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Abstract: Diffuse correlation spectroscopy (DCS), combined with time-resolved reflectance 
spectroscopy (TRS) or frequency domain spectroscopy, aims at path length (i.e. depth) 
resolved, non-invasive and simultaneous assessment of tissue composition and blood flow. 
However, while TRS provides a path length resolved data, the standard DCS does not. 
Recently, a time domain DCS experiment showed path length resolved measurements for 
improved quantification with respect to classical DCS, but was limited to phantoms and small 
animal studies. Here, we demonstrate time domain DCS for in vivo studies on the adult 
forehead and the arm. We achieve path length resolved DCS by means of an actively mode-
locked Ti:Sapphire laser that allows high coherence pulses, thus enabling adequate signal-to-
noise ratio in relatively fast (~1 s) temporal resolution. This work paves the way to the 
translation of this approach to practical in vivo use. 
© 2017 Optical Society of America 

OCIS codes: (170.5280) Photon migration; (170.6920) Time-resolved imaging; (170.3890) Medical optics 
instrumentation. 
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1. Introduction 

Time domain near infrared spectroscopy, also known as time-resolved reflectance 
spectroscopy (TRS), measures the distribution of photon path lengths (or photon time-of-
flights) in tissue to characterize the probed volume in terms of its wavelength dependent 
reduced scattering ( 'sμ ) and absorption ( aμ ) coefficients [1,2]. By collecting this 
information at various wavelengths, one can estimate the concentration of chromophores like 
water, oxy- and deoxy-hemoglobin, lipids and collagen, and give information about tissue 
structure at the cellular level [2]. Furthermore, TRS allows the separation of early and late 
photons. Since the probability distribution for the maximum penetration depth moves towards 
deeper layers when photon time-of-flight increases [3], the contributions from deeper tissue 
volumes can be better separated from superficial ones if the longer path length (longer time-
of-flight) photons are analysed. This ability to path length-resolve is crucial for the clinical 
success of this technique for many scenarios such as neuro-monitoring and neuro-imaging 
due to overlaying extracerebral tissue contamination of the signals. 

Another emerging near-infrared technique is diffuse correlation spectroscopy (DCS). DCS 
has been proven to be a reliable tool for the assessment of blood flow in the microvasculature 
in a non-invasive way [4–6]. DCS exploits the speckle fluctuations of coherent light that 
underwent multiple scattering and quantifies its statistics by the measurement of the intensity 
auto-correlation function. This can then be used to estimate the electric field auto-correlation 
function [4–6]. In a diffusive medium, the correlation diffusion equation describes the 
propagation of the electric field temporal auto-correlation function through tissues and allows 
us to quantitatively relate its temporal decay to the motion of red blood cells and, therefore, to 
the blood flow. Traditional DCS uses continuous wave (CW) lasers and it does not readily 
contain a way to separate or gate short and long path lengths in a similar manner as TRS. 

The extension of DCS to path length-resolved DCS (i.e. time domain DCS) is non-trivial. 
This is mainly due to the physics of pulsed light, which implies a limited coherence length for 
a short (about 100 ps) pulse. In other words, when the coherence time is much shorter than 
the distribution of photon time-of-flight in tissue, the bulk of the speckles decorrelate due to 
this long path length and random scattering, which washes out the contributions due to the 
motion of the scatterers. 

Early on, Yodh et al. [7] demonstrated that by splitting the input pulse and using one path 
as a reference with a controlled delay, it is possible to carry out time- or path length-resolved 
DCS (or diffuse wave spectroscopy, as it is known in other fields). The crucial difference of 
this method in comparison to other path length-resolved laser speckle methods is that it is 
applicable for the highly multiple scattering regime. Their approach used non-linear effects 
and, therefore, it is unsuitable for in vivo measurements due to the need for a large amount of 
detected light. 

