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Abstract 1 

We assess the relative performance of a suite of selected models to interpret three-phase oil 2 

relative permeability data and provide a procedure to determine identifiability of the model 3 

parameters. We ground our analysis on observations of Steady-State two- and three-phase relative 4 

permeabilities we collect on a water-wet Sand-Pack sample through series of core-flooding 5 

experiments. Three-phase experiments are characterized by simultaneous injection of water and 6 

gas into the core sample initiated at irreducible water saturation, a scenario which is relevant for 7 

modern enhanced oil recovery techniques. The selected oil relative permeability models include 8 

classical and recent formulations and we consider their performance when (i) solely two-phase 9 

data are employed and/or (ii) two- and three-phase data are jointly used to render predictions of 10 

three-phase oil relative permeability, kro. We assess identifiability of model parameters through 11 

the Profile Likelihood (PL) technique. We rely on formal model discrimination criteria for a 12 

quantitative evaluation of the interpretive skill of each of the candidate models tested. We also 13 

evaluate the relative degree of likelihood associated with the competing models through a 14 

posterior probability weight and use Maximum Likelihood Bayesian model averaging to provide 15 

model-averaged estimate of kro and the associated uncertainty bounds. Results show that assessing 16 

identifiability of uncertain model parameters on the basis of the available dataset can provide 17 

valuable information about the quality of the parameter estimates and can reduce computational 18 

costs by selecting solely identifiable models among available candidates. 19 

Keywords: relative permeability, parameter estimations, maximum likelihood, profile likelihood, 20 

identifiability analysis, model averaging. 21 
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1. Introduction 1 

Proper characterization of flow under three-phase conditions is critical for a variety of field 2 

oriented industrial and environmental applications, including oil and gas production projects and 3 

their impacts on groundwater resources. Multiphase flow in porous media may potentially occur in 4 

hydrocarbon production scenarios and in the context of modern enhanced oil recovery (EOR) 5 

techniques based on simultaneous (or cyclic) injection of water and gas phases into an oil 6 

reservoir. In this framework, adequate characterization of relative permeabilities of fluid phases is 7 

of critical importance, since formulations based on analogues to Darcy's Law are routinely 8 

employed for the continuum-scale simulation of multiphase flow dynamics in porous and 9 

fractured media (e.g., Silpngarmlers et al., 2002 and references therein). A reliable 10 

characterization (either experimental or theoretical) of relative permeabilities, including a 11 

quantification of estimation uncertainty, enables us to assess the performance and efficiency of the 12 

reservoir production under the application of EOR techniques and the repercussions that these 13 

might have on the general subsurface flow circulation pattern, which is a key environmental 14 

concern in modern applications. 15 

All these elements should be contrasted with the observation that experimental set-ups of 16 

three-phase flow systems are remarkably complex, costly, and time-consuming to design and 17 

operate. Due to a combination of these reasons, documentation and availability of three-phase 18 

relative permeability experiments is scarce (see, e.g., Oak, 1990; Blunt, 2000; Alizadeh and Piri, 19 

2014a, b). A variety of empirical/semi-empirical models have been proposed for the 20 

characterization of three-phase relative permeabilities (e.g., Baker, 1988; Stone, 1970; Stone, 21 

1973; Blunt, 2000; Spiteri and Juanes, 2004; Kianinejad and DiCarlo, 2016; Ranaee et al., 2016 22 

and references therein). Ranaee et al. (2016) jointly employ Maximum Likelihood (ML) parameter 23 

estimation and model identification criteria to study the performance of a set of three-phase 24 

relative permeability models to interpret laboratory core-flooding datasets presented by Alizadeh 25 



and Piri (2014b). The datasets analyzed include the dependence on phase saturation of two- and 1 

three-phase relative permeabilities collected under cyclic water alternating gas (WAG) injection 2 

scenarios. A main conclusion of Ranaee et al. (2016) is that the recent three-phase oil relative 3 

permeability model (termed Sigmoid model) proposed by Ranaee et al. (2015) appears to 4 

outperform the other tested models in interpreting the analyzed dataset. The need for additional 5 

testing against data-sets acquired under diverse conditions is also highlighted by the authors. This 6 

is precisely one of the objectives of the current study. We ground our analysis on the recent core-7 

flooding data-sets presented by Moghadasi et al. (2016) and collected under simultaneous 8 

injection of water and gas (SWAG) phases. The data we analyze involve Steady-State two- and 9 

three-phase laboratory experiments performed on a quartz Sand-Pack sample. 10 

An additional objective of our study is related to the assessment of the degree of reliability of 11 

the estimates of the parameters of calibrated relative permeability models. In this context, it is 12 

relevant to infer the reliability associated with such estimated model parameters on the basis of the 13 

amount and quality of available data (e.g., Neuman, 2003; Flassig et al., 2015) and to quantify the 14 

sensitivity of model responses to variations of uncertain model parameters (e.g., Tiedeman et al., 15 

2004; Hou et al., 2015 and references therein). One then needs to assess the way parameter 16 

estimation uncertainty propagates onto bounds of uncertainty for model predictions (Kreutz et al., 17 

