t

)
≤

(
h(t)
t

)
+
(
h(t−1)
t−1

)
+ . . .+

(
h(j′)
j′

)
. Replacing

(
b
t

)
by

∑t
i=0

(
b−1−i
t−i

)
we get

∑t
i=0

(
b−1−i
t−i

)
≤

∑t−j′

i=0

(
h(t−i)
t−i

)
= a. On the other hand, for every i = 0, . . . , t − j′ we have

(
b−1−i
t−i

)
≥(

h(t)−i
t−i

)
≥

(
h(t−i)
t−i

)
, hence j′ = 0 and by the equality between the two members we obtain

a =
(
b
t

)
. �

Lemma 3.8. (i) For every ̺ ≥ ̺p(z) and 1 ≤ t < ̺, ∆f ̺
p(z) is admissible in t, because

∆f ̺
p(z)(t) = (∆f ̺

p(z)(t + 1)t+1)
−
−.

(ii) For every ̺ > ̺p(z) and t < ̺, ∆f ̺
p(z)(t) ≤ ∆f ̺−1

p(z) (t).

(iii) For every ̺ ≥ max{̺p(z), ̺∆p(z) − 1}, ∆f ̺
p(z) is admissible.

Proof. (i) For every 1 ≤ t ≤ ̺−1 by construction we have f ̺
p(z)(t+1) =

(
k(t+1)
t+1

)
+. . .+

(
k(j)
j

)
,

f ̺
p(z)(t) =

(
k(t+1)−1

t

)
+ . . .+

(
k(j)−1
j−1

)
and f ̺

p(z)(t− 1) =
(
k(t+1)−2

t−1

)
+ . . .+

(
k(j)−2
j−2

)
and obtain

∆f ̺
p(z)(t) = (∆f ̺

p(z)(t + 1)t+1)
−
−.
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Nevertheless, we have to consider also the case the binomial expansion of f(t) in base
t is different from the writing obtained by the binomial expansion of f(t + 1) in base

t + 1. This is exactly the case considered in Lemma 3.7, for which f(t) =
(
k(t+1)−1

t

)
+(

k(t+1)−2
t−1

)
. . . +

(
k(t+1)−(t+1)

0

)
=

(
k(t+1)

t

)
and the operation that consists in subtracting a

unit to both the integers of the binomial coefficients gives the same result.
(ii) By Proposition 3.2, we have f ̺

p(z)(̺− 1) ≤ p(̺− 1) = f ̺−1
p(z) (̺− 1).

Let c be the non-negative integer such that f ̺
p(z)(̺− 1) = p(̺− 1)− c. Then, formula

(3) and the definition of a minimal function give:

∆f ̺
p(z)(̺− 1) = f ̺

p(z)(̺− 1)− f ̺
p(z)(̺− 2) = p(̺− 1)− c− ((p(̺− 1)− c)̺−1)

−
− ≤

≤ p(̺− 1)− c− (p(̺− 1)̺−1)
−
− + c = ∆f ̺−1

p(z) (̺− 1).

Now, the thesis is proved applying fact (i).
(iii)Due to the definition of ̺∆p(z), to Proposition 3.2 and to fact (i), it is enough to show

that the first derivative of f ̺
p(z) is admissible in ̺, i.e. (∆f ̺

p(z)(̺)̺)
+
+ ≥ ∆f ̺

p(z)(̺+ 1). We

know that ∆f r−1
p(z) is admissible because f r−1

p(z) is the Hilbert function of the unique saturated

lex-segment ideal with Hilbert polynomial p(z). So, the admissibility of ∆f ̺
p(z) in ̺ follows

from that of ∆f ̺+1
p(z) . Indeed, by fact (ii) we obtain (∆f ̺

p(z)(̺)̺)
+
+ ≥ (∆f ̺+1

p(z) (̺)̺)
+
+ ≥

∆f ̺+1
p(z) (̺+ 1) ≥ ∆p(̺+ 1) = ∆f ̺

p(z)(̺+ 1). �

Theorem 3.9. (i) ̺p(z) = max{̺p(z), ̺∆p(z) − 1} and f
̺p(z)
p(z) ∈ F

(
p(z), ̺p(z)

)
;

(ii) for all ̺ > ̺p(z),

F (p(z), ̺) 6= ∅ ⇔

{
f ̺
p(z) ∈ F (p(z), ̺), if f ̺

p(z) has regularity ̺,

g̺p(z) ∈ F (p(z), ̺), otherwise.

Proof. (i) First, recall that ̺p(z) ≥ max{̺p(z), ̺∆p(z) − 1} by Proposition 2.7. Then, by

Lemma 3.8(iii) we obtain ̺p(z) = max{̺p(z), ̺∆p(z)−1} and f
̺p(z)
p(z) belongs to F (p(z), ̺p(z)),

because the regularity of f
̺p(z)
p(z) is ̺p(z) by the definition of ̺p(z).

(ii) The case involving f ̺
p(z) follows from Lemma 3.8. Thus, suppose that f ̺

p(z) has

regularity ̺′ < ̺. If g̺p(z) belongs to F (p(z), ̺), obviously F (p(z), ̺) is non-empty. Vice

versa, let g := g̺p(z) and observe that (∆g(t)t)
+
+ ≥ ∆g(t + 1), for every t ≥ ̺ + 1, by

definition of ̺p(z), and for every 1 ≤ t ≤ ̺ − 2, by arguments analogous to those of the
proof of Lemma 3.8.

It remains to prove (∆g(̺)̺)
+
+ ≥ ∆g(̺+ 1) and (∆g(̺− 1)̺−1)

+
+ ≥ ∆g(̺).

For the degree ̺, if g′ belongs to F (p(z), ̺), then g(̺− 1) ≤ g′(̺− 1), hence ∆g(̺) ≥
∆g′(̺) and ∆g′ admissible implies ∆g admissible in the degree ̺.

