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Abstract 

Our study is keyed to the analysis of the interplay between engineering factors (i.e., transient 

pumping rates versus less realistic but commonly analyzed uniform extraction rates) and the 

heterogeneous structure of the aquifer (as expressed by the probability distribution characterizing 

transmissivity) on contaminant transport. We explore the joint influence of diverse (a) 

groundwater pumping schedules (constant and variable in time) and (b) representations of the 

stochastic heterogeneous transmissivity (𝑇) field on temporal histories of solute concentrations 

observed at an extraction well. The stochastic nature of 𝑇 is rendered by modeling its natural 

logarithm, 𝑌 = ln 𝑇, through a typical Gaussian representation and the recently introduced 

Generalized sub-Gaussian (GSG) model. The latter has the unique property to embed scale-

dependent non-Gaussian features of the main statistics of 𝑌 and its (spatial) increments, which 

have been documented in a variety of studies. We rely on numerical Monte Carlo simulations 

and compute the temporal evolution at the well of low order moments of the solute concentration 

(𝐶), as well as statistics of the peak concentration (𝐶𝑝), identified as the environmental 

performance metric of interest in this study. We show that the pumping schedule strongly affects 

the pattern of the temporal evolution of the first two statistical moments of 𝐶, regardless the 

nature (Gaussian or non-Gaussian) of the underlying 𝑌 field, whereas the latter quantitatively 

influences their magnitude. Our results show that uncertainty associated with 𝐶 and 𝐶𝑝 estimates 

is larger when operating under a transient extraction scheme than under the action of a uniform 

withdrawal schedule. The probability density function (PDF) of 𝐶𝑝 displays a long positive tail in 

the presence of time-varying pumping schedule. All these aspects are magnified in the presence 

of non-Gaussian 𝑌 fields. Additionally, the PDF of 𝐶𝑝 displays a bimodal shape for all types of 

pumping schemes analyzed, independent of the type of heterogeneity considered. 
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Abstract 1 

Our study is keyed to the analysis of the interplay between engineering factors (i.e., transient 2 

pumping rates versus less realistic but commonly analyzed uniform extraction rates) and the 3 

heterogeneous structure of the aquifer (as expressed by the probability distribution characterizing 4 

transmissivity) on contaminant transport. We explore the joint influence of diverse (a) 5 

groundwater pumping schedules (constant and variable in time) and (b) representations of the 6 

stochastic heterogeneous transmissivity (𝑇) field on temporal histories of solute concentrations 7 

observed at an extraction well. The stochastic nature of 𝑇 is rendered by modeling its natural 8 

logarithm, 𝑌 = ln 𝑇, through a typical Gaussian representation and the recently introduced 9 

Generalized sub-Gaussian (GSG) model. The latter has the unique property to embed scale-10 

dependent non-Gaussian features of the main statistics of 𝑌 and its (spatial) increments, which 11 

have been documented in a variety of studies. We rely on numerical Monte Carlo simulations and 12 

compute the temporal evolution at the well of low order moments of the solute concentration (𝐶), 13 

as well as statistics of the peak concentration (𝐶𝑝), identified as the environmental performance 14 

metric of interest in this study. We show that the pumping schedule strongly affects the pattern of 15 

the temporal evolution of the first two statistical moments of 𝐶, regardless the nature (Gaussian or 16 

non-Gaussian) of the underlying 𝑌 field, whereas the latter quantitatively influences their 17 

magnitude. Our results show that uncertainty associated with 𝐶 and 𝐶𝑝 estimates is larger when 18 

operating under a transient extraction scheme than under the action of a uniform withdrawal 19 

schedule. The probability density function (PDF) of 𝐶𝑝 displays a long positive tail in the presence 20 

of time-varying pumping schedule. All these aspects are magnified in the presence of non-21 

Gaussian 𝑌 fields. Additionally, the PDF of 𝐶𝑝 displays a bimodal shape for all types of pumping 22 

schemes analyzed, independent of the type of heterogeneity considered.  23 
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1. Introduction 24 

Probabilistic characterizations of subsurface contaminant transport within well fields under 25 

practical operational conditions are cornerstones of modern groundwater management and risk 26 

analysis best practices. Modeling set-up and results rely on an appropriate assessment of multiple 27 

factors, including the spatial variability of hydrogeological variables and the adopted engineering 28 

controls (e.g., groundwater pumping and/or injection operations). In this study, we aim at 29 

exploring the feedback between transient versus uniform pumping schedules and Gaussian or non-30 

Gaussian nature of the heterogeneous transmissivity (𝑇) field in influencing contaminant 31 

concentration and its uncertainty at extraction wells. Therefore, our work analyzes the combined 32 

effects of (a) structural heterogeneity of properties characterizing geological media and (b) 33 

planned sequences of pumping cycles on solute concentrations recovered at pumping wells, 34 

including an appraisal of the corresponding uncertainties. 35 

A sequence of predefined pumping intervals is typically scheduled by water management 36 

agencies to achieve a trade-off between maximization of the benefits to anthropogenic activities 37 

and minimization of the environmental footprint of the groundwater withdrawal process. 38 

Nonetheless, most studies focusing on probabilistic analyses of subsurface contaminant transport 39 

within well fields are limited to scenarios associated with constant extraction practices. For 40 

example, a number of studies (e.g., Varljen and Shafer, 1991; Franzetti and Guadagnini, 1996; 41 

Cole and Silliman, 1997; Vassolo et al., 1998; Guadagnini and Franzetti, 1999; Riva et al., 1999; 42 

van Leeuwen et al., 2000; Feyen et al., 2001) employ numerical Monte Carlo simulations to 43 

quantify the uncertainty in the extension of well protection areas within randomly heterogeneous 44 

aquifers, under steady-state background groundwater flow and in the presence of a single or 45 

multiple wells operating at a constant rate. Additional examples of studies that consider the way 46 
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solute transport is driven by one or more wells pumping at a constant extraction/injection rate 47 

include Indelman and Dagan (1999), Riva et al. (2006), Siirila and Maxwell (2012), de Barros et 48 

al. (2013b), Pedretti and Fiori (2013), Pedretti et al. (2013; 2014). 49 

Despite its importance, the impact of transient pumping on solute transport has received 50 

much less attention (e.g., Chang et al., 1992; Vesselinov, 2007; Chen et al., 2012; Leray et al., 51 

2014). Libera et al. (2017) systematically investigate the effects of scheduling of pumping 52 

operations (i.e., considering transient vs. constant in time pumping) on contaminant solute 53 

breakthrough curves (BTCs) detected at the pumping well in a spatially heterogeneous multi-54 