2012 and references therein). We tackle these issues, including identifiability of model parameters, 18 

in the framework of a local sensitivity analysis (SA) performed on a selected suite of models. The 19 

challenges associated with the analysis are amplified by the type of flow process we examine and 20 

by the way the multi-phase flow physics are embedded (to various degrees) into each of the 21 

interpretive models. 22 

Here we consider a collection of empirical models (see section 2.4) of three-phase oil relative 23 

permeability, rok , and: (i) rely on a Maximum Likelihood (ML) approach to compare the individual 24 

skill of each of these models to interpret rok  data collected by Moghadasi et al. (2016) under 25 



simultaneous injection of water and gas phases; (ii) quantify the uncertainties related to ML 1 

parameter estimates of each model; (iii) perform a comprehensive local sensitivity analysis for all 2 

model parameters; (iv) study the manifestation of possible structural and/or practical non-3 

identifiability of model parameters through the use of the Profile Likelihood (PL) technique (Raue 4 

et al., 2009); and (v) illustrate the ability of ML Bayesian model averaging (MLBMA) approaches 5 

to interpret the analyzed dataset. We treat the models considered as a set of competing alternatives, 6 

rank them through model selection (or model discrimination) criteria and evaluate the posterior 7 

probability (or weight) associated with each of them. We assess the way the uncertainty linked to 8 

identifiable models parameters propagates to model outputs, i.e., rok , within a multimodel 9 

framework.  10 

The work is organized as follows. Section 2.1 briefly illustrates the experimental core-11 

flooding setup and the collected Steady-State two- and three-phase data of Moghadasi et al. (2016). 12 

The ML calibration procedure is briefly described in Section 2.2. Section 2.3 presents the Profile 13 

Likelihood (PL) technique for the assessment of identifiable model parameter(s). Section 2.4 14 

illustrates the main features of the three-phase oil relative permeability models analyzed. Key 15 

results are presented in Section 3. 16 

2. Materials and methods 17 

2.1 Available dataset 18 

The test bed we select comprises a three-phase core-flooding dataset collected on a water-wet 19 

Sand-Pack (Moghadasi et al., 2016, 2015a,b). Fig. 1 depicts a sketch of the setup employed in the 20 

experiments. The setup is designed as a closed-loop system. It comprises a core holder under a 21 

confinement pressure of 30 bars, an X-Ray apparatus for in-situ saturation detection and a three-22 

phase separator. Experiments have been performed upon relying on the Steady-State method on a 23 

confined water-wet quartz Sand-Pack (length of 30 cm and cross-sectional diameter of 3.81 cm). 24 

The fluids used in the displacement experiments are water, isoparaffinic mineral oil and Nitrogen 25 



gas (N2). Water is tagged with an X-Ray absorbing chemical (NaBr) to allow for fluid saturation 1 

monitoring. The X-Ray apparatus includes a generator and a detector, a composite carbon core 2 

holder and a data acquisition system. The core sample is scanned from bottom to top, generating 3 

one-dimensional (1D) profiles of X-Ray attenuation. These data can be considered as representative 4 

of section-averaged saturations. The X-Ray beam employed to infer saturation of two-phase settings 5 

is generated by applying an electric potential of 55 kV and a current of 30 mA. To assess 6 

saturations in the three-phase experiments, we operated the X-Ray system at two diverse energy 7 

levels (Ei, i = 1, 2). We employed 55 kV-30 mA (E1), and 90 kV-1 mA (E2), following preliminary 8 

system calibrations. These values are kept constant during the experiments. The two streams of oil 9 

and water are re-injected from the separator to the core by dual piston syringe pumps. The gas is 10 

first conveyed through a humidification system and is then injected into the core by a pump. The 11 

gas discharged from the core is collected in the three-phase separator and is then released from the 12 

system through a gasometer (see Fig. 1). The humidification component is essentially formed by a 13 

cylinder containing the test oil and water and within which the gas is bubbled. The temperature in 14 

this component is about 40°C higher than room temperature. The procedure is designed to avoid 15 

drying of the core during gas injection. Gas flow rates are controlled by a mass-flow meter placed 16 

upstream of the humidification system. Two pressure transducers are employed to measure 17 

continuously the pressure drop across the core. 18 

Fig. 1. 

 19 

Two- and three-phase Steady-State (SS) laboratory experiments are performed by 20 

simultaneous injection of fluids into the core sample, according to the steps depicted in Fig. 2. The 21 

system state resulting from each of the steps described in the following is maintained for 24 hours 22 

to ensure attainment of equilibrium conditions. Before initiating the (two- or three-phase) 23 

experiments, the core sample is fully saturated with water. Absolute permeability of the core sample 24 



to the water phase is determined by applying a sequence of diverse flow rates and employing 1 

Darcy's law (Step A in Figs. 2a, b). Oil is then injected to displace water. This drainage process 2 

takes place until no more water is eluted from the system. The (highest) value of oil relative 3 

permeability, M
rowk , is then determined at such irreducible (connate) water saturation, wcS , 4 

condition (Step B in Figs. 2a, b).  5 

Joint injection of the oil and water phases is performed for the two-phase setting by applying a 6 

total constant flow rate of 480 ml/h (corresponding to an average velocity of 90 ft/day, porosity of 7 

the core sample being equal to 0.37). The collection of experimental data is performed by 8 

increasing the water fractional flow rate while decreasing the oil fractional flow rate (Steps C-E in 9 

Fig. 2a). For a given fractional flow rate, measurements of fluid saturations and pressure drop 10 

(across the core sample) are taken at Steady-State (SS) conditions. Note that, as mentioned above, 11 

each step takes almost 24 hours to attain equilibrium. Residual oil saturation, orwS , is established at 12 

the end of the oil-water imbibition process, when no more oil is eluted from the core (Step F in Fig. 13 

2a). A series of SS drainage experiments are then performed on the core sample, starting at orwS  14 

and increasing oil and decreasing water fractional flow rates. The Steady-State oil-gas drainage 15 

process is also assessed through a similar experimental procedure by simultaneous injection of oil 16 

and gas (increasing gas and decreasing oil flow rates) into the core sample initiated at wcS . 17 

The three-phase SS experiment is started at two-phase wcS  (in presence of oil, Step B in Fig. 18 