For the degree ̺−1, we obtain (∆f ̺
p(z)(̺−1)̺−1)

+
+ ≥ ∆f ̺

p(z)(̺) = ∆g(̺)+1 by Lemma

3.8 and by the definition of g. Moreover, by (3)

∆g(̺− 1) = p(̺− 1) + 1− ((p(̺− 1) + 1)̺−1)
−
− ≥

≥ p(̺− 1) + 1− (p(̺− 1)̺−1)
−
− − 1 = p(̺− 1)− (p(̺− 1)̺−1)

−
− = ∆f ̺

p(z)(̺− 1)

and ∆f ̺
p(z) admissible implies the first derivative of g admissible in the degree ̺− 1. �
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Example 3.10. Consider the admissible polynomial p(z) = 5z−3 of Remark 3.4(3) with
Gotzmann number r = 7 and ̺p(z) = 3. We have that f 3

p(z) = f 4
p(z) = (1, 4, 8, 12, p(z)),

meanwhile f 4
p(z) 6= f 5

p(z). So, we can take the function g4p(z) = (1, 4, 8, 13, p(z)), that is the

minimal admissible function with regularity 4 and Hilbert polynomial p(z). But, its first
derivative ∆g4p(z) = (1, 3, 4, 5, 4, 5) is not admissible. Thus, by Theorem 3.9 we can affirme

that F (p(z), 4) = ∅, i.e. there are not schemes with Hilbert function having regularity 4
and Hilbert polynomial p(z).

If the Gotzmann number r of the polynomial p(z) is big, a computation of ̺p(z) and of
̺p(z) performed according to formula (5) and to Theorem 3.9(i) can be very expensive.

Indeed, we have to test (p(t)t)
+
+ ≥ p(t + 1), for every ̺p(z) − 1 ≤ t ≤ r − 2. For example,

for the polynomial p(z) = 2z3−6z2+29z−20 (see Example A.2) we find r = 218498 and
̺p(z) = ̺p(z) = 2. Anyway, Proposition 2.7(ii) will help to compute ̺p(z) and ̺p(z) in an
efficient way, by induction on the degree of p(z), as the following proposition shows using
the features of minimal functions.

Proposition 3.11. If deg p(z) > 0, ̺p(z) = σ − 1, with σ := min
{
t ≥ max{̺∆p(z), 1} :∑

f t
∆p(z)(t− 1) ≤ p(t− 1)

}
.

Proof. If ̺∆p(z) = 0, then we can observe that f 0
∆p(z) = f 1

∆p(z). Thus, in any case the

Hilbert function
∑

fσ
∆p(z) belongs to F (p(z) − c, σ − 1) for some non-negative integer c,

by construction and according to Remark 2.3. Then, by Proposition 2.7(ii), we have
̺p(z) ≤ ̺p(z) ≤ ̺p(z)−c ≤ σ − 1.

Now, observe that ∆f
̺p(z)
p(z) is an admissible function of regularity ̺p(z) + 1 and Hilbert

polynomial ∆p(z). Thus, we obtain f
̺p(z)+1

∆p(z) ≤ ∆f
̺p(z)
p(z) , hence

∑
f
̺p(z)+1

∆p(z) ≤ f
̺p(z)
p(z) and

̺p(z) + 1 ≥ σ. �

Remark 3.12. Proposition 3.11 gives a closed formula for ̺p(z) and also the opportunity
to compute efficiently ̺p(z). Indeed, as ̺p(z) = max{̺p(z), ̺∆p(z) − 1}, if σ > ̺∆p(z) then
̺p(z) = ̺p(z) = σ − 1. Otherwise we have to check that p(z) is admissible in the degrees
t ≤ σ−2, instead of t ≤ r−2 as in the definition of ̺p(z) of Proposition 2.7 (see Algorithms
1 and 2).

4. Borel ideals and growth-height-lexicographic Borel sets

The Borel order <B is the partial order on T for which, given two terms xα and xβ,
we have xα <B xβ if there is a finite sequence of terms τ1 = xα, τ2, . . . , τk = xβ such that
τh = xi

xj
τh−1 with j < i, for every 1 < h ≤ k.

A set B ⊂ Tt is called a Borel set if, for every term xα in B and xβ in Tt, x
α <B xβ

implies that xβ belongs to B. From the definition it follows immediately that, if B ⊂ Tt

is a Borel set, then the set N := Tt \ B has the property that, for every xγ ∈ N and
xδ ∈ Tt with xδ <B xγ , xδ belongs to N .

A monomial ideal J is strongly stable if Jt is a Borel set, for each t. Every lex-segment
ideal is a strongly stable ideal.

A strongly stable ideal is always Borel-fixed (Borel, for short), i.e. it is fixed under the
action of the Borel subgroup of the upper-triangular invertible matrices. If ch(K) = 0,
also the vice versa holds. In ch(K) = 0 Galligo and in any characteristic Bayer and
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Stillman guarantee that in generic coordinates the initial ideal of an ideal I, with respect
to (w.r.t.) a given term order, is a constant Borel ideal, called the generic initial ideal of
I. We denote by gin(I) the generic initial ideal of I w.r.t. the degrevlex order and recall
that reg(I) = reg(gin(I)) [Bayer and Stillman(1987)].

Proposition 4.1. Let J ⊂ S be a Borel ideal.

(i) The saturation J sat of J is the ideal generated by the terms minimal generators of J
in which we set the least variable equal to 1 [Green(2010), Proposition 2.9].

(ii) reg(J) is the maximal degree of its minimal generators [Bayer and Stillman(1987),
Proposition 2.9].

Now, we recall the notion of growth-height-lexicographic Borel set which has been
introduced by D. Mall [Mall(1997), Mall(2000)].

Definition 4.2 ([Mall(1997), Definition 2.7], [Mall(2000), Definition 2.7]). Let B ⊂ Tt

be a Borel set. The set B(i) = {τ ∈ B : min(τ) = i} is the growth class of B of growth i.
The growth-vector of B is gv(B) := (|B(0)|, |B(1)| . . . , |B(n)|).