Gaussian log-conductivity field. These authors show that a transient pumping strategy can 55 

markedly affect the temporal pattern of BTCs. The results of this study elucidate the importance 56 

of the pumping sequence on uncertainty quantification of solute transport, risk analysis and 57 

contaminated site management. Transient flow effects on the delineation of wellhead protection 58 

areas (WHPA) or capture zones have been considered in a series of works. For instance, 59 

Ramanarayanan et al. (1995) highlight the importance of considering seasonal variations in 60 

pumping operations for WHPA delineation. Reilly and Pullock (1996) observe that transient flow 61 

conditions should be considered to properly characterize transport of solutes released near the 62 

boundary of the well. Festger and Walter (2002) and Jacobson et al. (2002) evaluate the effects 63 

on capture zones of temporal variations in the direction of the hydraulic gradient. Jacobson et al. 64 

(2002) illustrate how the uncertainty in the magnitude and direction of the mean regional flow 65 

influences the extent of time-dependent capture zones. Neupauer et al. (2014) study chaotic 66 

advection of a solute in an aquifer where a transient flow field is induced by injection and 67 

extraction sequences (see also Piscopo et al., 2016).  68 
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In addition to pumping activities, the ubiquitous heterogeneity of hydraulic conductivity, 𝐾, 69 

or transmissivity 𝑇, is known to affect solute transport (e.g., Dagan and Neuman, 1997). High 70 

costs associated with site characterization contribute to hamper exhaustive reproductions of 𝐾-71 

fields. This contributes to uncertainty associated with the quantitative description of transport 72 

scenarios. A common procedure adopted in stochastic hydrogeology is to assume a multivariate 73 

Gaussian distribution for the spatial field of log-conductivity, 𝑌 = ln 𝐾. Spatial variability of 74 

hydrogeological attributes is, however, known to be more complex than described by a Gaussian 75 

model (e.g., Gómez-Hernández and Wen, 1998; Wen and Gómez-Hernández, 1998; Willman et al. 76 

2008; Fu and Gómez-Hernández, 2009; Mariethoz et al., 2010; Haslauer et al., 2012; Hu et al., 77 

2013; Xu and Gómez-Hernández, 2015). In this context, high-resolution data analysis performed 78 

at the Macrodispersion Experiment (MADE) site, at the Columbus Air Force Base (Mississippi, 79 

USA), indicate that highly heterogeneous aquifers could be characterized in terms of non-Gaussian 80 

𝑌 fields (Meerschaert et al., 2013). Fogg et al. (1998) study alluvial heterogeneity in the Livermore 81 

Valley (California, USA) and question the ability of the multi-Gaussian assumption for 𝑌 to render 82 

an adequate description of the investigated area. Rubin and Journel (1991) point out that multi-83 

Gaussian models can potentially fail in representing connected paths of extreme permeability 84 

values which might take place in the subsurface. This is also observed in other studies (e.g., Journel 85 

and Deutsch, 1993; Sánchez-Vila et al., 1996; Renard and Allard, 2013) and the influence of such 86 

features on contaminant transport, risk assessment and groundwater remediation strategies has 87 

been highlighted in several works (e.g., Silliman and Wright, 1988; Journel and Alabert, 1989; de 88 

Barros et al., 2013a; de Barros et al., 2016 and references therein). Methods to generate synthetic 89 

random fields that reflect aspects of hydrogeologic structure and/or architecture, some of which 90 

http://onlinelibrary.wiley.com/doi/10.1002/2013WR015024/full#wrcr20902-bib-0016


5 
 

may render such fields non-Gaussian, have been proposed (e.g., Falivene et al. 2006 and references 91 

therein). 92 

A critical element which is emerging from a variety of studies is that the assumption of 93 

Gaussianity for 𝑌 is not consistent with features displayed by the sample probability distribution 94 

(and main statistical moments) of increments ∆𝑌(𝒔) = 𝑌(𝒙) − 𝑌(𝒚) between two vector locations 95 

𝒙 and 𝒚 (𝒔 = 𝒙 − 𝒚, denoting separation scale or lag). A common manifestation of this 96 

phenomenon is that while frequency distributions of 𝑌 often exhibit mild peaks and light tails, 97 

those of increments ∆𝑌(𝒔) are typically symmetric with peaks that grow sharper, and tails that 98 

become heavier, as 𝑠 = ‖𝒔‖ decreases (e.g., Liu and Molz, 1997; Painter, 1996; Meerschaert et 99 

al., 2004; Riva et al., 2013a,b). Hydrogeologic variables that have been shown to exhibit such 100 

behaviors include log-permeabilities of porous and fractured geologic media (Painter, 1996; Liu 101 

and Molz, 1997; Siena et al., 2012; Riva et al., 2013a,b), neutron porosities in deep boreholes 102 

(Guadagnini et al., 2015), and soil composition data and hydraulic parameter estimates 103 

(Guadagnini et al., 2013, 2014) in a deep vadose zone. Manifestations of similar statistical scaling 104 

of a variety of Earth, environmental, ecological, biological, physical, astrophysical, and financial 105 

variables are reported, among others, by Neuman et al. (2013). As stated above, these features are 106 

clearly non compatible with a description of 𝑌 which is based on a Gaussian distribution model. 107 

Painter (1996) proposes to adopt Lévy-stable distributions to characterize permeability 108 

heterogeneity. Strebelle (2002) proposes an algorithm that utilizes multiple-point statistics inferred 109 

from training images to model conductivity fields. Linde et al. (2015) tackle the same problem 110 

through the use of training images based on hydrogeological facies mapping of nearby outcrops. 111 

Haslauer et al. (2012) employ non-Gaussian copula-based 𝐾 models to study solute 112 

macrodispersion. A statistical framework that captures the disparate, scale-dependent distributions 113 
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of 𝑌 and ∆𝑌 in a unified and consistent manner is offered by relying on the Generalized sub-114 

Gaussian (GSG) model introduced by Riva et al. (2015a,b). In this context, Riva et al. (2017) 115 

explore analytically lead-order effects that non-Gaussian heterogeneity described by the GSG 116 

model has on the stochastic description of flow and transport under mean uniform steady-state 117 

flow in an unbounded, two-dimensional domain. 118 

In light of the above, it is relevant to ask the following question: what is the feedback 119 

between transient pumping operations and the non-Gaussian nature of 𝑌 in influencing solute 120 

concentration and its uncertainty at the extraction well? Key research and operational questions 121 

driving our study are the following: how important are non-Gaussian conductivity features of the 122 

kind revealed when considering consistency between distributions of Y and its increments in 123 

transport when pumping is in operation? Does the pumping scheme overshadow the significance 124 

of non-Gaussian 𝑌 fields on statistics of solute concentration? Through a suite of computational 125 

studies, this work also enables to analyze the relative impact of the conductivity structure (i.e., 126 