Recently, Sutin et al. [8] were able to extend the concept to a relevant domain. They 
achieved this by using a pulsed light on a tissue phantom and, during the analysis, by 
considering only the photons that have travelled paths of similar length. This allowed them to 
relax the requirement for high coherence length in comparison to the case in which all the 
photon paths are considered. They have demonstrated that they are able to separate the 
contribution of photons coming from shallow and deep layers, that is, those arriving at early 
or late time gates. These experiments were carried out on phantoms and on small animals. 
One drawback of this approach is that the use of narrow time gates to calculate the auto-
correlation limits the signal-to-noise ratio due to the scarcity of photons within a certain gate; 
this in turn limits its applicability to in vivo experiments on humans. 
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In this work, we show that a high temporal coherence pulsed source can be utilized to 
allow the use of broader (between hundreds of ps and few ns) time gates and break the signal-
to-noise barrier. Thus, we are capable of in vivo measurements from the adult head and the 
arm in a continuous manner. We envisage three main advantages of the time-domain DCS 
approach as compared to standard CW DCS, which motivated us in this study. First, the time 
domain approach will add one further variable – time – which can be exploited to select 
photons with increasing depth sensitivities [3,9]. Therefore, a single SD pair can be used to 
separate contamination from superficial layers, and as opposed to a CW multiple-distance 
approach the depth resolution is achieved in a way that is less sensitive to the confounding 
heterogeneity of the probed tissue at a microscopic level [10,11]. the time domain approach 
conceptually decouples lateral and depth resolution: the first is encoded in the detector 
position while the second is attained by knowing the time of flight of the detected photons 
[11]. The use of multiple source-detector separations is complementary to this and can still be 
used with the time resolved approaches to provide a full tomographic reconstruction [12]. 
Besides, time-domain DCS also offers an elegant physical model that separates the 
distribution of time of flight of the photons in tissue and the phase shifts due to multiple 
scattering from those due to moving scatterers, for better quantitation of blood flow. Finally, 
this approach allows for a simultaneous measurement of the time-domain NIRS data types 
and DCS, thus providing a complete picture of blood hemodynamics. We demonstrate the 
technique in a two-layer phantom, on the adult brain while differentially changing the 
superficial blood flow and by following the changes due to an arterial arm cuff occlusion. A 
temporal resolution of about one second with a good signal-to-noise-ratio was achieved in 
dynamic in vivo measurements paving the way to the translation of this approach to practical 
use. 

2. Materials and methods 

2.1 Time domain DCS system 

 

Fig. 1. The sketch of the experimental setup for the time domain DCS system. 

Figure 1 shows the experimental setup. The source was a custom made Ti:Sapphire laser 
operated in active mode-locked regime by means of an acousto-optic modulator which 
permits to achieve phase locking of longitudinal modes. This leads to a high temporal 
coherence within the laser pulse [13,14]. It is pumped by a 5 W frequency doubled 
continuous wave Nd:YAG laser, has a pulse repetition rate of 100 MHz, and is tuneable in the 
680-1090 nm range. We have operated the laser at a wavelength ( λ ) of 785 nm. We have 

                                                                              Vol. 8, No. 11 | 1 Nov 2017 | BIOMEDICAL OPTICS EXPRESS 5314 



used a stack of three metallic variable attenuators (Thorlabs, Germany) to ensure that the 
illumination is below the maximum-permissible skin exposure limits. We have achieved the 
synchronization of the photon detection with the laser source pulses by splitting off a small 
fraction (<5%) of its light to be sent to a photodiode (Becker & Hickl, Germany). The 
remaining laser light was then launched into a 200 μm core step index fiber that delivered 
light perpendicularly to the sample. At a variable distance, depending on the experiment, a 5 
μm core single mode fiber collected the diffuse light and delivered it to a single-photon 
avalanche diode (SPAD) detector (PDM, Micro Photon Devices, Italy) with a photon 
detection efficiency of about 20% at the wavelength of interest. This detector has two outputs. 
A high temporal resolution nuclear instrumentation module (NIM) output (nominally, with 
about 35 ps precision) was connected to a standard time correlated single photon counting 
(TCSPC) module (Pico Harp 300, PicoQuant, Berlin, Germany). The TCSPC module records 
the time stamps (time of arrival) and the delay with respect to the pulse emission (pulse time), 
with an 8 ps resolution, of each detected photon in a file. The coarser temporal resolution 
transistor-transistor logic (TTL) output (with few hundred ps precision) of the SPAD detector 
was connected to a standard hardware correlator (Correlator.com Flex-05, 8 channels, USA). 
The hardware correlator evaluates the intensity auto-correlation function assuming that the 
light is continuous wave and was used in a subset of experiments (see below). 