Definition 4.3 ([Mall(1997), Def. 2.13], [Mall(2000), Def. 2.8]). Let B ⊂ Tt be a Borel
set. For every i ∈ {0, . . . , t}, let B(i) := {xα0

0 xα1
1 . . . xαn

n ∈ B : α0 = i}. The height-vector
of B is the vector hv(B) := (|B(0)|, |B(1)|, . . . , |B(t)|).

Given a Borel set B, the first expansion of B is {x0, . . . , xn} · B (see [Macaulay(1926),
Marinari and Ramella(1999), Marinari and Ramella(2006)] for a description of this topic).
For a strongly stable ideal J , we call Tj+1\({x0, . . . , xn}·Jj) the first expansion of N (J)j.

Remark 4.4. Given a Borel set B ⊂ Tt, we have: for every i 6= j, B(i) ∩ B(j) = ∅ and
B(i) ∩ B(j) = ∅; B(0) =

⋃
i≥1B

(i); B(0) =
⋃

i≥1B(i).

Proposition 4.5 ([Mall(1997), Proposition 3.2]). Given a Borel set B ⊂ Tt, let I =
(B)sat ⊂ S be the saturation of the homogeneous ideal generated by B. If f is the Hilbert
function of S/I, then:

(i) f(j) =
(
j+n
n

)
−

∑t
i=t−j |B(i)|, for every j ≤ t;

(ii) f(j)− f(j − 1) =
(
j+n−1
n−1

)
− |B(t− j)| for every j ≤ t;

(iii) f(t+ k) =
(
t+k+n

n

)
−

∑(
i+k
k

)
|B(i)|, for every k ≥ 1.

Definition 4.6 ([Mall(1997), Def. 2.10 and 2.14], [Mall(2000), Def. 4.3]).
(1) The Borel set B ⊂ Tt is growth-lexicographic if all growth classes of B are lex-

segments in the corresponding growth classes T
(i)
t of Tt.

(2) The Borel set B ⊂ Tt is growth-height-lexicographic if B(0) is growth-lexicographic
and B(i) is a lex-segment in Tt(i), for all 0 < i ≤ t.

Theorem 4.7. Let B ⊂ Tt be a Borel set. Then there is a unique growth-height-
lexicographic Borel set Lgh(B) ⊂ Tt with gv(Lgh(B)) = gv(B) and with hv(Lgh(B)) =
hv(B). Moreover, the ideals J := (B)sat and I := (Lgh(B))sat have the same Hilbert
function and reg(J) ≤ reg(I) ≤ t.

Proof. For the first part of this result we refer to [Mall(1997), Th. 2.17] and [Mall(2000),
Theorem 4.4] to obtain that Lgh(B) is the Borel set L that consists of the union of the lex-

segments L(i) in T
(i)
t with |B(i)| elements, for every i = 0, . . . , n, and of the lex-segments

L(j) in Tt(j) with |B(j)| elements, for every j = 1 . . . , t.
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For the second part, first we note that HS/J = HS/I follows straightforwardly from
Proposition 4.5. Then, we observe that reg(I) ≤ t, because I is generated by terms of
degree ≤ t and is a strongly stable ideal. It remains to show that reg(J) ≤ reg(I).

Assume there are an integer m > reg(I) and a minimal generator of J of degree m.
Observe that m ≤ t. Thus, every term of I∩K[x1, . . . , xn]m is multiple of a term of the set
L′ of terms in I∩K[x1, . . . , xn]m−1, while there are terms of J∩K[x1, . . . , xn]m that are not
multiple of a term in the set B′ of the terms in J ∩K[x1, . . . , xn]m−1. Observe that the set
of terms in I ∩K[x1, . . . , xn]h is L(t−h) ·x−t+h

0 and the set of terms in J ∩K[x1, . . . , xn]h
is B(t−h) ·x−t+h

0 , for every h ≤ t. Moreover, |L′| = |L(t−m+1)| = |B(t−m+1)| = |B′|
and L′ is a lex-segment. Then, we should have dimK(B

′ ·R)m < dimK(L
′ ·K[x1, . . . , xn])m,

but this is a contradiction with the fact that the first expansion of an ideal generated by
a lex-segment is the smallest possible. �

5. Ideal graft and minimal Castelnuovo-Mumford regularities

In this section, first we exploit the features of the growth-height-lexicographic Borel
sets to construct a scheme X obtained by a so-called ideal graft of two given schemes X1

and X2. Indeed, the Hilbert function of X will be the “graft” of the other two, because it
will coincide with the Hilbert function of X1 up to a certain degree and with the Hilbert
function of X2 from this degree on. Then, we apply this new construction to find a scheme
X such that the regularity ̺X and the value HX(̺X − 1) are small, according to Lemma
2.4 and Proposition 2.5, respectively. In conclusion, we prove that each m̺

p(z) is achieved

by a scheme with the minimal function having regularity ̺.

Remark 5.1. If I ⊂ K[x0, . . . , xn′] is a strongly stable ideal, then for every integer n > n′

the ideal (I + (xn′+1, . . . , xn)) ⊆ K[x0, . . . , xn] is a strongly stable ideal.

Theorem 5.2 (Ideal graft). Let q, w be Hilbert functions of projective schemes and sup-
pose m > 1 is an integer such that w(m− 1) = q(m − 1) and w(m− 2) ≤ q(m − 2) (so
that ∆w(m− 1) ≥ ∆q(m− 1)). Then, the function

h(j) :=

{
w(j) for all j < m
q(j) for all j ≥ m

is the Hilbert function of a projective scheme and mh ≤ max{m,mq}.