2b) and is performed by simultaneous injections of water, oil and gas. The three-phase dataset 19 

includes oil relative permeabilities collected under an Increasing-Decreasing-Increasing saturation 20 

path (termed IDI, referring here to increasing water, decreasing oil and increasing gas fractional 21 

flow rates). Such an IDI path is obtained by systematically varying the fractional flow of water, gas 22 

and oil for a set of successive flow rate setting. Water and gas rates are increased accordingly. Note 23 

that a given experimental step is considered to be completed when the system attains equilibrium in 24 



terms of pressure and fluid distributions (saturations). Two to four days are typically needed for 1 

each set of flow rates to achieve Steady-State. The last step of the experiments is performed through 2 

injection of only water and gas into the core sample (Step F in Fig. 2b). This experimental 3 

procedure can be considered as representative of typical reservoir conditions during primary oil 4 

production. 5 

Saturation values are recorded during both two- and three-phase experiments by means of an 6 

in-situ X-Ray saturation monitoring technique. X-Ray scans of the rock sample are performed after 7 

each step for the assessment of saturation profiles. Relative permeabilities are finally calculated 8 

upon applying Darcy's law and are associated with the corresponding depth-averaged core 9 

saturations (see Moghadasi et al., 2015, 2016 for additional details). 10 

Fig. 2. 

 11 

Data of oil relative permeabilities observed from (a) two-phase oil-water, rowk , and oil-gas, 12 

rogk , systems, and (b) three-phase, kro, experiments are depicted in Fig. 3 versus oil saturation. 13 

Results indicate a clear hysteretic behavior of rowk , when switching from drainage, D
rowk , to 14 

imbibition, I
rowk , conditions. Since in oil-gas systems of water-wet conditions the two-phase 15 

relative permeability, rogk , of the porous medium to oil (the wetting phase) does not reveal 16 

hysteresis effects (e.g., Spiteri and Juanes, 2004) in Fig. 3 we depict only data collected during 17 

drainage experiments, D
rogk . 18 

Fig. 3. 

 19 

 20 



2.2 Maximum Likelihood model parameter estimation 1 

This section briefly outlines the Maximum Likelihood (ML) framework employed to estimate 2 

model parameters and associated bounds of uncertainty in the context of the relative permeability 3 

models. We introduce the vector Y , whose entries are n values of ,logi ro iY k=  (with i = 1, …, n), 4 

,ro ik  being relative oil permeability at oil saturation equal to ,o iS . Vector *Y  contains n available 5 

noisy measurements of iY , * *
,logi ro iY k= . For a given model, a ML estimate, θ̂ , of vector, θ , whose 6 

entries are m model parameters, can be obtained through minimization of the negative log 7 

likelihood criterion, NLL (e.g., Carrera and Neuman, 1986)  8 

2
2

ln(2 )Y
Y

J
NLL n ps

s
= + ; 

2

1

n

i
i

J e
=

=å ; 
*=i i iY Ye -  (1) 9 

where 2
Ys  is the measurement error variance, J  is the global residual between model predictions 10 

and observations, ie  is the i-th entry of the prior measurement error vector, which is supposed to be 11 

zero-mean Gaussian, uncorrelated. The quantity 2
Ys  is generally unknown and its ML estimate can 12 

be obtained as 13 

2 minˆY

J

n
s =  (2) 14 

m inJ  being the minimum value of J, i.e., ( )min
ˆJ J θ= . The covariance matrix, Q , of the estimation 15 

error is approximated by its Cramer-Rao lower bound as 16 

( ) 12ˆ T
YQ J Js

-
=  (3) 17 

where the superscript T denotes transpose and J  is the nm Jacobian matrix whose entries are the 18 

derivatives of the target variable, iY , with respect to model parameters evaluated at θ̂ . We 19 

minimize (1) through a gradient based method (e.g., Nocedal and Wright, 2006), as implemented in 20 



Matlab® environment. The square root of a given diagonal term of Q  yields the ML estimate of the 1 

estimation error of the corresponding model parameter, ˆ
i

ML
 . This information can be employed to 2 

evaluate the upper, _
ML

i U , and lower, _
ML
i L , limits of the confidence intervals of each parameter 3 

estimate with a given significance level  as 4 

2
_

ˆ ˆ
i

ML ML
i U i       ; 2

_ α
ˆ ˆ

i

ML ML
i L i       (4) 5 

2
  being the -quantile of the 2  distribution with one degree of freedom. Confidence intervals, 6 

CIs, of parameter estimates can also been identified by introducing a threshold in the likelihood 7 

(i.e., the so called finite sample confidence intervals) as (Meeker and Escobar, 1995) 8 

2
_ _ 2

ˆ( ) ( )
, |PL PL i i

i L i U
Y

J J
a

q q
q q c

s

ì üï ï-ï ï=í ýï ïï ïî þ
 (5) 9 

Note that CIs defined through (4) are symmetric around î . Otherwise, CIs calculated on the basis 10 

of (5) can be strongly asymmetric around parameter estimates, as we illustrate in Section 3. 11 

When NM multiple models are considered to interpret a physical scenario of interest, one may 12 

minimize (1) for each candidate model. Once the parameters associated with each model are 13 

estimated, the NM alternative formulations can be ranked by way of selection (or discrimination) 14 

criteria (e.g., Neuman, 2003; Ye et al., 2004, 2008; Haddad and Rahman, 2011; Neuman et al., 2012 15 

and references therein). These include AICc (Hurvich and Tsai, 1989), BIC (Schwarz, 1978) and 16 

KIC (Kashyap, 1982), respectively defined as 17 

( )2 1
2

1c

m m
AIC NLL m

n m

+
= + +

- -
 (6) 18 

lnBIC NLL m n= +  (7) 19 



( )ln 2 lnKIC NLL m Qp= - -  (8) 1 

Model discrimination criteria can also be employed to determine posterior model weight (for AICc) 2 

or posterior model probability (for BIC and KIC), ( )*|kp M Y , as (Ye et al., 2008) 3 

( )
( ) ( )

( ) ( )