We note that the TCSPC board can accept synchronization signals up to a maximum 84 
MHz but our laser repetition rate was higher. To deal with this, we have developed an in-
house fast circuit (SYNC divider) that reduces the number of synchronization pulses by 
accepting just one in three, thus recording three distribution of times of flight (DTOF) curves 
in the same window. To avoid any loss of photon counts, these curves are combined in data 
analysis. Furthermore, in some experiments, by switching the pulsed source to a continuous 
wave high coherence diode laser (Crystal Laser, Reno, NV, US), we have tested the scatterers 
dynamics of the phantoms in an equivalent manner to a standard DCS setup. 

The instrument response function (IRF) was acquired by facing the source and the 
detector fibers directly in front of each other and by introducing a sub-millimeter thick 
polytetrafluoroethylene sheet in between. The full width at half maximum (FWHM) of the 
IRF was about 100 ps. 

The FoCuS-point software correlator [15], that is available on Github [16], was used for 
the post-processing of the data. It relies on the algorithm for fast photon auto-correlation from 
Wahl et al. [17]. We have adapted it to correlate the time stamps of the detected photons that 
were recorded by the TCSPC within a time window or a gate. This allowed us to gather the 
photons that arrive in an adjustable time gate and calculate the gated auto-correlation function 
by using time stamps of just a portion –gate– of the DTOF at a certain delay with respect to 
the laser emission, offline, in a similar fashion to the work of Sutin et al. [8]. 

2.2 Data analysis 

The Siegert relation, ( ) ( ) 2

2 11g gτ β τ= + , when the assumptions behind it are fulfilled [18], 
can be applied in order to relate the measured normalized intensity auto-correlation function 
( 2 ( )g τ ) to the normalized electric field auto-correlation function ( 1( )g τ ), in order to quantify 
the motion of scatterers. Here τ  is the correlation delay time and β  is a constant, determined 
by the collection optics. β  is equal to 1 for ideal experimental conditions but decays with an 
approximately inverse proportionality to the number of modes detected at the same time. It 
also decreases by decreasing the source coherence length. As first proposed by Pine et al. [18] 
for diffusing wave spectroscopy, the theoretical model for 1( )g τ  can be computed by 
evaluating the integral 

 ( ) ( ) ( )
1

0

1 1, , ,  
s

single

s

g k P s g k s dsτ τ=   (1) 
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where ( )P s  is the probability distribution of the photon path lengths ( s ) in tissue and k  is a 

quantity that describes the decay rate of the auto-correlation function. The integration over the 
path lengths is infinite for an ungated experiment, but, in gated experiments, just the path 
lengths between two extremes of the gate, 0s  and 1s , are used. The other term in the 

integrand, 

 1 ( , , )  single k sg k s e ττ −=  (2) 

is the contribution to the correlation decay from a single path (of a multiply scattered photon) 
of length s . The decay rate is given by the formula 

 ' 2
02 s Bk k Dμ α=  (3) 

where 2
0k  is the square of the wavenumber of the light in the medium and α  is the fraction of 

moving to static scatterers [4]. The decay rate, therefore, represents the rate of loss of 
correlation per unit path length in the medium and is proportional to the scatterer Brownian 
diffusion coefficient ( BD ) of the sample. By applying the above-mentioned Siegert relation 
we are left with two parameters to be estimated, namely the optical parameter β  and either 

BD  (in phantoms, 1α = ) or the blood flow index (BFI = BDα ). The BFI is assumed to be 
related to the shear-induced Brownian motion of red blood cells [20] in case of in vivo 
measurements, and was shown to be proportional to both absolute and relative microvascular 
blood flow [4–6,21]. 