Proof. Let s := max{m,mq}. By the hypotheses, there are a saturated polynomial ideal I,
defining a projective scheme with Hilbert function q and Castelnuovo-Mumford regularity
mq, and a saturated polynomial ideal I ′, defining a projective scheme with Hilbert function
w. Replacing I and I ′ by gin(I) and gin(I ′), respectively, we can suppose that they are
Borel saturated. Moreover, by Remark 5.1, we can suppose that the ideals I and I ′ are in
the same polynomial ring S = K[x0, . . . , xn]. Nevertheless, we can suppose reg(I ′) ≤ s,
replacing I ′ possibly by (I ′≤s), which gives a Hilbert function equal to w at least until the
degree s. Hence, we let L := Lgh(Is) and L′ := Lgh(I

′
s) and we can replace again I and I ′

by (L)sat and (L′)sat, respectively.
For each saturated Borel ideal V ⊂ S with HS/V = v and integer k, we get ∆v(k) =

v(k)−v(k−1) =
(
k+n−1
n−1

)
−|V ∩Tk(0)|. Then in our hypotheses, we have |I ′∩Tm−1(0)| ≤

|I ∩ Tm−1(0)|, where by construction I ∩ Tm−1(0) = x
−(s−m+1)
0 L(s − m + 1) and I ′ ∩

Tm−1(0) = x
−(s−m+1)
0 L′(s −m + 1). Recall that L(s −m + 1) e L′(s −m + 1) are both

lex-segments in Ts(s−m+ 1), hence I ′ ∩ Tm−1(0) ⊆ I ∩ Tm−1(0).



MINIMAL CASTELNUOVO-MUMFORD REGULARITY FOR A GIVEN HILBERT POLYNOMIAL 13

Let G′ := I ′ ∩ T≤m−1(0) and G := I ∩ T≥m(0) and then consider the ideal J that is
generated by the terms of the set G′ ∪G. First, we observe that:

i) J is Borel and saturated, because it is generated by a suitable union of Borel sets of
terms in which the variable x0 does not occur;

ii) reg(J) ≤ s, because J is a Borel ideal generated by G′ ∪G≤s, by the hypotheses on
I and I ′.

It remains to show that h = HS/J . By construction, for every k ≤ m−1 we have Jk = Ik,
hence h(k) = w(k). By induction on k, we show that h(k) = q(k), for every k ≥ m − 1.
For k = m− 1, we have h(m − 1) = w(m− 1) = q(m − 1), by the hypotheses. Now, let
k ≥ m and assume the thesis is true for k− 1. We have h(k)− h(k− 1) = q(k)− q(k− 1)
because J and I contain the same terms of Tk(0). Then, by the inductive hypothesis we
obtain h(k) = q(k). �

Corollary 5.3. Let ̺ be any integer such that F (p(z), ̺) 6= ∅ and let w ∈ F (p(z), ̺). For
every q ∈ F (p(z)), we get mw ≤ max{̺+ 2, mq + 1}. If moreover q ∈ F (p(z), ̺), then:

(i) mq < mw ⇐⇒ mq = ̺+ 1, mw = ̺+ 2 and q(̺− 1) < w(̺− 1);
(ii) either |M(p(z), ̺)| = 1 or M(p(z), ̺) = {̺+ 1, ̺+ 2};

(iii) m̺
p(z) ≥ mf̺

p(z)
and m̺

p(z) =

{
mf̺

p(z)
, if f ̺

p(z) has regularity ̺

mg̺
p(z)

, otherwise.

Proof. For the first assertion, it is enough to apply Theorem 5.2 to the functions w and
q with m = max{̺w + 2, mq + 1}, obtaining an ideal J such that HS/J = w and so
mw ≤ reg(J) ≤ max{m,mq} = max{̺w + 2, mq + 1}.

(i) Assume mq < mw and set m := ̺ + 2. Then, q(k) = w(k) = p(k) for k = m − 2
and k = m− 1, and we can apply Theorem 5.2 to construct a saturated ideal J ⊂ S with
HS/J = w and reg(J) ≤ max{m,mq}. Hence, mw ≤ reg(J) ≤ max{̺ + 2, mq} and we
obtain mq = ̺+ 1, mw = ̺+ 2. Moreover, if on the contrary w(̺− 1) ≤ q(̺ − 1), then
we can apply Theorem 5.2 with m = mq = ̺ + 1 obtaining an ideal J ⊂ S such that
HS/J = w and mw ≤ max{m,mq} = mq, against the assumption.

Statement (ii) is a straightforward consequence of part (i).
For (iii), by the previous results m̺

p(z) is attained by the minimal function in F (p(z), ̺),

hence by either f ̺
p(z) or g

̺
p(z). Then, we apply Theorem 3.9. �

The results of Corollary 5.3 confirm that the Hilbert function of a scheme X with
minimal Castelnuovo-Mumford regularity must either have minimal regularity or assume
the smallest possible value at the degree ̺X − 1.

Remark 5.4. If |M(p(z), ̺)| = 1, then the unique element m of M(p(z), ̺) can be bigger
than ̺+ 2 (see Example A.2).

Example 5.5. For the admissible polynomial p(z) = 12z − 25 we have ̺p(z) = ̺p(z) = 6

and f 7
p(z) = f 6

p(z) = (1, 4, 9, 16, 25, 36, 12z−25). So, we consider g7p(z) = (1, 4, 9, 16, 25, 36, 48,

12z − 25) whose first derivative ∆g7p(z) = (1, 3, 5, 7, 9, 11, 12, 11, 12) is admissible. Thus,

F (p(z), 7) 6= ∅ and there are schemes with Hilbert function having regularity 7 and Hilbert
polynomial p(z). Moreover, we obtain m7

p(z) = mg7
p(z)

= 9 and m6
p(z) = mf6

p(z)
= 8.
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6. Expanded lifting

In this section, we use the notion of growth-height-lexicographic Borel set to obtain a
scheme X , given the Hilbert function f and a possible hyperplane section Z, where for a
“possible” hyperplane section Z we intend that HZ ≤ ∆f and pZ(z) = ∆p(z).

Our first tool is the following variant of [Cioffi et al(2011), Proposition 4.3].