*

1

1exp 2|
1exp 2

M

k k

k N

i i
i

IC p M
p M

IC p M

Y

=

- D
=

- Då
 (9) 4 

Here, mink kIC IC IC   , kIC  being a given model discrimination criterion (6)-(8); minIC  is the 5 

minimum value of kIC  across the NM candidate models, and p(Mk) is the prior probability of model 6 

Mk. 7 

We also employ ML Bayesian Model Averaging (MLBMA) (Neuman, 2003; Ye et al., 2004; 8 

2010; Tsai, 2010) to combine the predictive capabilities of the suite of models considered. Relative 9 

permeability values averaged across the model space and conditional to the available data, 10 

( )*|E Y Y , can then be calculated by weighting each model through its posterior probability (Ye et 11 

al., 2010) as 12 

( ) ( ) ( )* * *

1

| | , |
MN

k k
k

E E M p MY Y Y Y Y
=

= å  (10) 13 

( )*| , kE MY Y  being the posterior mean Y  computed for model kM . The mean permeability 14 

value (10) is then complemented by the associated variance 15 

( ) ( ) ( ) ( ) ( ) ( )
2

* * * * * *

1 1

| | , | | , | |
M MN N

k k k k
k k

Var Var M p M E M E p MY Y Y Y Y Y Y Y Y Y
= =

é ù= + -ê úë ûå å16 

 (11) 17 

( )*| , kVar MY Y  being the posterior variance of Y  associated with model kM . 18 

 19 



 1 

2.3 Model parameter identifiability 2 

An important step in a model selection and calibration framework is the assessment of the 3 

identifiability of model parameters. Following Raue et al. (2011), depending on the available 4 

dataset and on the model structure, one can distinguish between (i) identifiability, (ii) practical non-5 

identifiability and/or (iii) structural non-identifiability of model parameters. The identifiability 6 

analysis is performed on the basis of the global residual J given by (1). For illustration purposes, 7 

Fig. 4 depicts the ratio 2/ YJ   for a two-dimensional parameter space ( 1 , 2 ) and for three 8 

showcases respectively depicting identifiability (Fig. 4a), practical non-identifiability (Fig. 4b) and 9 

structural non-identifiability (Fig. 4c). Figures 4a-c also include the parameter estimate confidence 10 

intervals, CIs, as defined by (5). Parameter i  is identifiable if the minimum of (1) is unique and the 11 

area enclosed by the CI in the parameter space is finite and fully included in the parameter space 12 

(see, e.g., Fig. 4a, b). Finally, structural non-identifiability is related to the model structure, 13 

regardless of the quality and/or quantity of the data collected (Cobelli and DiStefano, 1980), and 14 

arises from a non-unique solution of minimization of (1) (see Fig. 4c). 15 

Fig. 4. 

 16 

We assess here identifiability of model parameter i  through its profile likelihood (PL), 17 

( )PL i  , defined as (Raue et al., 2009) 18 

2

( )
( ) min

j i

j
PL i

Y

J



 



 
  

 
 (12) 19 



with 2
Y  = 2ˆY  i.e. ( )PL i   is calculated by minimizing J from (1) with respect to all model 1 

parameters except θi. Fig. 4d depicts the PL of the identifiable parameter 1 . In this case 1( )PL   2 

displays a unique minimum (at the ML estimate of 1 , 1̂ ) and increases for both increasing and 3 

decreasing values of 1  around 1̂ , resulting in a region of finite extent and fully included in the 4 

parameter space explored for model calibration. In the case of practical non-identifiability (see Fig. 5 

4e), ( )PL i   displays a unique minimum value, but the lower or/and upper limits of the CIs, i.e. _
PL
i Lq  6 

or _
PL
i Uq  in (5), reaches the assigned bounds of the parameter space. Structural non-identifiability, as 7 

illustrated in Fig. 4f, results in a flat behavior of ( )PL i   within the parameter range of variability. 8 

2.4 Three-phase oil relative permeability models 9 

A variety of empirical and semi-empirical formulations is available and is routinely used for 10 

the characterization of three-phase relative permeabilities. Each model may be associated with a set 11 

of parameters which can be estimated by model calibration through experiments, i.e., available 12 

saturation-relative permeability data. Here, we analyze the behavior of four models, which we select 13 

amongst classical and relatively recent formulations, in terms of their skill to characterize three-14 

phase oil relative permeability, rok , data. An extensive analysis of rok  available models has been 15 

recently presented by Ranaee et al. (2016). With respect to these authors, here we do not consider 16 

the models introduced by Delshad and Pope (1989) and Lomeland and Ebeltoft (2013) since they 17 

require the evaluation of a large number of parameters (m  5) which cannot be estimated when, as 18 

is often the case, the amount of available rok  data, n, is limited. Note that n = 6 for the analyzed 19 

data set (see also Fig. 3). The main features of the tested models are briefly described in the 20 

following. 21 

2.4.1 Stone model (M1) 22 



Stone (1970) proposed an empirical model to evaluate rok , when the maximum value of oil 1 

relative permeability in an oil-water system at irreducible water saturation (i.e., in the presence of 2 

connate water), M
rowk , is set to unity. Here, we consider the modified version proposed by Aziz and 3 

Settari (1979) 4 

( )( )1 1

I D N
row rog o

ro M N N
row w g

k k S
k

k S S
=

- -
 (13) 5 

where D
rogk  and I

rowk  are relative permeabilities of the oil phase observed in two-phase systems, 6 

respectively during drainage of gas (in the presence of connate water saturation, wcS ) and 7 

imbibition of water; N
wS , N

oS  and N
gS  are rescaled saturations evaluated as 8 

;     ;     
1 1 1

gN N Nw wc o or
w o g

wc or wc or wc or

SS S S S
S S S

S S S S S S

- -
= = =

- - - - - -
 (14) 9 

wS , oS  and gS  respectively being water, oil and gas saturations in a three-phase environment. Note 10 

that I
rowk  and D

rogk  in (13) are evaluated at oil saturation respectively equal to (1 wS- ) and 11 