Equation (1) tells us that, if the gate is sufficiently narrow compared to the decay of ( )P s , 
then ( )P s  could be treated as a constant and simplified. Afterwards, the average BD  or the 
BFI of a collection of narrow adjacent gates can be recovered from the slope of the decay of 
the auto-correlation function at different gate positions or path lengths ( s ) [7,8]. However, 
for broader gates, this approximation is not anymore valid and further steps need to be taken. 
In particular, in order to solve Eq. (1) numerically, ( )P s  must be estimated. As we assume an 
uniform refractive index in the sample, the path length is the time-of-flight of the photons 
times the speed of light in the sample and ( )P s  can be rewritten, in the limits of validity of 
the photon diffusion approximation, as the time-resolved reflectance [22,23] for the relevant 
boundary conditions. For all our experiments, we have assumed a semi-infinite medium. In 
order to correctly recover the path lengths ( s ) from the photon time-of-flight, we have set the 
zero time as the time at which the IRF has a peak. In principle, the reflectance could also be 
estimated from the measured DTOFs and IRF by the deconvolution of the latter from the 
former [21] and by using a proper regularization to reduce the deconvolution noise. In our 
case, we have chosen to compute ( )P s  from theory using the absorption and reduced 
scattering coefficients that have been measured by knowing the DTOF and IRF using a semi-
infinite medium model with extrapolated boundary by convolving the theoretical model with 
the IRF [22]. 

Here, we have tested both the narrow (160 ps) and broad gate approaches on tissue 
simulating phantoms. The broad gates are used for fast, light-starved in vivo measurements of 
blood flow in humans. We chose the width of the broad gates depending on the shape of the 
DTOF. We have considered the photons with times of flight up to a certain fraction of the 
DTOF in an early gate and the rest in a late gate, for a total of two broad gates. The width of 
the narrow gates was chosen as a compromise between the detected photon counts within the 
gates and β  value. For the broad gates, the early gate extended from the time at which the 

IRF peaked ( 0t ) to the time at which the measured DTOF dropped to 90% on the falling edge 

of the curve, with respect to its maximum, for a total width of about 800 ps. The late gate 
extends from this point to the time at which the DTOF is no longer distinguishable from the 
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noise floor which results in a width of between 2 and 3 ns. Then, we numerically solve the 
full expression in Eq. (1) to model the auto-correlation. 

2.3 Phantom experiments 

 

Fig. 2. Sketch of the two-layer liquid phantom holder.  is the thickness of the superficial layer 
(S). 

A custom two layer phantom holder (Fig. 2) that consists of two compartments separated by a 
50 μm thick Mylar sheet was used [25]. Another Mylar sheet enclosed the phantom and 
separated the fibers from the liquid. The first compartment, closest to the fibers, is termed 
shallow (S), and the other, deep (D). Superficial (S) compartment thickness, , could be 
varied to simulate different superficial tissue thicknesses. Source and detector fibers were 
then inserted in a black plastic holder, in which they were kept at a 15 mm separation from 
each other and perpendicular to the liquid/Mylar interface. 

Two liquid phantoms were made by mixing water and Lipofundin (B. Braun Melsungen 
AG, Germany) by the proportion of 6.5% (mass Lipofundin / mass water). In order to create a 
contrast in BD , we have added 30% in weight of glycerol (Sigma Aldrich) to one of them. To 

compensate for reduced scattering due the glycerol refractive index, we have then raised the 
concentration of Lipofundin to 13.5% by adding an index-matched solution of Lipofundin, 
water and glycerol. Glycerol reduces BD  by increasing the solvent’s viscosity. We have then 

accurately titrated the concentration of Lipofundin in this second phantom to match the 
reduced scattering coefficient of the first [26]. In both phantoms, the scatterers show 
Brownian diffusion coefficients that are similar to typical in vivo values. The expected 
contrast between the two, in terms of BD , is about 40%, and ultimately we have used the two 

phantoms to fill the two layer phantom holder. 
The deeper (D) compartment was always filled with the phantom without glycerol, while 

the shallow (S) layer was filled either with the same (dynamically homogeneous 
configuration) or with the slower diffusing (30% glycerol added) phantom (dynamically 
heterogeneous configuration). We have changed the thickness of the S layer to 10 and 5 mm 
in dynamically homogeneous and to 5, 10 and 15 mm for the dynamically altered 
configurations. Five measurements in the two configurations (two homogeneous and three 
heterogeneous) were carried out with a count rate of approximately 52 10⋅  counts per second, 

which needed a duration of about 32 10⋅  seconds to reach the target of a total of about 84 10⋅  
photons per measurement. 

We have recovered the optical properties ( 'sμ  and aμ ) of the liquid phantoms by fitting 

the convolution of the IRF and the solution of the radiative transport equation in the diffusion 
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approximation with the corresponding DTOF. The DTOF was acquired for each phantom 
separately in a homogeneous one-litre container. 