Proposition 6.1. Let J ⊂ S be a saturated strongly stable ideal with Hilbert polynomial
p(z) and reg(J) = m. Let xβxb

0, with x0 ∤ xβ and b > 0, be a term of J of degree s ≥ m
which is minimal in Js w.r.t. <B. Then,

(i) the ideal I generated by Js\{xβxb
0} is strongly stable and pS/I = p(z)+1; in particular,

its saturation Isat is strongly stable with pS/Isat = p(z) + 1;
(ii) HS/Isat(t) = HS/J(t), for t < |β|, and HS/Isat(t) = HS/J(t) + 1 otherwise; if |β| = m,

then we get reg(Isat) = m+ 1, otherwise reg(Isat) = m.

Proof. For part (i), we refer to the proof of [Cioffi et al(2011), Proposition 4.3], in which
we replace the Gotzmann number r of p(z) by the regularity m of the ideal J . For part
(ii), note that xβ is a minimal generator of J , because xβxh

0 is a minimal term w.r.t. <B

in J|β|+h, for every h ≥ 0. Then, (Isat)|β|+h is generated by (J|β|+h ∩ T) \ {xβxh
0} and also

the result about the Castelnuovo-Mumford regularity follows. �

If J has suitable minimal generators, then Proposition 6.1 can be used to change the
Hilbert function of S/J into a given other Hilbert function, by constructing a new satu-
rated strongly stable ideal.

Proposition 6.2. Let L ⊂ Tm and L′ ⊂ Tm′ be two growth-height-lexicograph-ic Borel
sets, with m ≤ m′, and let I := (L)sat, I ′ := (L′)sat ⊂ S. If there is an integer t < m
such that ∆HS/I(t) = ∆HS/I′(t), for every t < t, and ∆HS/I(t) < ∆HS/I′(t), then I has
a minimal generator of degree t. Hence, L contains a term of type xβxb

0, with |β| = t and
x0 ∤ x

β and b > 0, which is minimal in L w.r.t. <B.

Proof. By the hypotheses and the definition of growth-height-lexicographic Borel set, we
have x−m+t+1

0 (It−1∩T) = x−m′+t+1
0 (I ′

t−1
∩T). So, the first expansions of x−m+t+1

0 (It−1∩T)

and of x−m′+t+1
0 (I ′

t−1
∩ T) are the same and the difference between the Hilbert functions

implies the existence of a minimal generator of degree t for I, by Proposition 4.5. The
last assertion follows because now we can take the minimal term w.r.t. <B among the
terms of L of type xβxb

0, with |β| = t and x0 ∤ x
β and b > 0. �

Example 6.3. Consider the polynomial p(z) = 9z − 7. Observe that for the saturated
strongly stable ideal J := (x2

4, x4x3, x
2
3, x4x2, x3x

3
2, x

5
2) ⊂ S = K[x0, . . . , x4] we get HS/J =

(1, 5, 11, 9z−8) � f 2
p(z) = (1, 5, 9z−7), but from J we cannot construct a saturated strongly

stable ideal I such that S/I has Hilbert function (1, 5, 9z− 7) by Proposition 6.1 because
J has not a minimal generator of degree 3. Anyway, taking the Borel set B := J5 ∩ T
with growth vector gv(B) = (42, 26, 15, 5, 1) and height vector hv(B) = (47, 26, 12, 4),
we can consider the growth-height-lexicographic Borel set L := Lgh(B) that generates
an ideal whose saturation I := (x2

4, x3x4, x2x4, x1x4, x
3
3, x2x

2
3, x

3
1x

2
3, x

4
2x3, x

5
2) has at least a

generator of degree 3, as we expect by Proposition 6.2.

Theorem 6.4 (Expanded lifting). Let f be a function of F (p(z), ̺) and Z be a scheme
with Hilbert polynomial ∆p(z) and a Hilbert function g such that g � ∆f . Then there is
a scheme X such that HX = f and reg(X) = max{reg(Z), ̺+ 1}.
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Proof. Consider gin(I(Z)) ⊂ K[x1, . . . , xn] and its lifting J = gin(I(Z))·K[x0, x1, . . . , xn],
that is a saturated strongly stable ideal with regularity reg(J) = reg(Z) and HS/J =

∑
g.

Take m := max{reg(Z), ̺+ 1}, L := Lgh(Jm) and let I := (L)sat. By Theorem 4.7, we
have reg(Z) = reg(J) ≤ reg(I) ≤ m. Moreover, by construction and by Proposition 4.5,
the Hilbert function of S/I is the same as the Hilbert function of S/J , that is

∑
g � f ,

with Hilbert polynomial p(z)− c, for a non-negative integer c (see Remark 2.3).
If
∑

g = f , then it is enough to let X = ProjS/I, because in this case ̺+1 ≤ reg(I) ≤
m and reg(Z) = reg(J) ≤ reg(I) ≤ m, hence reg(I) = m.

Otherwise, let Y be a scheme with HY = f and let J ′ = gin(I(Y )). Take m′ =
max{m, reg(Y )}, L′ := Lgh(J

′
m′) and let I ′ := (L′)sat. As before, by construction and by

Proposition 4.5, the Hilbert function of S/I ′ is the same as the Hilbert function of S/J ′,
that is f . By Theorem 4.7, we have reg(Y ) = reg(J ′) ≤ reg(I ′) ≤ m′ = max{reg(Z), ̺+
1, reg(Y )}, hence reg(Y ) ≤ reg(I ′) ≤ m.

Consider t := min{t :
∑

g(t) < f(t)} and observe that t = min{t : g(t) < ∆f(t)} < m,
because g(m) = ∆p(m) = ∆f(m) by the definition of m.