Gaussian vs. non-Gaussian) on the solute concentration observed at the operating well in the 127 

presence of constant and time-varying pumping rates. 128 

 129 

2. Problem Formulation 130 

We consider a fully saturated two-dimensional (2D) confined porous formation identified 131 

by a Cartesian coordinate system, with vector location indicated by 𝒙 = (𝑥, 𝑦). A uniform-in-the-132 

mean base flow 𝑞0  takes place along the x-direction, and the transmissivity field, 𝑇, is spatially 133 

heterogeneous. The porous formation porosity and storativity, respectively denoted as 𝜑 and 𝑆, are 134 

considered to be constant. A pumping well is operating with an extraction rate 𝑄𝑤(𝑡), with 𝑡 135 
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indicating time, at location  𝒙𝒘 = (𝑥𝑤, 𝑦𝑤). Figure 1 illustrates a sketch of the setting analyzed. 136 

Flow within the hydrogeological system is governed by: 137 

𝑆
𝜕ℎ(𝒙, 𝑡)

𝜕𝑡
= ∇ ∙ [𝑇(𝒙)∇ℎ(𝒙, 𝑡)] + 𝑄𝑤(𝑡)𝛿(𝒙 − 𝒙𝑤), (1) 

 138 

where ℎ denotes hydraulic head and 𝛿 represents the Dirac delta function. West (left) and east 139 

(right) boundaries of the porous formation (see Figure 1) are characterized by fixed hydraulic head 140 

values and no-flow boundary conditions are prescribed on the north and south boundaries of the 141 

domain. 142 

A hazardous non-reactive solute is instantaneously released at time 𝑡0 within an area 𝐴0 143 

(see Figure 1) with constant concentration  𝑐0. The spatio-temporal evolution of the solute plume 144 

is assumed to be governed by the advection-dispersion equation: 145 

𝜕𝐶(𝒙, 𝑡)

𝜕𝑡
− ∇ ∙ [𝑫∇𝐶(𝒙, 𝑡) − 𝒗(𝒙, 𝑡)𝐶(𝒙, 𝑡)] = 0 

(2) 

𝐶(𝒙, 𝑡0) = 𝑐0  for 𝒙 ∈  𝐴0, 

where 𝐶 indicates solute concentration and 𝒗  is the Darcy-scale velocity (i.e., 𝒗 = 𝒒/𝜑, 𝒒  146 

indicating specific discharge). Local-scale dispersion is given by the tensor 𝑫, with components 147 

𝐷𝑥  and 𝐷𝑦, respectively along the x and y-direction (Figure 1). Note that 𝑄𝑤 in (1) is negative if 148 

extraction occurs and positive in case of injection. In our analysis, the prescribed head and flow 149 

boundary conditions are located sufficiently far away from the solute transport area to avoid 150 

boundary effects (Rubin and Dagan, 1989). 151 

In the following, we investigate the way concentration breakthrough curves (BTCs) are 152 

affected by constant and transient pumping conditions. This analysis is carried out for Gaussian 153 

and/or non-Gaussian spatially random log-transmissivity fields as described in Section 3. 154 
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3. Methodology 155 

3.1 Domain configuration and numerical implementation 156 

We solve (1) and (2) within a 2D system of size of 𝛺 = 𝐿𝑠𝑥 × 𝐿𝑠𝑦, where 𝐿𝑠𝑥 = 170 𝑚, 157 

𝐿𝑠𝑦 = 150 𝑚 (see Figure 1). Values of the main parameters adopted in this study are listed in 158 

Table 1. The values listed in Table 1 were selected for the purpose of illustration, all computational 159 

results being presented in dimensionless form. In agreement with the main results of previous 160 

works (Leube et al., 2013; Moslehi et al., 2015), the domain is discretized by a uniform grid formed 161 

of square elements of size  ∆𝑥 = ∆𝑦 = 1/8 𝐼, with 𝐼 being the characteristic integral scale of the 162 

random log-transmissivity, 𝑌 = ln 𝑇, field. Details of the models adopted to describe the random 163 

nature of 𝑌 are provided in Section 3.2. The solute is instantaneously released over an aerial source 164 

zone 𝐴0 of size 𝐿𝑠𝑥  𝐿𝑠𝑦 (see Figure 1). The barycenter of 𝐴0 is located at distance 𝐿 (measured 165 

along the x-direction) from an operating pumping well. 166 

Following the work of Libera et al. (2017), which was based on an analysis of pumping 167 

strategies employed by groundwater management to satisfy diverse societal needs (e.g., drinking 168 

and irrigation), we adopt the pumping operation shown in Figure 2. A constant in time extraction 169 

strategy, here denoted by 𝑆𝐼, is depicted in Figure 2a. Figure 2b depicts the pattern of a withdrawal 170 

strategy that varies in time according to a predefined sequence, indicated by 𝑆𝐼𝐼. Note that, as 171 

explained in Section 1, most available studies refer to constant in time pumping scenarios that may 172 

not accurately represent realistic operations. The selected strategies (i.e., 𝑆𝐼 and 𝑆𝐼𝐼) are 173 

characterized by the extraction of the same volume of groundwater across the simulation time.  174 

For a given 𝑌 field, we employ the well-tested codes MODFLOW (Harbaugh, 2005) and 175 

MT3DMS (Zheng and Wang, 1999), respectively to solve the transient groundwater flow equation 176 

(1) and the advection-dispersion equation (2). Note that the groundwater flow equation (1) and the 177 
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numerical model (i.e., MODFLOW) adopted do not consider possible additional effects (e.g., non-178 

Darcian flow, skin effects, or storage) at the well. Solute transport is computed through the Method 179 

of Characteristics. To quantify uncertainty in the concentration 𝐶 at the well, we employ a 180 

numerical Monte Carlo (MC) framework. Our analysis is based on a set of 10,000 MC simulations 181 

for each of the investigated scenarios. The choice of the size of the MC sample is based on a 182 

statistical convergence analysis (details not shown). 183 

 184 

3.2 Random Y Model 185 

As mentioned in Section 1, a variety of works emphasize the importance of adopting non-186 