As discussed in section 2.2, we have first computed the electric field auto-correlation of 
narrow, 160 ps wide gates, overlapping for 80 ps from one to the next. The normalized 
intensity auto-correlation function for each gate was then fitted against the delay time τ  with 
the single path length exponential decaying correlation (Eq. (2) to obtain k s⋅ . For each gate, 
s  is the average path length. We have plotted the fitted k s⋅  against s  and calculated the 
slope, which is k , in two regions, separately: early, between 80% of maximum counts on the 
rising edge of the DTOF and 90% on the falling edge, and late, between 60% and 10% on the 
falling edge of the DTOF. 

2.4 In vivo experiments 

For all the in vivo studies, the laser power was limited by using an optical attenuator to meet 
the maximum permissible exposure limit for human skin. The protocol was approved by the 
Ethical Committee of Politecnico di Milano and it was conducted in agreement with the 
Declaration of Helsinki. All subjects gave written consent before their participation. 

First, we have taken measurements on the forehead of a healthy subject (male, 30 years 
old). He was instructed to lay down supine on a bed and remain alert for the duration of the 
experiment. The probe was a black plastic fiber holder (5 cm by 5 cm by 1 cm) with the fibers 
inserted 1 cm apart and pointing perpendicularly to the skin. A cotton mesh wrap encircling 
the head was used to secure the probe to the right side of the forehead far from the midline. 
We have repeated the experiment two times. The second time we have manually applied a 
constant increased pressure (the maximum the subject was comfortable with for all the 
duration of the data acquisition). We have acquired, for each pressure scenario (no pressure, 
pressure), 72.7 10⋅ photons over 300 s, and we have used the broad gate approach for the 
analysis. 

Second, we have used the same source-detector separation (1cm) for measuring the BFI in 
the arm of another healthy subject (male, 30 years old) before, during and after an arterial cuff 
occlusion. The black plastic fiber holder was applied, with the fibers perpendicular to the 
skin, above the brachioradialis muscle in the right arm and was secured with a loose bandage. 
The tourniquet for compressing the affluent arteries was applied around the arm right below 
the shoulder joint. The cuff occlusion started at 245 s and lasted for 180 s. During the cuff 
occlusion the tourniquet pressure was raised to about 180 mmHg which is well above the 
arterial blood pressure of the subject. In order to gain temporal resolution, we have divided 
the 600 s measurement period in 1 s epochs and analysed them separately. The BFI was then 
estimated by using the numerical integration method in the early and late gates separately for 
each epoch. At the same time, we have acquired correlation curves independently on the time 
of arrival of the photons with 1 s time resolution by using the hardware correlator. These were 
analysed with the standard continuous wave DCS theory and the results were compared with 
the gated analysis. 

3. Results 

The first step was to fit the measured DTOF (Fig. 3, top) from both liquid mixtures (see 
section 2.1) to determine the optical properties. The reduced scattering coefficients were 10.6 
cm−1 for the phantom with 30% glycerol and 10.5 cm−1 for the phantom without glycerol. 
Absorption coefficients were 0.026 cm−1 and 0.025 cm−1, respectively. This confirms that the 
contrast between the two compartments would be due to the differences in viscosity and not 
due to differences in the reduced scattering coefficient, which is tightly coupled to BD  in the 

correlation diffusion model. 
Figure 3, bottom, shows the results for the dynamically heterogeneous and dynamically 

homogeneous two-layer phantom. As expected, both regions (early and late) reveal the same 

                                                                              Vol. 8, No. 11 | 1 Nov 2017 | BIOMEDICAL OPTICS EXPRESS 5318 



decay constant, k, and varying the thickness δ  of the superficial layer (S) does not change k 
in the dynamically homogeneous case (DH, triangles). All the measured auto-correlation 
curves are reported, for completeness, in Fig. 6 in the Appendix, for the DH, δ = 5 mm case. 
As expected (Section 2.2), by increasing the average gate path length, the decay constant, k·s, 
of the auto-correlation curves increases. The small distortions of the early gates with respect 
to the late in the DH case are due to the contributions of instrument response function, the 
contributions of the photons that underwent a small number of scattering events and the finite 
gate width. The effects of these contributions are different depending on the position of the 
center of the gate with respect to the DTOF curve, which is a topic for future study. The value 
of k  becomes significantly different between the early and late regions when we have filled 
the superficial (S) layer with the reduced BD  phantom with 30% glycerol (DA, circles). 