By Proposition 6.2 applied to L and L′, there is a minimal term xβxm−β
0 w.r.t. <B

belonging to L = Im, with |β| = t and x0 ∤ xβ and b > 0. As in Proposition 6.1, we

consider Im \ {xβxm−β
0 } = L \ {xβxm−β

0 }, which generates an ideal whose saturation I has
HS/I(t) = HS/I(t) =

∑
g(t) = f(t), for t < t, and HS/I(t) = HS/I(t) + 1 =

∑
g(t) + 1 ≤

f(t) otherwise (see also Remark 2.3). In particular, ∆HS/I(t) = g(t), for t 6= t, and

∆HS/I(t) = g(t) + 1. Moreover, reg(Z) ≤ reg(I) ≤ m because reg(I) = reg(I).

Thus, if HS/I = f , then it is enough to let X = ProjS/I, because in this case we

also have ̺ + 1 ≤ reg(I) ≤ m, hence reg(I) = m. Otherwise, we can repeat the above
arguments on I, redefining g as g := ∆HS/I and noticing that we have again ∆p(m) =

g(m) = ∆f(m). �

Example 6.5. For the polynomial p(z) = 15z − 24 we have ̺p(z) = ̺p(z) = 3. Consider
the functions f = (1, 5, 11, 15z − 24) ∈ F (p(z), 3) and g = (1, 3, 6, 10, 15, . . .) � ∆f =
(1, 4, 6, 10, 15, 15, . . .). The saturated strongly stable ideal J ′ = (x5

3, x
4
3x2, x

2
2x

3
3, x

3
2x

2
3,

x3x
4
2, x

5
2, x4) ⊂ K[x1, . . . , x4] defines a scheme Z ⊂ P3

K with Castelnuovo-Mumford reg-
ularity reg(Z) = 5. If J := J ′ · K[x0, . . . , x4] is a lifting of J , then the Hilbert func-
tion of K[x0, . . . , x4]/J is

∑
g = (1, 4, 10, 20, 15z − 25) � f . In this case we can apply

Proposition 6.1 with t = 1, taking the saturation J = (x2
4, x4x3, x4x2, x4x1, x

5
3, x

4
3x2, x

3
3x

2
2,

x2
3x

3
2, x3x

4
2, x

5
2) of the ideal generated by (J)5 \ {x4

0x4}, that defines a curve in P4
K with

reg(I) = 5 = ̺p(z) + 2 and HS/I = f .

7. Minimal Castelnuovo-Mumford regularity

As announced in Notation 2.6, here we set:

(8) f := f
̺p(z)
p(z) and m := mf .

In this section, we apply the constructive result of Theorem 6.4 to show that mp(z) = m
and to compute mu, for every ̺ ≥ ̺p(z) and u ∈ F (p(z), ̺). We also compute the minimal
possible Castelnuovo-Mumford regularity of any scheme with Hilbert polynomial p(z)
embedded in a given projective space Pn

K .
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Theorem 7.1. Let u ∈ F (p(z), ̺) and v ∈ F (p(z), ̺′). Then,

̺ < ̺′ =⇒ mu ≤ mv (in particular m̺
p(z) 6 m̺′

p(z))

Hence mp(z) = m.

Proof. First, we prove that mf̺−1
p(z)
≤ mf̺

p(z)
, for every ̺ > ̺p(z). Suppose f ̺

p(z) 6= f ̺−1
p(z) ,

hence f ̺
p(z) has regularity ̺. By Lemma 3.8(ii), we have ∆f ̺

p(z)(t) ≤ ∆f ̺−1
p(z) (t) for every

t < ̺. Anyway, we have also ∆f ̺
p(z)(̺) > ∆f ̺−1

p(z) (̺) = ∆p(̺), because f ̺
p(z)(̺−1) < p(̺−1)

since ̺ > ̺p(z), by Proposition 3.2.
Let X be a scheme with HX = f ̺

p(z) and reg(X) = mf̺

p(z)
, and let g ∈ F (∆p(z), ˜̺)

be the Hilbert function of its general hyperplane section. Thus, we obtain g � ∆f ̺
p(z)

and mg ≤ mf̺

p(z)
, by Lemma 2.4. There are two possible cases: either g � ∆f ̺−1

p(z) or

g 6� ∆f ̺−1
p(z) . If g � ∆f ̺−1

p(z) , then by Theorem 6.4, we have mf̺−1
p(z)
≤ max{mg, ̺} ≤ mf̺

p(z)
.

If g 6� ∆f ̺−1
p(z) , by the described behavior of the first derivatives of our minimal functions,

we obtain ∆f ̺
p(z)(̺) ≥ g(̺) > ∆f ̺−1

p(z) (̺) = ∆p(̺). Hence, the regularity of g is ≥ ̺ + 1

and mf̺

p(z)
≥ mg ≥ ̺ + 2. This fact implies the thesis. Indeed, if on the contrary

mf̺−1
p(z)

> mf̺

p(z)
, then we could apply Theorem 5.2 to w := f ̺−1

p(z) , q = f ̺
p(z) and m := ̺+ 2

getting mf̺−1
p(z)

= ̺+ 2 and mf̺

p(z)
= ̺+ 1, meanwhile mf̺

p(z)
≥ ̺+ 2.

Now, if mu > mv then, applying Theorem 5.2 to w := u, q := v and m := ̺′ + 2, we
get ̺′ + 1 ≤ mv < mu = ̺′ + 2, hence mv = ̺′ + 1 and mu = ̺′ + 2. We have also

̺+ 1 ≤ m̺
p(z) ≤ m̺′

p(z) ≤ mv = ̺′ + 1, hence M(p(z), ̺) = {m̺
p(z), mu} with m̺

p(z) ≤ ̺′ + 1

and mu = ̺′ + 2 > ̺+ 2, against Corollary 5.3(i). �

Corollary 7.2. Let ̺ be any integer such that F (p(z), ̺) 6= ∅. Then,

(9) m̺
p(z) =





m, if ̺p(z) ≤ ̺ ≤ m− 2,

mf̺

p(z)
= ̺+ 1, if m− 1 ≤ ̺ and f ̺

p(z) has regularity ̺,

mg̺
p(z)

= ̺+ 2, otherwise.