Gaussian 𝑌 fields in solute transport studies. In our analysis, we employ the GSG model introduced 187 

by Riva et al. (2015a,b) to generate multiple realizations of Y. As stated in the Introduction, this 188 

model has the key ability to embed in a unique theoretical framework the scale-dependent non-189 

Gaussian features of the main statistics of 𝑌 and its increments taken at diverse lags, which have 190 

been documented in a variety of studies. The GSG model is here only briefly summarized for the 191 

sake of completeness, additional details being provided by Riva et al. (2015a,b). 192 

We write zero-mean random fluctuations, 𝑌′(𝒙) = 𝑌(𝒙) − 〈𝑌〉, as 193 

𝑌′(𝒙) = 𝑈(𝒙)𝐺(𝒙), (3) 

where  denotes ensemble mean (expectation), 𝐺(𝒙) is a single- or multi-scale Gaussian 194 

random field and 𝑈(𝒙) is a non-negative subordinator independent of 𝐺(𝒙). The subordinator U 195 

consists of statistically independent identically distributed (iid) non-negative random values at all 196 

points x. We consider the subordinator 𝑈 to be log-normally distributed (other choices being 197 

possible) according to 𝑈 ≡ ℒ𝒩[0, (2 − 𝛼)2], where 𝛼 < 2. Note that in this case the PDF of 𝑌′ in 198 
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(3) coincides with the classical normal-lognormal model (see, e.g., Guadagnini et al., 2015 and 199 

references therein). 200 

To investigate the effects of Gaussian versus non-Gaussian 𝑌 fields on solute transport we 201 

consider two forms of 𝑌: sub-Gaussian (see (3)), 𝑌𝑆𝐺 , and Gaussian, 𝑌𝐺. The latter is obtained from 202 

the former when 𝛼 → 2. For the purpose of comparison, we consider these two forms of the 𝑌 field 203 

to have equal mean values, i.e. 〈𝑌〉 = 〈𝑌𝑆𝐺〉 = 〈𝑌𝐺〉 = 0, variances 𝜎𝑌
2 = 𝜎𝑌

2
𝑆𝐺

= 𝜎𝑌
2

𝐺
 and integral 204 

scales 𝐼 = 𝐼𝑌𝑆𝐺
= 𝐼𝑌𝐺

. The Gaussian random function, 𝐺(𝒙), in (3) constitutes a truncated 205 

fractional Brownian motion (tfBm) with truncated power variogram (Di Federico and Neuman, 206 

1997): 207 

𝛾𝐺
2(𝑠) = 𝛾2(𝑠; 𝜆𝑢) − 𝛾2(𝑠; 𝜆𝑙), (4) 

where 208 

𝛾2(𝑠, 𝜆𝑚) =
𝒜𝜆𝑚

2𝐻

2𝐻
[1 − 𝑒𝑥𝑝 (−

𝑠

𝜆𝑚
) + (

𝑠

𝜆𝑚
)

2𝐻

𝛤 (1 − 2𝐻,
𝑠

𝜆𝑚
)] ,      𝑚 = 𝑙, 𝑢. (5) 

Quantities 𝜆𝑢 and 𝜆𝑙 in equations (4)-(5) are the lower and upper cutoff scales of the 209 

variogram model, respectively proportional to the length scales of data support and domain size; 210 

𝐻 is the Hurst coefficient and 𝒜 is a constant. This choice of variogram model is consistent with 211 

documented scaling phenomena, including power-law scaling of sample structure functions 212 

(including the variogram of 𝑌) in midranges of lags and nonlinear scaling of power-law exponent 213 

with order of sample structure function (e.g., Guadagnini et al., 2012, 2013, 2014, 2015; Panzeri 214 

et al., 2016; Riva et al., 2013a, 2013b; Siena et al., 2012; Siena et al. 2014). As such, equation (4) 215 

allows bridging across scales by analyzing jointly data characterized by diverse 216 

support/measurement scales across windows (observation domains) of diverse size at a site 217 

(Neuman et al., 2008). 218 
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We simulate three diverse collections (ensembles) of non-Gaussian 𝑌𝑆𝐺  fields (each 219 

constituted by 10,000 realizations) distinguished by three values of the parameter 𝛼 (= 1.2, 1.5, 220 

1.8, representing strong to relatively mild departure from a Gaussian behavior) and one set of 221 

Gaussian 𝑌𝐺 fields (also with 10,000 realizations). Input parameters used to generate 𝑌𝐺  and 𝑌𝑆𝐺  222 

fields are listed in Table 2 (input values employed to generate 𝑌𝐺 are listed in the column labeled 223 

𝛼 → 2). Each Gaussian and non-Gaussian collection/ensemble of log-transmissivity realizations 224 

is coupled with both pumping strategies adopted (𝑆𝐼 and 𝑆𝐼𝐼, see Figure 2) within the numerical 225 

MC framework. Therefore, we perform a total number of 80,000 MC simulations. 226 

4. Results and discussion 227 

This section is structured as follows: we start by presenting the temporal evolution of the low order 228 

statistics (mean and variance) of the contaminant concentration, 𝐶, recovered at an observation 229 

well placed, for simplicity, at the same location of the pumping well. Then, we focus on the analysis 230 

of the peak concentration, 𝐶𝑝, observed at the well. The latter represents an important quantity for 231 

the management and remediation of polluted areas and can be used as proxy for dilution (Fiori, 232 

2001). All analyses are performed for the two pumping strategies, namely 𝑆𝐼 (constant in time) 233 

and 𝑆𝐼𝐼 (variable in time), illustrated in Figure 2. Diverse values of the parameter 𝛼 are considered 234 

(see Section 3.2) for each pumping scenario. We present all results in dimensionless form. The 235 

concentration is normalized by 𝐶∗, which represents a contaminant concentration threshold, as 236 

established, for instance, by environmental protection agencies (e.g., EPA). Here we set, without 237 

loss of generality to our methodological approach, 𝐶∗ = 10 𝑔/𝑚3. The selected value of the 238 

critical concentration is in line with the EPA’s Maximum Contaminant Level (MCL) for nitrate 239 