Notably, in this case the retrieved BD  is lower (see Table 1) in the early compared to the late 

region, and decays faster when the thickness of layer S is increased (52%, 36% and 28% of 
the dynamically homogeneous case in early region; 100%, 71% and 50% in late region). 

 

Fig. 3. (Top) DTOF curves of the two homogeneous liquid mixtures, with (30% gly) and 
without (0% gly) glycerol. (Bottom) Gated auto-correlation decay rates ( k s⋅ ) for the 
dynamically homogeneous (DH, triangles) and dynamically heterogeneous (DA, circles) two-
layer phantom configurations. Here,  represents the thicknessof the superficial (S) layer of the 
phantom (see Fig. 2). The path length s is computed from the time-of-flight as s v t= ⋅ , where 
 v  is the speed of light in the medium. Figure 6 in the Appendix shows the corresponding 
measured auto-correlation curves for different gate positions. 
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Table 1. Relative 
B
D  when S layer is filled by 30% glycerol added phantom (dynamically 

heterogeneous case), for changing S layer thickness δ, compared to the late gate or 
region, δ = 5 mm, value (100%). 

  k·s fitting Numerical integration 

Thickness of layer S EARLY LATE EARLY LATE 

δ = 5 mm  
52% 100% 47% 100% 

δ = 10 mm  
36% 71% 34% 84% 

δ = 15 mm  
28% 50% 28% 61% 

 

Fig. 4. (a) Intensity auto-correlations for the early and late gates, and the ungated auto-
correlation when no pressure is applied. (b) Electric field auto-correlation for the early gate 
when pressure is applied on the probe as compared to when no pressure applied. The 
distortions from the model at late lag times is a common feature of in vivo DCS data as 
illustrated in ref [6] (Fig. 8 therein). Figure 7, in the Appendix, shows the full set of curves. (c) 
Relative BFI (rBFI) for two different gates (early and late) and two pressure conditions (no 
pressure, with pressure) is shown. 

We have then proceeded to fit the auto-correlation of the two broad gates with the 
numerical integration method (Section 2.2). We have computed the normalized intensity auto-
correlation for each one of the two gates and fitted them separately. As shown in Table 1, just 
limited to the dynamically heterogeneous case, we see that the measured BD  is dropping 
much faster in the early with respect to the late gate or region. All values are reported as 
relative to the smallest S layer thickness (δ = 5 mm), late gate or region (here marked as 
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100%). As we increase the superficial layer thickness δ, the estimated relative decrease of is 

BD  practically independent on the evaluation methods (numeric integration or k·s-fitting). 
The results from the adult-human head are shown in Fig. 4. In Fig. 4(a), we report the 

measured intensity auto-correlation ( )2g τ  functions for the early and late broad gates and for 
the ungated case. It is evident how, even in the pulsed case, we have achieved a good signal-
to-noise ratio for the estimated correlation curves, with β  = 0.41 and 0.25, respectively for 
the early and late gates, and β  = 0.29 for the ungated case. We note that the values of β  
observed in these experiments are higher compared with the ones reported in Sutin et al. [8], 
as a result of the tunable active pulse locking that our particular laser allowed. 

Figure 4(b) shows the measured electric field auto-correlation function 1( )g τ  at early 
gates for the baseline (control) and pressure scenarios, demonstrating that the probe pressure 
causes a significant change in the measurements from the early gate. The numeric fit was 
carried out considering the experimental points up to 1g ~  0.3 . We report the auto-
correlations of the other gates in Fig. 7, in the Appendix. Figure 4(c) shows the measured BFI 
normalized relative to the ungated value, which reflects a mixed contribution of superficial 
and deep photons, of the baseline (no pressure) condition. As expected [27], when pressure 
was applied, the ungated analysis showed a decrease of 61% of BFI. Since the blood flow in 
the scalp is reduced, the contrast between the early and late gates increases when pressure is 
applied to the probe. 