(1 )g wcS S- - . When only two-phase data are available, the residual oil saturation, orS  is typically 12 

calculated as (Fayers and Matthews, 1984) 13 

( )1or row rogS aS a S= + -  with 1
1

g

wc rog

S
a

S S
= -

- -
 (15) 14 

Here, rowS  and rogS  represent two-phase residual oil saturations in water-oil and gas-oil systems, 15 

respectively. In the presence of three-phase relative permeability data one may consider orS  as a 16 

model parameter to be estimated through ML as described in Section 2.1. The model parameter 17 

vector has only one entry in this case, i.e., 1 orSq = . The estimation variance of 1q , i.e., 
1

2ˆ  can 18 

readily be evaluated analytically as 19 
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  (16) 1 

2.4.2 Baker model (M2) 2 

Baker (1998) proposed the use of a saturation-weighted interpolation model between (two-3 

phase) oil/water and oil/gas data to evaluate three-phase oil relative permeability. Here, we consider 4 

the following modified version of the Baker model, as introduced by Pejic and Maini (2003) 5 

N I N D
w row g rog

ro N N
w g

S k S k
k

S S

+
=

+
 (17) 6 

where 7 

1
N w wc
w

wc or

S S
S

S S

-
=

- -
; 

1
g gtN

g
wc gt or

S S
S

S S S

-
=

- - -
 (18) 8 

gtS  being the two-phase trapped gas saturation. All remaining symbols have already been defined. 9 

When three-phase data are not available, orS  is usually estimated by (15) while gtS is set equal to 10 

zero (Spitteri and Juanes, 2004). In the presence of three-phase data, the two model parameters, 11 

1 orSq =  and 2 gtSq = , can be estimated via ML. The entries of matrix Q in (3) are then given by 12 

1 2

2 22 2 2
2 2

1,1 2,2 1,2 2,1
1 1 12 1 1 2

ˆ ˆ ˆ
ˆ ˆ; ;

n n n
Y i Y i Y i i
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s s
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å å å  (19) 13 

where ,logi ro iY k=  and 14 

2 2 2

1 1 11 2 1 2

n n n
T i i i i

i i i

Y Y Y Y
J J

q q q q= = =
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å å å  (20) 15 

2.4.3 Model M3 (Du et al. 2004) 16 



Du et al. (2004) introduced the following model for three phase oil relative permeability 1 

( )( )
( )

( )( )
( )

g w wc gw wc w g I D
ro row rog

w g wc w g wc

S B S S SS S S AS
k k k

S S S S S S

- +- +
= +

+ - + -
 (21) 2 

According to Du et al. (2004), the parameters A  and B  are typically set to 0.9 and 0.95, 3 

respectively, in the absence of three-phase data. When three-phase data are available, the two model 4 

parameters 1 Aq =  and 2 Bq =  can be estimated via ML and entries of matrix Q are given by (19) - 5 

(20).  6 

2.4.4 Sigmoid model (M4) 7 

According to Ranaee et al. (2015) rok  during gas, G
ro rok k= , and water, W

ro rok k= , injection can be 8 

estimated as 9 

max( , )G S D
ro ro rogk k k= ; 

( ) ( )
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w wc ro g gt rogW

ro

w wc g gt

S S k S S k
k

S S S S

- + -
=

- + -
 (22) 10 

where S
rok  is given by 11 

exp

M
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S row o
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 (23) 12 

Here, M
owS  is the largest oil saturation observed in a two-phase (oil-water) system in the presence of 13 

connate water. SWAG experiments analyzed in this work and detailed in Section 2.1 are 14 

characterized by gas-oil mobility ratio significantly larger (about 50 – 100 times) than the water-oil 15 

mobility ratio. A high mobility ratio causes poor displacement and volumetric sweep efficiency 16 

(e.g., Lyons and Plisga, 2005; Suicmez et al., 2007; Sohrabi et al., 2008). Therefore, water has been 17 



considered as the main displacing phase in our SWAG experiments. Accordingly, we set W
ro rok k=  1 

in (22). 2 

Parameters l  and b  in (22) can be evaluated solely on the basis of two-phase (oil-gas and oil-3 

water) data (Ranaee et al., 2015) as 4 

ln

M
owSM inf inf
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k S S
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l b

é ù æ ö÷çê ú ÷= - + ç ÷çê ú ÷çè øë û
; 

1
1

1 1

M
owSinf M inf inf

inf o ow ro o
M inf M inf M
ow ro row o ow

m S S k S

S k k S S
b

- -æ öæ ö æ ö÷ç ÷ ÷ç ç÷ ÷ ÷ç= - -ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç÷ç è ø è øè ø
 (24) 5 

with 6 

2
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 (25) 7 

i.e., infm  is the slope of I
rowk  at inf

oS . When three-phase data are available, parameters 1q l=  and 8 

2q b=  can be estimated within a ML framework and entries of matrix Q are given by (19) - (20).  9 

3. Results and discussion 10 

Fig. 5 depicts three-phase oil relative permeability estimates evaluated relying solely on two-11 

phase data (Fig. 5a) and calibrating model parameters by ML making use of two- and three-phase 12 

data (Fig. 5b). Available three-phase oil relative permeability data associated with the considered 13 

SWAG experiment are also reported. Visual inspection of Fig. 5a and Fig. 5b suggests that models 14 

M2 and M4 yield quite reasonable estimates of rok  through the entire range of saturations. Model M1 15 

tends to overestimate rok  for high oil saturations, while M3 underestimates rok  for all saturation 16 

values. Model predictions tend to improve when parameters are estimated through ML on the basis 17 

of three-phase data. These results are further supported by Table 1, which lists values of (i) Mean 18 