(see US EPA, 2009), and is employed for the purpose of illustration in our study. 240 
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Time is normalized by 𝐼/𝑣0, with 𝑣0 = 𝑞0/𝜑, 𝑞0 = 𝑇𝐺𝐽 and 𝑇𝐺 = exp (〈𝑌〉). The pumping 241 

rate 𝑄𝑤 is normalized by 𝑄0, where 𝑄0 = 𝑞0𝐿𝑦  represents the uniform-in-the-average water flow 242 

discharge. The longitudinal Péclet number, 𝑃𝑒 = 𝐼𝑣0 𝐷𝑥⁄ , is set to 800 (see Table 1). Parameter 243 

values employed in this synthetic analysis allow illustrating the interplay between pumping well 244 

operations and natural heterogeneity of the porous formation. 245 

4.1 Temporal evolution of low-order moments of solute concentration at the well 246 

Figure 3 depicts the temporal Monte Carlo based pattern of the dimensionless mean of the 247 

solute concentration, 〈𝐶〉/𝐶∗, observed at the well location. Results depicted in Figure 3a, b 248 

respectively refer to the pumping scheme 𝑆𝐼 (constant withdrawal) and 𝑆𝐼𝐼 (time-dependent 249 

withdrawal). Each mean concentration BTC presented in Figures 3a and 3b refers to a given value 250 

of 𝛼. Regardless the value of 𝛼, the mean concentration BTC displays a unimodal behavior under 251 

conditions associated with 𝑆𝐼 and a multimodal pattern when the scheme 𝑆𝐼𝐼 is active. The 252 

multimodal pattern observed in Figure 3b descends from the observation that a time-dependent 253 

pumping rate (𝑆𝐼𝐼) induces temporal oscillations of the mean contaminant BTC. The impact of 254 

variable pumping rate on concentration statistics was analyzed by Libera et al. (2017) for Gaussian 255 

𝑌 fields. Figure 3b suggests that solute dilution is induced during the time periods when pumping 256 

is active. Increased pumping rates would lead to an enlargement of the catchment region (e.g., 257 

Bear, 1979). Hence, an increased volume of clean water would be captured (on average) at the 258 

well together with the solute plume. Therefore, the mean concentration decreases within these 259 

intervals because of the mixing of polluted water with clean water. We also note that the largest 260 

values of 〈𝐶〉 occur within the strongly non-Gaussian Y field characterized by 𝛼 = 1.2 for both 261 

scenarios 𝑆𝐼 and 𝑆𝐼𝐼. As shown in Figure 3, the maximum value of 〈𝐶〉 decreases as 𝛼 increases 262 

towards 2, i.e. as the 𝑌 field tends to be Gaussian. We note that the differences in 〈𝐶〉 between the 263 
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Gaussian case (𝛼 → 2) and the GSG setting characterized by 𝛼 = 1.8  are negligible. Based on the 264 

results of Figure 3, we conclude that the pumping regime (𝑆𝐼 or 𝑆𝐼𝐼) controls the pattern of the 265 

temporal evolution of the mean contaminant BTC, regardless of the value of 𝛼. The general shape 266 

of the temporal evolution of 〈𝐶〉 is, in fact, very similar for all values of 𝛼 considered, as observed 267 

in both Figures 3a and 3b.  268 

Figures 4a and 4b depict the dimensionless variance of the solute concentration, 269 

𝑉𝑎𝑟[𝐶]/𝐶∗2, versus dimensionless time for all values of 𝛼 analyzed, respectively for 𝑆𝐼 and 𝑆𝐼𝐼. 270 

The pumping strategy clearly controls the general pattern of the temporal evolution of 𝑉𝑎𝑟[𝐶], 271 

regardless the value of 𝛼, i.e., a unimodal pattern of 𝑉𝑎𝑟[𝐶] is identified for constant pumping 272 

(Figure 4a) while a multimodal behavior of 𝑉𝑎𝑟[𝐶] is induced by temporal variability in the 273 

pumping rate (Figure 4b). We note that 𝑉𝑎𝑟[𝐶] in Figure 4b decreases when pumping is active, 274 

indicating that the variability across the MC ensemble is smaller when the solute is attracted to the 275 

well by the start of pumping. In this situation, the likelihood that the solute plume is captured by 276 

the well increases and the variability of concentration values at the well decreases. We then observe 277 

that 𝑉𝑎𝑟[𝐶] increases approximately by an order of magnitude under regime 𝑆𝐼𝐼 (compare Figure 278 

4b and Figure 4a), these results being in line with the conclusions of Libera et al. (2017). On these 279 

bases, one can see that the choice of the pumping extraction operation (e.g., constant in time 𝑆𝐼, as 280 

considered in most literature works, versus transient 𝑆𝐼𝐼, which is more realistic) has a key role on 281 

quantification of the uncertainty associated with the concentration at the well. Amongst other 282 

factors, this is also related to the observation that a constant pumping scheme always controls the 283 

same portion of the flow field at all times. Otherwise, a transient pumping schedule enables to 284 

extend the influence of the well to diverse portions of the heterogeneous system, depending on 285 

time. As such, the effect of the aquifer heterogeneous structure plays an enhanced role under 286 
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pumping scenario 𝑆𝐼𝐼 than in the presence of 𝑆𝐼, resulting in an overall increase of 𝑉𝑎𝑟[𝐶] at the 287 

well. We then observe that the increase of the concentration variance is magnified for the lowest 288 

values of 𝛼, i.e., as the departure of the GSG fields from Gaussianity increases. We remark that 289 

the differences in 𝑉𝑎𝑟[𝐶] between the Gaussian case (𝛼 → 2) and the setting characterized by 𝛼 =290 

1.8  are negligible, similar to what we observed for 〈𝐶〉. 291 

In summary, the analysis of Figures 3 and 4 lead to the conclusion that the pumping scheme 292 

selection (𝑆𝐼 or 𝑆𝐼𝐼) clearly influences the temporal pattern (unimodal or multimodal) of the 293 

pollutant BTCs lead-order statistics (as expressed by mean and variance). The actual magnitude of 294 

the first and second moment of 𝐶 is controlled by both the pumping scheme and the structural 295 

representation (Gaussian or non-Gaussian) of 𝑌. 296 

 297 

4.2 Statistical analysis of the peak concentration 298 

Here we analyze key statistical features of the peak value of the solute concentration, 𝐶𝑝, 299 

observed at the well. This quantity is an important environmental performance metric (EPM) for 300 

risk analysis (de Barros et al., 2012) and, as previously stated, can also be used as a proxy for 301 

dilution (Fiori, 2001).  302 

 303 

4.2.1 Outliers in the peak concentration distribution 304 

We present the box plots of 𝐶𝑝 in Figure 5 for pumping operational setting 𝑆𝐼 and for the 305 

diverse values of 𝛼 analyzed. Figure 6 depicts corresponding results for scenario 𝑆𝐼𝐼. We recall 306 