Proof. Consider ̺ > ̺p(z), being the case ̺ = ̺p(z) obvious, and let u be the minimal
function in F (p(z), ̺), so m̺

p(z) = mu by Corollary 5.3(iii). By Theorem 7.1, we have

mu ≥ m. Recall that m > 1, because we are not considering linear varieties.
By Corollary 5.3(iii), there are two possibilities for u. If u = f ̺

p(z), we can apply

Theorem 5.2 to w := u, q := f and m := max{̺ + 1, m} by the last part of Proposition
3.2, obtaining h = w = u and mu ≤ m, hence mu = ̺+ 1. If u = g̺p(z), then mu ≥ ̺+ 2

by Proposition 2.5, because g̺p(z)(̺ − 1) > p(̺ − 1) by construction. We apply Theorem

5.2 to w := u, q := f and m := max{̺+ 2, m}, obtaining h = w = u and mu ≤ m, hence
mu = ̺+ 2. �

If p(z) is an admissible polynomial for subschemes of Pn
K , then we can pose the same

questions about the Castelnuovo Mumford regularity for a given dimension n of the pro-
jective space, and we provide the following answer.

Corollary 7.3. The minimal possible Castelnuovo-Mumford regularity of a scheme X ⊂
Pn
K, with pX(z) = p(z), is mf̺n

p(z)
with ̺n := min{̺ ≥ ̺p(z) : f

̺
p(z)(1) ≤ n + 1}.
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Proof. Observe that n ≥ f r−1
p(z) (1)−1, because f

r−1
p(z) is the minimum of the Hilbert functions

with Hilbert polynomial p(z). Then, apply Theorem 7.1. �

Finally, we have a recursive procedure to compute mu, for every u ∈ F (p(z), ̺), and
we get also lower and upper bounds in terms of ̺∆ip(z).

Theorem 7.4. Let k be the degree of the polynomial p(z), u ∈ F (p(z), ̺) and

M := max
1≤i≤k

{̺, ̺∆ip(z)}, ˜̺u := min{t ≥ ̺∆p(z) : f
t
∆p(z) � ∆u}, m̃ := m

f ˜̺u
∆p(z)

.

If k = 0, then mu = ̺ + 1. If k > 0, then mu = max{m̃, ̺ + 1}. Moreover, we obtain
M + 1 ≤ mu ≤M + 2.

Proof. The case k = 0 holds by Remark 3.4(2). For k > 0, observe that m̃ is the lowest
Castelnuovo-Mumford regularity of a general hyperplane section of a scheme with Hilbert
function u, by Lemma 2.4 and Theorem 7.1, hence mu ≥ m̃. Now, by Theorem 6.4, we
can construct a scheme X with HX = u and reg(X) = max{m̃, ̺+ 1} = mu.

For the inequalities M + 1 ≤ mu ≤ M + 2 we argue by induction on k. The first
inequality follows again from Lemma 2.4 and from the definition of ̺∆ip(z). For the
second one, observe that if mu ≥ ̺+ 2, then mu = m̃, by the previous results. Moreover,
by Corollary 5.3(iii), m̃ = m˜̺u

∆p(z) because f ˜̺u

∆p(z) has regularity ˜̺u. By induction, we

obtain m∆p(z) ≤ max1≤i≤k{̺∆ip(z)}+ 2, because, by Theorem 7.1, m∆p(z) is the minimum

regularity of a scheme with Hilbert function f
̺∆p(z)

∆p(z) , that has regularity ̺∆p(z). Moreover,

by Theorem 7.1 and Corollary 7.2, we have m̃ ≤ max{m∆p(z), ˜̺u+1}. Thus, we complete
the proof because ˜̺u ≤ max{̺∆p(z), ̺+ 1}, by definition. �

Appendix A. Algorithms and examples

In this appendix, we collect the main algorithms that arise from the results we have
described in our exposition. A trial version of these algorithms is available at the web page
http://www.personalweb.unito.it/paolo.lella/HSC/Minimal Hilbert Functions

and CM regularity.html.

Algorithm 1 RhoBar computes the minimal regularity of a Hilbert function of a scheme
with Hilbert polynomial p(z) (see Proposition 3.11).

1: RhoBar
(
p(z)

)

Require: p(z) a Hilbert polynomial.
Ensure: ̺p(z), the minimal regularity of a Hilbert function f of a scheme with Hilbert

polynomial p(z).
2: if deg p(z) = 0 then

3: return 1;
4: else

5: ̺∆p(z) ← RhoMin
(
∆p(z)

)
;

6: return min
{
t > max{̺∆p(z), 1}

∣∣ Σf t
∆p(z)(t− 1) 6 p(t− 1)

}
− 1;

7: end if

http://www.personalweb.unito.it/paolo.lella/HSC/Minimal_Hilbert_Functions_and_CM_regularity.html
http://www.personalweb.unito.it/paolo.lella/HSC/Minimal_Hilbert_Functions_and_CM_regularity.html
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Algorithm 2 RhoMin computes the minimal regularity of a Hilbert function with
Hilbert polynomial p(z) (see Remark 3.12).

1: RhoMin(p(z))
Require: p(z) a Hilbert polynomial.
Ensure: ̺p(z), the minimal regularity of a Hilbert function f with f(t) = p(t), t≫ 0.
2: if deg p(z) = 0 then

3: return 1;
4: else

5: ̺∆p(z) ← RhoMin
(
∆p(z)

)
;

6: ̺← min
{
t > max{̺∆p(z), 1}

∣∣ Σf t
∆p(z)(t− 1) 6 p(t− 1)

}
− 1;

7: if ̺ > ̺∆p(z) − 1 then

8: return ̺;
9: else

10: while ̺ > 1 and (p(̺− 1)̺−1)
+
+ > p(̺) do

11: ̺← ̺− 1;
12: end while

13: if ̺ = 1 and p(0) = 1 then

14: ̺← 0;
15: end if

16: return ̺;
17: end if

18: end if

Algorithm 3 This function computes the minimal Castelnuovo-Mumford regularity of
a scheme, given the Hilbert polynomial and the regularity of the Hilbert function (see
Theorem 7.4).