Square Difference MSD = J / n, where J is given by (1) and represents the discrepancy between rok  19 

(evaluated on the basis of only two-phase data) and three-phase data; (ii) ML model parameter 20 



estimates, îq , evaluated by minimizing (1) and making use of the available three-phase rok  data; 1 

(iii) ML estimates of measurement error variance, 2ˆYs  (2); and (iv) ML estimates of the estimation 2 

error of each parameter quantified by ˆ
i

ML
qs  and evaluated as described in Section 2.2. Note that (i) 3 

ML calibration on the basis of three-phase data does not lead to an improvement of the results 4 

associated with model M2, i.e., MSD = 2ˆYs , and (ii) MSD evaluated with model M4 is smaller than 5 

2ˆYs  computed for M2 and M3. This observation implies that M4 is conducive to estimates of rok  of 6 

higher quality than those rendered by M2 and M3, even in cases where three-phase data are included 7 

in M2 and M3 and are not considered in M4. 8 

Table 1 

 9 

Fig. 5. 

 10 

We then analyze the entries of the covariance matrix Q (3) associated with each of the tested 11 

models. Fig. 6a depicts normalized uncertainty intervals, quantified by ( ˆ ˆ) /ˆ
ii i

ML
qsq q+ , for all ML 12 

model parameter estimates. We can observe that ML estimates of the parameters of model M4 are 13 

associated with the smallest (normalized) uncertainty, estimates of model M2 parameters being 14 

linked to the largest estimation uncertainties. 15 

We also perform a local sensitivity analysis to address relative sensitivity of parameter 16 

estimates to model responses. Fig. 6b illustrates normalized model sensitivities calculated at the ML 17 

estimate, îq , for each of the available oil relative permeability data, *
,ro ik . These results show that 18 

ML-based model parameter sensitivities are virtually zero for the largest *
,ro ik  values. This result 19 



might be related to the selected structure of the objective function (1), which is formulated in terms 1 

of the logarithm of model responses and available observations. It is clear that the parameters 2 

associated with the sigmoid model M4 are associated with the highest sensitivity, for small to 3 

intermediate oil saturation values. 4 

Fig. 6. 

 5 

We now employ the PL technique described in Section 2.3 to investigate identifiability of 6 

model uncertain parameters. Fig. 7 (black continuous curve) depicts the difference 7 

   ˆ
PL i PL i     evaluated making use of (12) for all model parameters (i.e., orS  for M1; orS , and 8 

gtS  for M2; A , and B  for M3; and l, and b  for M4). The horizontal dashed lines represent the 9 

thresholds 2
  with significance level α = 0.317 (blue dashed lines) and 0.05 (green dashed lines). 10 

The intercept of these lines with the curve    ˆ
PL i PL i     yields the lower, _

PL
i L , and upper, _

PL
i U , 11 

bounds of the finite sample 68% (for α = 0.317) and 95% (for α = 0.05) Cis, as defined by (5). As 12 

additional term of comparison, Fig. 7 also depicts the ML upper, _
ML

i U , and lower, _
ML
i L , bounds of 13 

the CIs evaluated via (4) for α = 0.317 (vertical red dashed line) and α = 0.05 (vertical red 14 

continuous line). Fig. 7 clearly shows that ML confidence intervals are significantly narrower than 15 

finite sample CIs. The latter are characterized by a strong positive asymmetry around îq . 16 

Fig. 7. 

 17 

The results of Fig. 7a are indicative of practical non-identifiability of the model M1 parameter 18 

( orS ), the profile likelihood displaying similar features of Fig. 4e. This finding suggests that the 19 



amount and/or quality of the available experimental data do not contain enough information to yield 1 

a reliable estimate of orS  for the Stone model. Regarding model M2, the profile likelihood suggests 2 

structural non-identifiability for parameter orS  (see Fig. 7b) and practical non-identifiability for 3 

parameter gtS  (see Fig. 7c). Otherwise, PL analyses of models M3 and M4 reveal identifiability of 4 

the model parameters, albeit with diverse degrees of uncertainty. Table 2 lists the ML and sample 5 

68% and 95% CIs bounds for models (M3 and M4) with identifiable parameters. ML and sample 6 

bounds of CIs are notably different, their percentage difference ranging from 40% to more than 7 

300%. As already noticed, sample CIs are (generally) not symmetric around î , as otherwise 8 

observed for the ML CIs. This feature is typically considered as a shortcoming of ML results, based 9 

on (4), especially for models exhibiting a highly nonlinear behavior as a function of the uncertain 10 

parameters (e.g., Joshi et al., 2006 and references therein). The relative extension of the CIs, as 11 

quantified by  _ _
ˆ/X X

i U i L i    (with X = ML or PL), is generally smaller for M4 than M3. 12 

Table 2 

 13 

Fig. 8a depicts NLL (1) and model selection criteria (6)-(8) evaluated for all tested models. We 14 

observe that three out of four criteria favor the use of model M4 for the interpretation of the 15 

available three-phase rok  data. These results are in agreement with our previous findings (see 16 

Ranaee et al., 2016) related to different injection scenarios and characteristics of the fluids and core 17 

samples than the one here considered. Fig. 8b depicts the posterior model weight (for AICc) and 18 

probability (for BIC and KIC), ( )*|kp M Y , for each candidate model. We assign an equal prior 19 

probability to each candidate model, i.e., ( )kp M  = 1 / MN  (k = 1,..., 4), in our analysis since prior 20 

information is not available. The highest posterior probability/weight is always assigned to model 21 

M4, with the only exception of the results associated with the AICc (6) that prefer M1. Note that AICc 22 



and BIC tend to favor models solely on the basis of NLL, number of observations and number of 1 

parameters. Otherwise, KIC (8) tends to favor models with relatively small expected information 2 

content per observation (e.g., Hernandez et al., 2006; Ye et al., 2008; Riva et al., 2011). As such, 3 

KIC assigns a non-negligible posterior probability to model M2, consistent with the associated 4 

values of the entries of Q, resulting in a relatively high uncertainty of parameter estimates (see also 5 

Fig. 6a). Our analysis is complemented by Fig. 8c, which depicts posterior probability/weight 6 

results obtained solely on the basis of models M3 and M4, the parameters of models M1 and M2 7 

being associated with structural/practical non-identifiability, as discussed above. In this case, our 8 

results unequivocally reveal that model M4 is always associated with a posterior model 9 

weight/probability which exceeds 90%. 10 

Fig. 8. 