that the thickness of the box plots corresponds to the lag between the first and third quartiles of the 307 

probability distribution. Close inspection of Figures 5 and 6 evidences a considerable number of 308 

outside values (or outliers), identified in red and corresponding to the observations that fall outside 309 
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the whiskers (represented by horizontal segments connected through dashed lines to the boxplots 310 

of Figures 5 and 6) under the action of both extraction schemes. Note that the upper whisker 311 

corresponds to the largest value observed given that the length of the dashed lines is 1.5 times the 312 

interquartile range, the same criteria applies to the lower whisker. Comparing Figures 5 and 6 313 

suggests that the range of 𝐶𝑝 values is broadest when 𝑆𝐼𝐼 is active. In this case the largest values 314 

of normalized 𝐶𝑝 are roughly three times larger than the corresponding extreme values of 𝐶𝑝 315 

computed under scheme 𝑆𝐼. We also note that the number of such high values generally tends to 316 

decrease as the nature of the underlying log-transmissivity field tends to Gaussian (i.e., increasing 317 

𝛼) for both pumping scenarios. This evidence suggests that the nature of the heterogeneous 318 

structure of 𝑌 influences the distribution of 𝐶𝑝. These observations are consistent with the fact that 319 

a non-Gaussian 𝑌 structure increases the likelihood of the occurrence of well-connected zones of 320 

low and high conductivity (as manifested through high peaks of increment PDFs at short lags, 321 

whose effects are increasingly pronounced with departure from the Gaussian behavior). This 322 

specific feature is allowed to emerge in a stronger way in the presence of transient pumping than 323 

for constant extraction as already noticed in section 4.1 for the mean and variance of 𝐶. 324 

 325 

 326 

4.2.2 Probability density function of the maximum concentration 327 

Figure 7 depicts the sample PDF, 𝑝(𝐶𝑝), of the peak concentration detected at the well for 328 

pumping scenario 𝑆𝐼 and all values of 𝛼 investigated. For completeness, the sample cumulative 329 

distribution function (CDF) of 𝐶𝑝, 𝑃(𝐶𝑝), is also depicted. Corresponding plots for scenario 𝑆𝐼𝐼 330 

are included in Figure 8. The action of the transient pumping regime 𝑆𝐼𝐼 contributes to distribute 331 

the observed values of 𝐶𝑝 across a wider range than that documented for 𝑆𝐼 (compare Figures 7 332 
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and 8). As such, the PDF of 𝐶𝑝 for 𝑆𝐼𝐼 generally encompasses a broader range of values and is 333 

characterized by longer positive tails than the PDF of 𝐶𝑝 resulting from 𝑆𝐼. These observations are 334 

consistent with the results depicted in the inset plots of Figures 5 and 6. The positive tails of the 335 

PDFs are quantitatively affected by the parameter 𝛼. Non-Gaussian 𝑌 fields are characterized by 336 

an increased probability of observing higher 𝐶𝑝 at the well, when compared to Gaussian 𝑌 fields 337 

(𝛼 → 2), thus yielding enhanced tailing for 𝑝(𝐶𝑝). This behavior is consistent with our earlier 338 

observations according to which the GSG nature of the 𝑌 field leads to an increased likelihood that 339 

solute can be conveyed through connected paths of high conductivity, thus yielding an increased 340 

tailing in the PDFs of 𝐶𝑝 (i.e., higher 𝐶𝑝 values). Similar to what observed in Section 4.1, results 341 

for the Gaussian 𝑌 field virtually coincide with those obtained for 𝛼 = 1.8. This result further 342 

emphasizes the challenges of distinguishing between these types of fields (for relatively large 343 

values of 𝛼) solely on the basis of system responses (e.g., in this cases, concentrations detected at 344 

the well). 345 

One can note a bimodal shape for 𝑝(𝐶𝑝) in both Figures 7 and 8. This feature can be 346 

attributed to the observation that very low or no concentration signals are observed at the pumping 347 

well (i.e., the solute plume does not hit the well) across some MC realizations, a significant portion 348 

of the plume being captured in other MC realizations (e.g., Bellin and Tonina, 2007). Note that 349 

while the observation that 𝑝(𝐶𝑝) tends to be bimodal in the presence of pumping wells is a 350 

significant result, this bimodal pattern in the PDF can change in the presence of other factors, 351 

including, e.g., increased travel distance between contaminant source and operating well and 352 

change of Péclet number. While of definite interest, these analyses are outside the scope of our 353 

current contribution. 354 

 355 
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4.2.3 Average of the maximum concentration 356 

We quantify here the impact of the pumping operation schedule and of the 𝑌 field structure 357 

on the average value of the peak concentration 〈𝐶𝑝〉. We do so by computing the relative change 358 

of 〈𝐶𝑝〉 obtained across the collection of 𝑌𝑆𝐺  MC realizations with respect to the corresponding 359 

result associated with a Gaussian (𝑌𝐺) field as: 360 

 361 

𝜂 = |
〈𝐶𝑝(𝑡; 𝛼, 𝑆𝑖)〉 − 〈𝐶𝑝(𝑡; 𝛼 → 2, 𝑆𝑖)〉

〈𝐶𝑝(𝑡; 𝛼 → 2, 𝑆𝑖)〉
| ,     𝑖 = 𝐼, 𝐼𝐼 (6) 

 362 

Figure 9 depicts 𝜂 versus 𝛼 for scenario 𝑆𝐼 (light grey) and 𝑆𝐼𝐼 (dark grey). These results 363 

suggest that 〈𝐶𝑝〉 is more sensitive to the value of 𝛼 when the spatially heterogeneous flow field is 364 

stressed according to scheme 𝑆𝐼𝐼 than it does for 𝑆𝐼. As shown in Figure 9, the magnitude of 𝜂 is 365 

larger for scenario 𝑆𝐼𝐼 (dark grey) and decreases as 𝛼 increases, i.e. transitioning from a GSG to a 366 

Gaussian 𝑌 field. The response of the system due to a Gaussian 𝑌 field (𝛼 → 2) is virtually 367 

indistinguishable from that associated with values of 𝛼  1.8. 368 

 369 

5. Conclusions 370 

This study investigates the impact of the model employed to describe the random spatial 371 

heterogeneity of the aquifer log-transmissivity field (𝑌) on the statistics of the solute concentration 372 