1: MinimalCMregularity
(
p(z), ̺

)

Require: p(z), a Hilbert polynomial.
Require: ̺, an integer such that F (p(z), ̺) 6= ∅.
Ensure: the minimal Castelnuovo-Mumford regularity m̺

p(z) of a scheme with Hilbert

function of regularity ̺ and Hilbert polynomial p(z).
2: if deg p(z) = 0 then

3: return ̺+ 1;
4: else

5: ̺∆p(z) ← RhoBar
(
∆p(z)

)
;

6: b← min{t > ̺∆p(z) | f
t
∆p(z) � ∆f ̺

p(z)};

7: return max
{
̺+ 1,MinimalCMregularity

(
∆p(z), b

)}
;

8: end if
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Algorithm 4 This function computes the minimal Castelnuovo-Mumford regularity of a
scheme, given the Hilbert polynomial (see Theorem 7.4).

1: MinimalCMregularity
(
p(z)

)

Require: p(z), a Hilbert polynomial.
Ensure: the minimal Castelnuovo-Mumford regularity mp(z) of a scheme with Hilbert

polynomial p(z).

2: return MinimalCMregularity
(
p(z),RhoBar

(
p(z)

))
;

Algorithm 5 This function computes the minimal Castelnuovo-Mumford regularity mu

of a scheme, given the Hilbert function u with Hilbert polynomial p(z) (see Theorem 7.4).

1: MinimalCMregularity
(
p(z), u

)

Require: p(z), a Hilbert polynomial.
Require: u, Hilbert function of a scheme with Hilbert polynomial p(z).
Ensure: the minimal Castelnuovo-Mumford regularity mu of a scheme with Hilbert func-

tion u.
2: ̺← regularity of u;

3: b← min
{
t > ̺p(z) | f

t
∆p(z) � ∆u

}

4: return max
{
̺+ 1,MinimalCMregularity

(
∆p(z), b

)}
;

Algorithm 6 This function computes the minimal Castelnuovo-Mumford regularity of a
subscheme of Pn with Hilbert polynomial p(z) (see Corollary 7.3).

1: MinimalCMregularity
(
p(z),Pn

)

Require: p(z), a Hilbert polynomial.
Require: Pn, a projective space with n > deg p(z) + 1.
Ensure: the minimal Castelnuovo-Mumford regularity of a subscheme of Pn with Hilbert

polynomial p(z).
2: ̺p(z) ← RhoBar

(
p(z)

)
;

3: ̺← min
{
t > ̺p(z) | f

t
p(z)(1) 6 n+ 1

}

4: return MinimalCMregularity
(
p(z), ̺

)
;

Example A.1. We computemp(z) for the Hilbert polynomial p(z) = 1
3
z3+2z2+ 14

3
z−4, ap-

plying MinimalCMregularity
(
p(z)

)
. We get ∆p(z) = z2+3z+3, ∆2p(z) = 2z+2 and

∆3p(z) = 2 (see Table 1). Moreover, we have ̺p(z) = 3 and ̺∆p(z) = 1, hence ̺p(z) = ̺p(z) =

3. For u := f 3
p(z) = (1, 6, 17, p(z)), we compute ∆f 3

p(z) = (1, 5, 11, 20,∆p(z)) and have

˜̺u = 4. For u := f 4
∆p(z) = (1, 4, 10, 19,∆p(z)), we compute ∆f 4

∆p(z) = (1, 3, 6, 9, 12, 12,

∆2p(z)) and get ˜̺u = 2, with f 2
∆2p(z) = (1, 3,∆2p(z)). Since mf2

∆2p(z)
= 3, we get

mf4
∆p(z)

= 5, hence mp(z) = 5.

Example A.2. For the admissible polynomial p(z) = 6z2−18z+37 we already considered
in Example 3.6, we get ∆p(z) = 12z − 24, ̺p(z) = 1 and ̺∆p(z) = 5, hence ̺p(z) = 4 (see
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Table 1. Example A.1

p(z) r ̺p(z) ̺p(z) ̺ ˜̺ m̺
p(z)

1
3
z3 + 2z2 + 14

3
z − 4 10 3 3 3 4 5

z2 + 3z + 3 6 1 1 4 2 5
2z + 2 3 1 1 2 1 3
2 2 1 1 1 2

Table 2. Example A.2

p(z) r ̺p(z) ̺p(z) ̺ ˜̺ m̺
p(z)

2z3 − 6z2 + 29z − 20 218498 2 2 2 4 7
6z2 − 18z + 37 678 1 4 4 5 7
12z − 24 42 5 5 5 6 7
12 12 1 1 6 7

Table 2). For u := f 4
p(z) = (1, 5, 15, 33, p(z)), we compute ∆f 4

p(z) = (1, 4, 10, 18, 28,∆p(z))

and have ˜̺u = 5. Then, for u := f 5
∆p(z) = (1, 4, 9, 16, 25,∆p(z)) we compute ∆f 5

∆p(z) =

(1, 3, 5, 7, 9, 11, ∆2p(z)) and get ˜̺u = 6, hence mp(z) = 7.
For the admissible polynomial q(z) = 2z3 − 6z2 + 29z − 20, we have ∆q(z) = p(z) and

̺q(z) = 2. So, we take f 2
q(z) = (1, 8, q(z)) and ∆f 2

q(z) = (1, 7, 22,∆q(z)). By ̺∆q(z) = 4,

we get ˜̺u = 4 for u := f 4
p(z) = f 4

∆q(z) � f 3
∆q(z) � ∆f 2

q(z). Using the already computed
mf4

p(z)
= mp(z), we have also mq(z) = 7.
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