 11 

Maximum Likelihood BMA is finally employed to provide a multi-model estimate of oil 12 

relative permeability via (9)-(11). Fig. 9 depicts scatterplots of MLBMA estimates versus 13 

observations of * *log roY k=  when replacing IC in (9)-(11) with (a) NLL, (b) AICc, (c) BIC and (d) 14 

KIC. We include results of MLBMA estimates obtained by considering all candidate models tested 15 

(denoted as ( )*|E Y Y  in Fig. 9) as well as those based solely on models M3 and M4, whose 16 

parameters are not affected by non-identifiability issues (denoted as ( )*|E Y Y  in the figure). Fig. 9 17 

also depicts intervals of width ( ) ( )* *| |E VarY Y Y Y  as an additional term of comparison to 18 

characterize the uncertainties associated with MLBMA estimates. Corresponding 19 

( ) ( )* *| |E VarY Y Y Y   bounds of uncertainties are included when considering MLBMA limited 20 

to models M3 and M4. 21 



Generally, estimates of *log rok  and associated uncertainties computed on the basis of all tested 1 

models and solely on M3 and M4 are very similar. This indicates a very limited effect of the models 2 

with embedded non-identifiable parameters to improve predictions, a finding which is also in line 3 

with the small posterior probability associated with these latter models. These results clearly 4 

highlight the possibility of reducing candidate models to predict rok  only to the identifiable ones, 5 

which can reduce computational costs of implementing the averaged model. 6 

Fig. 9. 

 7 

4. Concluding remarks 8 

We analyze the performance of a suite of classical (Stone, 1970; Baker, 1988) and recent (Du 9 

et al., 2004; Ranaee et al., 2015) three-phase oil relative permeability models to reproduce recently 10 

published core-flooding dataset collected on a water-wet Sand-Pack. Three-phase experiments are 11 

characterized by simultaneous injection of water and gas (SWAG) into a core sample initiated at 12 

irreducible water saturation, a scenario which is relevant for modern enhanced oil recovery 13 

techniques. Our work leads to the following key conclusions. 14 

1. The application of the Profile Likelihood (PL) technique seems to allow detecting both 15 

structural and practical identifiability of uncertain model parameter(s). Parameters related to 16 

classical and wide spread models, such as the Stone (1970) and Baker (1988) models, have 17 

been shown to be non-identifiable through the set of experiments analyzed in this work. This 18 

result raises serious doubts on the predictive capabilities of such classical formulations under 19 

SWAG conditions. 20 

2. The use of three-phase data leads to significant improvement of model predictability only for 21 

models linked to identifiable parameters, e.g., M3 (Du et al., 2004) and M4 (Ranaee et al., 22 

2016) in this study. Therefore, it is always recommended to perform a PL analysis before a 23 



model calibration step. Such an analysis can reduce computational costs by embedding in the 1 

model calibration process solely identifiable models, as driven by the available dataset. 2 

3. Maximum Likelihood (ML) confidence intervals, CIs, of parameter estimates are narrower 3 

than their counterparts evaluated on the basis of PL (i.e., finite sample CIs). This observation 4 

can lead to an over-reliance on the ML parameter estimates. 5 

4. Considering models associated with identifiable parameters (i.e., M3 and M4), model selection 6 

criteria favor the use of M4 for the interpretation of the available three-phase oil relative 7 

permeability data. Our results reveal that M4 is associated with a posterior weight/probability 8 

which exceeds 90%. 9 
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Table captions 1 

Table 1. Results obtained by relying solely on two-phase data, MSD J n= , and making use of 2 

two- and three-phase data: measurement error variance, 2ˆYs , ML estimates of parameter iq , îq , and 3 

associated ML estimation error, ˆ
i

ML
qs . 4 

Table 2. ML and sample confidence interval (CI) bounds of ML parameter estimates îq  (listed in 5 

Table 1) for candidate models with identifiable parameters. 6 

Figure captions 7 

Fig. 1. Sketch of the experimental setup; adapted from Moghadasi et al. (2016). 8 

Fig. 2. Main steps of the procedure employed for Steady-State (SS) the (a) two- and (b) three-phase 9 

core-flooding experiments of Moghadasi et al. (2016).  10 

Fig. 3. Two- and three-phase oil relative permeability data versus oil saturation.  11 

Fig. 4. Schematic contour plots of 2/ YJ   for a two-dimensional parameter space ( 1 , 2 ) of a 12 

generic model representing (a) identifiability; (b) practical non-identifiability; and (c) structural 13 

non-identifiability of the parameters. The star represents ML estimates in the parameter space. 14 