 

Fig. 5. Relative BFI (normalized to the first 100 s) during a cuff occlusion experiment. Dots 
represent the broad gates analysis and havea 1 s resolution. The continuous line is the rBFI 
estimation from ungated analysis carried out with the hardware correlator (1 second 
resolution). 
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The results of the cuff occlusion experiment are summarized in Fig. 5. The measured 
average β  was 0.36 and 0.32 for the early and late broad gates, respectively. This set-up is 

able to achieve a good signal-to-noise ratio (count-rate and total number of photons) in a 1 s 
window, and we are able to discern the appropriate decay during the cuff occlusion, followed 
by the rapid and strong hyperemia. The features of the three time-traces are very similar. 
Trends in the estimated relative BFI (rBFI) with the broad gates analysis are in good 
agreement with the ungated estimation carried out with the standard hardware correlator. 

4. Discussion and conclusion 

We have demonstrated the feasibility of separating the Brownian diffusion coefficients of 
scatterers in deep and shallow layers by using a mode-locked pulsed laser source. To do so, 
we have used a two-layer phantom in which the two layers have a different Brownian 
diffusion coefficient, but same reduced scattering and absorption coefficients. When the 
Brownian coefficient of the superficial layer decreases, we have observed a selective drop in 
the typical decorrelation time corresponding to the photons arriving early to the detector. We 
have shown a contrast in the relative dynamics of the two layers with respect to the ungated 
case in both phantoms and in vivo. Even though we do not report all possible combinations of 
changes of dynamics and optical properties in a two layer media, this work paves the way to 
works of that nature by establishing the proper experimental and theoretical framework. 

We have also demonstrated the feasibility of applying this technology directly in vivo on 
humans. This can be used to discern the blood flow of a superficial layer (e.g. scalp and skull) 
with respect to deeper one (e.g. the brain), in order to reduce partial volume artefacts that 
affect standard DCS measurements. Here, we have focused on two broad gates. However, this 
method can be extended to the use of an analysis that uses multiple gates and/or a full set of 
autocorrelation curves at different time bins. For example, Spinelli et al. [28] utilized a 
similar method for TRS. This could be a future extension beyond this work where the relevant 
physical and algorithmic aspects could be studied. 

On the head of a healthy subject we have observed a reduction in the BFI corresponding 
to shallow tissue as we apply additional pressure. The additional pressure we have applied 
does not affect the deeper brain tissue, which is protected by the hard skull bone, but it causes 
a decrease of the blood flow in the shallow skin and scalp layers. This is in agreement also 
with previous studies that demonstrated that an externally applied pressure modulates the 
contribution of the extra cerebral layer on the BFI assessment by DCS [27,29]. In these 
studies, different source-detector separations were utilized to gain a pseudo-depth resolution, 
but here we do take advantage of the multiple gate strategy to achieve depth resolution with a 
single-shot measurement. We note that we have used a relatively short source detector 
separation (1 cm). The depth resolution is in fact achieved by the time gate only, in a way 
similar to the null source detector separation TRS [30]. In a similar approach, a gated detector 
can be used here to systematically discard the very early photons that would blind the 
detection electronics at very small source detector separation. This concept can be used in a 
multi-source, multi-detector system to increase the resolution of diffuse correlation 
tomography. 

In the arm cuff experiment we show that the broad time gates analysis is able to achieve a 
good signal-to-noise ratio with 1 s resolution, and therefore it is suitable to follow fast 
changes of the BFI. Surprisingly, we see that the early and late gates do not differ in terms of 
the BFI values, and there is no statistically significant difference between the two gates, or 
between the ungated and gated results, during all three phases considered separately. 
Although we have expected a higher hyperemic peak during reperfusion in the late (deep) 
gate [31], due to higher oxygen consumption in the muscle, with respect to the shallower skin 
and fat layers, we were not able to detect it. We believe that this is due to the very thin 
superficial tissue (skin and fat) thickness of 2.5 mm, measured by a skin caliper, of this 
particular subject. Nevertheless, we were able to prove that even fast BFI-changes due to 
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challenges like the cuff occlusion can be monitored by time domain DCS. The results are in 
agreement with the ones obtained with a standard hardware correlator for ungated 
measurements and the same pulsed light source. 