(𝐶) at a pumping well in the presence of two distinct pumping regimes. We consider a Gaussian 373 

and a Generalized sub-Gaussian (GSG, see equation (3)) model to describe the randomly 374 

heterogeneous 𝑌 field. In the following, we briefly summarize the key conclusions emerged from 375 

the analysis. 376 
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The pumping scheme influences the shape of the temporal evolution of mean, 〈𝐶〉, and 377 

variance, 𝑉𝑎𝑟[𝐶], of 𝐶 whereas the choice of the 𝑌 structural representation, as quantified by the 378 

value of 𝛼 in this study, controls their magnitude. Transient pumping produces a multimodal 379 

behavior (whereas constant pumping results in a unimodal pattern) of 〈𝐶〉 and 𝑉𝑎𝑟[𝐶]. The 380 

multimodal behavior of 〈𝐶〉 is characterized by its lowest values taking place during stress periods 381 

of water pumping, the decrease in 〈𝐶〉 being due to contaminant dilution with fresh water. We also 382 

observe that 𝑉𝑎𝑟[𝐶] tends to decrease during pumping time intervals. This behavior is related to 383 

the effect of the well operation which increases the likelihood that the plume is captured by 384 

attracting water and hence results in a decreased variability of 𝐶 at the well. Values of 𝑉𝑎𝑟[𝐶] are 385 

roughly one order of magnitude larger under transient pumping than in the presence of constant 386 

extraction. As such, engineering control (as manifested through selected pumping schedules) plays 387 

a marked role in the uncertainty associated with 𝐶. 388 

The highest values of solute peak concentration, 𝐶𝑝, are prone to be observed at a well 389 

operating according to a time-varying schedule. This feature is amplified in the presence of values 390 

of 𝛼 associated with an increased departure of the GSG 𝑌 field from a Gaussian behavior. The 391 

PDF of 𝐶𝑝, 𝑝(𝐶𝑝), is characterized by a bimodal shape for all cases analyzed in this study. 392 

Our analysis shows that statistical moments (and PDFs) of 𝐶 and 𝐶𝑝 obtained within a GSG 393 

𝑌 field identified by relatively large 𝛼 values, i.e. 𝛼 = 1.8, and a Gaussian 𝑌 field are virtually 394 

indistinguishable. This result is consistent with the recent findings of Riva et al. (2017). These 395 

authors explore analytically lead-order effects that non-Gaussian heterogeneity described by the 396 

GSG model have on the stochastic description of flow and transport under uniform in the mean 397 

flow in two-dimensional unbounded randomly heterogeneous media. Their results indicate that 398 

differences between lead-order flow and transport moments associated with GSG and Gaussian 399 
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𝑌 fields tend to diminish as 𝛼 approaches 2, becoming virtually unnoticeable for 𝛼  1.8. Similar 400 

to these authors, our results indicate the existence of a threshold value for 𝛼 above which the effects 401 

associated with the non-Gaussian nature of the heterogeneous conductivity structure are virtually 402 

undetectable in the concentration BTCs recorded at the well. A value of 𝛼 = 1.8 can be considered 403 

as a threshold above which the impact of the 𝑌 distribution (i.e. Gaussian vs non-Gaussian) is 404 

shadowed when compared to the influence of the engineering control (i.e., groundwater pumping 405 

rate) selected. Note that while these results appear to indicate that commonly employed Gaussian 406 

models could reproduce key transport features even in the presence of non-Gaussian 𝑌 fields, they 407 

also suggest that it would be difficult to differentiate between Gaussian and non-Gaussian 𝑌 fields 408 

on the basis of such moments when  is close but not equal to 2. Such a distinction can be validly 409 

drawn only by analyzing 𝑌 data and their increments jointly, as suggested by Riva et al. (2015a). 410 

The outcomes of our work associated with the feedback between engineering factors (i.e., 411 

transient versus uniform pumping rates) and efforts aimed at the characterization of aquifer 412 

heterogeneous structure (through Gaussian or Sub-Gaussian models) on the behavior of 413 

contaminant BTCs are of potential interest to direct technical and economical efforts towards an 414 

optimal management of groundwater resources. For example, costs linked to an increase of the 415 

well pumping rate could be justified by the production of water characterized by low contaminant 416 

concentrations, which in turn leads to decreased water treatment costs. Our results also suggest 417 

that pumping operations can control the temporal patterns of risk and might overshadow the impact 418 

of the type of aquifer heterogeneity (as embedded in the functional format of the probability 419 

density function characterizing hydraulic conductivity) on BTCs at pumping wells. In this 420 

framework, there could be circumstances in which enhanced efforts should be allocated towards 421 

an improved optimal planning of the pumping regime as opposed to a detailed characterization of 422 
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some features of the heterogeneous properties of an aquifer. Such allocation of resources is key to 423 

reduce the uncertainty in risk metrics and is well aligned with goal-oriented site characterization 424 

frameworks (de Barros et al., 2012 and references therein). As a future research outlook, it would 425 

be of interest to extend our analysis to investigate transport in realistic systems of increased level 426 

of complexity that incorporate stochastic fluctuations for water demand. 427 

Additionally, extending the findings of our work to three dimensional aquifers’ 428 

configurations in the presence of pumping wells operating with transient rates is focus of future 429 

research. We believe that increasing the dimensionality of the system, i.e. from a 2D to a 3D 430 

configuration, would enable to capture more realistic flow paths that would potentially enhance 431 

solute mixing. As shown in Dentz and de Barros (2013), the uncertainty of the overall solute 432 

dispersive behavior and its self-averaging properties are affected by the dimensionality of the flow 433 

field. The dilution enhancement induced by the additional degree of freedom within a three-434 

dimensional setting would yield a decrease of the solute concentration variability across Monte 435 

Carlo realizations with an ensuing decrease of the associated variance. Varying the dimensionality 436 

of the flow field (i.e., considering a three-dimensional system) might also affect the scaling 437 

behavior of the contaminant BTCs observed at the operating well (e.g., Pedretti et al., 2013, 2014) 438 

due to increased connectivity of the permeability field (Di Dato et al., 2017). 439 

 440 

 441 

 442 

 443 

 444 

 445 
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Tables 676 

 677 

Symbol Significance Units Values 

𝐿𝑠𝑥, 𝐿𝑠𝑦 Aquifer Size m 170, 150 

∆𝑥, ∆𝑦 Grid size m 1/8 I, 1/8 I 

𝐽 Mean head gradient - 0.59% 

𝜑 Porosity - 0.2 

𝛼𝑥 Longitudinal dispersivity  m 0.01 

𝛼𝑦 Transversal dispersivity m 0.0001 

𝑥𝑤, 𝑦𝑤 Location of pumping well m 114.5, 74.5 

𝑄𝑤 Constant well pumping rate m3/d 0.3 

𝑄𝑤 Variable well pumping rate m3/d 0.8/0/0.4/0/0.8/0/0.4/0/0.8/0/0.4/0/0.8/0/0.4/0 