Profile Likelihood is depicted for (d) identifiability; (e) practical non-identifiability; and (f) 15 

structural non-identifiability. Solid horizontal lines in (d)-(f) display the threshold 2
ac  defined in (5) 16 

to identify the sample confidence intervals with significance level α. 17 

Fig. 5. Three-phase oil relative permeability versus oil saturation. Curves represent values 18 

calculated through models M1 - M4 based (a) solely on information from two-phase data and (b) on 19 

information from two- and three-phase data. 20 



Fig. 6. (a) Normalized uncertainty bounds quantified by ( ˆ ˆ) /ˆ
ii i

ML
qsq q+  for all ML parameter 1 

estimates îq  (b) Normalized local sensitivity of ,logi ro iY k=  calculated at the ML estimate îq , for 2 

each of the oil relative permeability data available. 3 

Fig. 7. Difference    ˆ
PL i PL i     (solid black curve) versus uncertain parameter (a) orS  of M1; 4 

(b) orS and (c) gtS  of M2; (d) A and (e) B of M3 and (f) l and (g) b  of M4. Also depicted (i) 2
  5 

evaluated with α = 0.317 (blue horizontal dashed lines), and α = 0.05 (green horizontal dashed 6 

lines); as well (ii) _
ML

i U  and _
ML
i L  evaluated with α = 0.317 (red vertical dashed lines), and α = 0.05 7 

(red vertical continuous lines), whenever these bounds are comprised within the parameter range of 8 

variability. 9 

Fig. 8. (a) Model selection criteria evaluated on the basis of ML calibration of models M1-M4. 10 

Posterior model weight/ probability evaluated considering (b) all models M1-M4, or (c) only models 11 

M3-M4 with identifiable parameters. 12 

Fig. 9. MLBMA estimates of rok  versus experimental data for IC = (a) NLL; (b) AICc; (c) BIC; and 13 

(d) KIC. 14 



Table 1 Results obtained by relying solely on two-phase data, MSD J n= , and making use of two- 1 

and three-phase data: measurement error variance, 2ˆYs , ML estimates of parameter iq , îq , and 2 

associated ML estimation error, ˆ
i

ML
qs . 3 

 4 

Models MSD 2ˆYs  iq  îq  ˆ
i

ML
qs  

M1 

(Stone 1970) 
0.047 0.037 orS  0.045 0.045 

M2 

(Baker 1988) 
0.075 0.075 

orS  0.11 2674 

gtS  1.72×10-4 0.01 

M3 

(Du et al. 2004) 
0.202 0.095 

A 1.66 2.32 

B 8.78 6.64 

M4 

(Ranaee et al. 2015) 
0.059 0.023 

l  5.44 1.95 

b  16.46 7.3 

 5 
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Table 2 ML and sample confidence interval (CI) bounds of ML parameter estimates îq  (listed in 1 

Table 1) for candidate models with identifiable parameters. 2 

Models iq  

ML CI Sample CI 

0.317   0.05   0.317   0.05   

_
ML
i L  _

ML
i U  _

ML
i L  _

ML
i U  _

PL
i Lq  _

PL
i Uq  _

PL
i Lq  _

PL
i Uq  

M3 

(Du et al. 2004) 

A -0.66 +3.98 -2.99 +6.3 -1.62 +7.2 -4.89 +17.6 

B +2.14 +15.43 -4.5 +22.07 +1.23 +27 -2.65 +64 

M4 

(Ranaee et al. 2015) 

l  +3.49 +7.4 +1.53 +9.34 +0.99 +14.5 -1.23 +16.05 

b  +9.16 +23.76 +1.85 +31.07 +1.99 +54 -1.2 +55 

 3 

 4 
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Fig. 1. Sketch of the experimental setup; adapted from Moghadasi et al. (2016). 2 
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 1 

 2 

Fig. 2. Main steps of the procedure employed for Steady-State (SS) the (a) two- and (b) three-3 

phase core-flooding experiments of Moghadasi et al. (2016).  4 
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Fig. 3. Two- and three-phase oil relative permeability data versus oil saturation.  3 
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Fig. 4. Schematic contour plots of 2/ YJ   for a two-dimensional parameter space ( 1 , 2 ) of a 3 

generic model representing (a) identifiability; (b) practical non-identifiability; and (c) structural 4 

non-identifiability of the parameters. The star represents ML estimates in the parameter space. 5 

Profile Likelihood is depicted for (d) identifiability; (e) practical non-identifiability; and (f) 6 

structural non-identifiability. Solid horizontal lines in (d)-(f) display the threshold 2
ac  defined in (5) 7 

to identify the sample confidence intervals with significance level α. 8 
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Fig. 5. Three-phase oil relative permeability versus oil saturation. Curves represent values 3 

calculated through models M1 - M4 based (a) solely on information from two-phase data and (b) on 4 

information from two- and three-phase data. 5 
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Fig. 6. (a) Normalized uncertainty bounds quantified by ( ˆ ˆ) /ˆ
ii i

ML
qsq q+  for all ML parameter 3 

estimates îq  (b) Normalized local sensitivity of ,logi ro iY k=  calculated at the ML estimate îq , for 4 

each of the oil relative permeability data available. 5 
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Fig. 7. Difference    ˆ
PL i PL i     (solid black curve) versus uncertain parameter (a) orS  of M1; 3 

(b) orS and (c) gtS  of M2; (d) A and (e) B of M3 and (f) l and (g) b  of M4. Also depicted (i) 2
  4 

evaluated with α = 0.317 (blue horizontal dashed lines), and α = 0.05 (green horizontal dashed 5 

lines); as well (ii) _
ML

i U  and _
ML
i L  evaluated with α = 0.317 (red vertical dashed lines), and α = 0.05 6 

(red vertical continuous lines), whenever these bounds are comprised within the parameter range of 7 

variability. 8 
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Fig. 8. (a) Model selection criteria evaluated on the basis of ML calibration of models M1-M4. 3 

Posterior model weight/ probability evaluated considering (b) all models M1-M4, or (c) only models 4 

M3-M4 with identifiable parameters. 5 
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Fig. 9. MLBMA estimates of rok  versus experimental data for IC = (a) NLL; (b) AICc; (c) BIC; and 3 

(d) KIC. 4 
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