In all the experiments we have used a single wavelength but, by tuning the laser 
wavelength sufficiently fast (i.e. every 500ms), we can gain specific sensitivity to the 
deoxygenated or oxygenated hemoglobin or even further, to characterize the sample multi-
spectrally while also measuring the blood flow. We note also that multiple source-detector 
pairs can readily be utilized by this method by multiplexing. 

In this work, we have assumed homogeneous optical properties and we have focused on 
demonstrating the ability to separate the dynamic properties of the superficial and deeper 
layers. However, in vivo measurements contain heterogeneities in both optical and dynamic 
properties. It is well known that the inaccuracies in the recovery of the optical properties are 
reflected in the recovery of dynamic properties [32]. However, since time domain DCS 
measurements contain the TRS information, we believe that the quality of the results will be 
similar as the quality of the TRS results [33] and this is a topic for future work. 

While, as other works suggest [18,34], the Siegert relation may not be valid when the 
coherence length of the source is in the order of the distribution of photon path lengths in 
tissue, or even shorter, here we demonstrate that this relation still allows us to extract 
meaningful values of BFI from in vivo experiments. Sutin et al. [8] have justified the 
application of the Siegert relation to the use of very narrow gates, and we believe that the 
greater coherence length of our system allows us to avoid most distortions when working with 
broader (up to 1 ns) gates. Moreover, no evidence of distortion that may be caused by the 
non-validity of the Siegert relation, such as the intensity auto-correlation curves not decaying 
to one at infinite time, were observed. 

The longer coherence length of the pulsed laser source that we have used here, which is 
manifest in the relatively high values of β  observed, allows for a time resolution that is high 

enough to monitor even fast hemodynamic changes like those due to the cuff occlusion in the 
arm. However, a dedicated setup like the one presented in this work offers several 
disadvantages. First, the need for a long cavity and a powerful pump laser makes the device 
bulky and hard to use at the bedside. Second, the fact that this is a unique system – it is a 
modified system adapted to operate in active mode-locking – does not allow one to easily 
fabricate multiple systems. The present system is a powerful laboratory workstation, suitable 
for exploration of basic physics of time-domain DCS and of its potential. However, the use of 
similar laser sources has been common in the past for human in vivo investigation [35,36] 
which encourages us, in order to move towards the clinics, to work on making the 
instrumentation more compact, by substituting the custom Ti:Sapphire laser with a 
modification of a commercially available laser that will provide a suitable pulse coherence 
and power. 

Appendix 

Here we report additional results for completeness. Fig. 6 shows additional narrow gate 
results and Fig. 7 shows additional results from the in vivo head measurements. Specifically, 
Fig. 6(a) shows the full set of auto-correlation curves from the narrow gate approach for a 
dynamically homogeneous two layer phantom (DH, =5mm, see Fig. 3). In accordance to 
what has been previously reported in [8], we see a variation in the signal to noise ratio as the 
gate (width 160 ps) position increases, in 80 ps steps. At later gates the photon counts are 
reduced due to decay of the DTOF (Fig. 6(a), 6(b)) resulting in a noisier autocorrelation 
curve. We report a monotonic decrease of β as the gate time increases (Fig. 6(c)). 
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Fig. 6. (a) Electric field auto-correlation functions (g1) with respect to the lag time as 
calculated for narrow 160 ps gates with an increasing starting time corresponding to the gate 
positions shown in panel (b). (b) Colored markers represent where the gates have been 
selected, corresponding to the DTOF. (c) The variation of the intensity auto-correlation 
intercept β with respect to the sequential gate number. All curves/makers in all panels are color 
coded to match the position on the DTOF curve in panel (b). 

For the broad gate approach applied in vivo in the head (see Fig. 4) we report the early and 
late gate estimated auto-correlation curves (Fig. 7). This way we intend to highlight the full 
picture of observed changes when pressure is applied, for both gates. 

 

Fig. 7. Measured and fitted electric field auto-correlation functions for in vivo head 
experiments. Here we show two gated (early, late) and ungated calculations for different 
applied pressure conditions: no pressure (circles) and with pressure (diamonds). The solutions 
to the correlation diffusion equation was used to fit the ungated and the numeric integration 
was used to fit the gated results (solid lines). 
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