𝑉𝑤 Volume of pumped water m3 1440 

𝐶∗ Concentration threshold g/m3 10 

𝑃𝑒 Péclet number  - 800  

 678 

Table 1. Main parameters employed in the study. 679 

 680 

 681 

Table 2. Parameters characterizing the transmissivity field. 682 

Symbol Significance Units 
Values 

𝜶 = 𝟏. 𝟐 𝜶 = 𝟏. 𝟓 𝜶 = 𝟏. 𝟖 𝜶 → 𝟐 

𝐼 Integral scale of Y m 8.00 8.00 8.00 8.00 

𝜎𝑌
2 Variance of Y - 3.00 3.00 3.00 3.00 

𝒜 Constant - 5.8710-2 17.5310-2 31.8510-2 35.7510-2 

𝐻 Hurst coefficient - 0.33 0.33 0.33 0.33 

𝜆𝑢 Upper cutoff scale m 34.58 22.67 17.98 17.20 

𝜆𝑙 Lower cutoff scale m 1.00 1.00 1.00 1.00 
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Figures Captions 683 

 684 

Fig. 1. Sketch of the problem analyzed.  685 

 686 

Fig. 2. Pumping strategies (a) constant flow rate 𝑆𝐼 and (b) variable flow rate 𝑆𝐼𝐼. 687 

 688 

Fig. 3. Temporal evolution of the normalized mean concentration 〈𝐶〉 observed at the pumping 689 

well for three values of 𝛼 = 1.2, 1,5, 1.8 and for a Gaussian 𝑌 field (𝛼 → 2). Results for pumping 690 

strategy (a) 𝑆𝐼 and (b) 𝑆𝐼𝐼. 691 

 692 

Fig. 4. Temporal evolution of the normalized concentration variance 𝑉𝑎𝑟[𝐶] observed at the 693 

pumping well for three values of 𝛼 = 1.2, 1,5, 1.8 and for a Gaussian Y field (𝛼 → 2). Results for 694 

pumping strategy (a) 𝑆𝐼 and (b) 𝑆𝐼𝐼. 695 

 696 

Fig. 5. Pumping strategy 𝑆𝐼: Box plots of 𝐶𝑝 for three values of 𝛼 = 1.2, 1,5, 1.8 and for a 697 

Gaussian Y field (𝛼 → 2). 698 

 699 

Fig. 6. Pumping strategy 𝑆𝐼𝐼: Box plots of 𝐶𝑝 for three values of 𝛼 = 1.2, 1,5, 1.8 and for a 700 

Gaussian Y field (𝛼 → 2). 701 

 702 

Fig. 7. Pumping strategy 𝑆𝐼: Peak concentration PDF 𝑝(𝐶𝑝) for three values of 𝛼 = 1.2, 1,5, 1.8 703 

and for a Gaussian Y field (𝛼 → 2). See inset for peak concentration CDF 𝑃(𝐶𝑝). 704 

 705 
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Fig. 8. Pumping strategy 𝑆𝐼𝐼: Peak concentration PDF 𝑝(𝐶𝑝) for three values of 𝛼 = 1.2, 1,5, 1.8 706 

and for a Gaussian Y field (𝛼 → 2). See inset for peak concentration CDF 𝑃(𝐶𝑝). 707 

 708 

Fig. 9. Relative impact of non-Gaussianity on the mean peak concentration 𝐶𝑝 measured 709 

through 𝜂, see equation (6), for three values of 𝛼 = 1.2, 1,5, 1.8 and pumping strategy 𝑆𝐼 (light 710 

grey) and  𝑆𝐼𝐼 (dark grey). 711 

  712 

 713 

 714 

 715 

Figures 716 

 717 

Fig. 1. Sketch of the problem analyzed.  718 

 719 

 720 



33 
 

 721 

Fig. 2. Pumping strategies (a) constant flow rate 𝑆𝐼 and (b) variable flow rate 𝑆𝐼𝐼. 722 

 723 

 724 

 725 

Fig. 3. Temporal evolution of the normalized mean concentration 〈𝐶〉 observed at the pumping 726 

well for three values of 𝛼 = 1.2, 1,5, 1.8 and for a Gaussian 𝑌 field (𝛼 → 2). Results for pumping 727 

strategy (a) 𝑆𝐼 and (b) 𝑆𝐼𝐼. 728 

 729 

 730 

 731 

Fig. 4. Temporal evolution of the normalized concentration variance 𝑉𝑎𝑟[𝐶] observed at the 732 

pumping well for three values of 𝛼 = 1.2, 1,5, 1.8 and for a Gaussian Y field (𝛼 → 2). Results for 733 

pumping strategy (a) 𝑆𝐼 and (b) 𝑆𝐼𝐼. 734 
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  735 

Fig. 5. Pumping strategy 𝑆𝐼: Box plots of 𝐶𝑝 for three values of 𝛼 = 1.2, 1,5, 1.8 and for a 736 

Gaussian Y field (𝛼 → 2). 737 

 738 

 739 

 740 

Fig. 6. Pumping strategy 𝑆𝐼𝐼: Box plots of 𝐶𝑝 for three values of 𝛼 = 1.2, 1,5, 1.8 and for a 741 

Gaussian Y field (𝛼 → 2). 742 

 743 
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 744 

Fig. 7. Pumping strategy 𝑆𝐼: Peak concentration PDF 𝑝(𝐶𝑝) for three values of 𝛼 = 1.2, 1,5, 1.8 745 

and for a Gaussian Y field (𝛼 → 2). See inset for peak concentration CDF 𝑃(𝐶𝑝). 746 

 747 

 748 

Fig. 8. Pumping strategy 𝑆𝐼𝐼: Peak concentration PDF 𝑝(𝐶𝑝) for three values of 𝛼 = 1.2, 1,5, 1.8 749 

and for a Gaussian Y field (𝛼 → 2). See inset for peak concentration CDF 𝑃(𝐶𝑝). 750 

 751 
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 752 

Fig. 9. Relative impact of non-Gaussianity on the mean peak concentration 𝐶𝑝 measured 753 

through 𝜂, see equation (6), for three values of 𝛼 = 1.2, 1,5, 1.8 and pumping strategy 𝑆𝐼 (light 754 

grey) and  𝑆𝐼𝐼 (dark grey). 755 
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