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Abstract—The capacity of a discrete-time, multi-input multi-
output (MIMO) channel with output quantization is investigated
for different receiver architectures. A general framework for
low–resolution quantization is proposed in which the antenna
outputs are processed by analog combiners and sign quantizers
are used for analog–to–digital conversion. The configuration of
the analog combiners is chosen as a function of the channel
realization so that the transmission rate can be maximized over
the set of available configurations. To exemplify the proposed
approach, four analog receiver architectures are considered: (a)
sign quantization of the antenna outputs, (b) single antenna selec-
tion, (c) multiple antenna selection, and (d) linear processing of
the antenna outputs. In each scenario, capacity is investigated as
a function of the transmit power, the number of transmit/receive
antennas and sign quantizers. In particular, it is shown that
architecture (a) is sufficient to approach the optimal high signal–
to–noise ratio (SNR)performance for a MIMO receiver in which
the number of receive antennas is larger than the number of sign
quantizers. Numerical evaluations of the average performance
are presented for the case in which the channel gains are i.i.d.
Gaussian distributed.

Index Terms—MIMO channel;Channel output quantization;
Analog-to-digital conversion; One-bit quantization.

I. INTRODUCTION

Low–resolution quantization is an important technology for
massive MIMO and millimeter–wave communication systems
as it enables low–power and low–complexity transceivers [1].
Although the performance of MIMO receivers with large
antenna arrays and low–resolution quantizers has been widely
investigated in the literature, a fundamental information theo-
retic understanding of such receiver architectures is currently
not available. In this paper, we propose a unified framework
to analyze and compare the performance of a MIMO system
under various constraints on the analog–to–digital processing
at the receiver. More specifically, we consider a Nr × Nt

MIMO channel in which the receiver is comprised of Nsq

sign quantizers. Each sign quantizer is connected to the an-
tenna outputs via an analog combiner with limited processing
capabilities and the configuration of the analog combiners can
be chosen as a function of the channel realization. For this
model formulation, we consider the problem of determining
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European Union’s Horizon 2020 research and innovation program under grant
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which configuration of the analog combiners yields the largest
transmission rate.

Literature Review: Quantization in MIMO systems is a
well–investigated topic in the literature; for the sake of brevity
we focus here on results regarding sign quantization.1 The
authors in [2] are perhaps the first to point out that the capacity
loss in MIMO channels due to coarse quantization is sur-
prisingly small, although this observation is supported mostly
through numerical evaluations. In [3], the authors derive
fundamental properties of the capacity-achieving distribution
for a single–input single–output (SISO) channel with output
quantization. A lower bound on the capacity of sign-quantized
MIMO channels with Gaussian inputs based on the Bussgang
decomposition is derived in [4]. The high SNR asymptotics for
complex MIMO channels with sign quantization are studied
are [5].

Contributions: For the proposed problem formulation, we
focus on four receiver architectures: (a) multiple antenna
selection and sign quantization, (b) single antenna selection
and multilevel quantization, (c) multiple antenna selection
and multilevel quantization, and (d) linear combining and
multilevel quantization. Architecture (c) is more general than
both architectures (a) and (b), and (d) is the most general.
For these architectures, we provide capacity bounds for the
SIMO and MIMO case as a function of the channel realization,
transmit power and number of sign quantizers. In particular,
for the MIMO channel with linear combining and multilevel
quantization, we derive an approximatively optimal transmis-
sion scheme as a variation of the classic water–filling power
allocation scheme. This approximate solution shows that, if the
number of antennas at the receiver is larger than the number of
sign quantizers, then sign quantization is sufficient to approach
the optimal high SNR performance. Numerical evaluations are
provided for the case of i.i.d. Gaussian–distributed channel
gains.

Paper Organization: Sec. II introduces the channel model.
Sec. III reviews the available results in the literature. The
main results are given in Sec. IV. Numerical evaluations are
provided in Sec. V. Sec. VI concludes the paper.

1In the literature, the term “one–bit quantization” most often refers to
sign quantization of the antenna outputs. Here we prefer the term “sign
quantization”.
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(a) Multiple antenna selection and sign
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(b) Single antenna selection and
multilevel quantization.
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(c) Multiple antenna selection and
multilevel quantization.

Fig. 1: Relevant receiver architectures in Sec. II for Nr = 4 and Nsq = 3.

Only sketches of the proofs are presented in the following;
a complete version is provided online [6].

Notation: All logarithms are taken in base two. The binary
entropy function is defined as H2(x) = −x log x − (1 −
x) log(1 − x) and the tail probability of the standard normal
distribution as Q(x) = 1/

√
2π
∫ +∞
x

exp(−u2/2)du. The
vector λ(M) = [λ1 . . . λrank(M)] contains the eigenvalues of
the matrix M . The identity matrix of size n is indicated as
In. The all–zero/all–one matrix of size n × m is denoted
as 0n×m/1n×m, respectively, and the set of all permutation
matrices of size m×m as Pπm.

II. CHANNEL MODEL

Consider a discrete-time, real-valued MIMO channel with
Nt transmit and Nr receive antennas. At the nth channel use,
the antenna output vector Wn = [W1,n . . .WNr,n]

T , is ob-
tained from the channel input vector Xn = [X1,n . . . XNt,n]

T

as

Wn = HXn + Zn, n ∈ [1 . . . N ], (1)

where H is a full rank matrix of size2 Nr × Nt and Zn is
an Nr-vector of i.i.d. Gaussian variables with zero mean and
identity covariance matrix. For Nt = Nr = 1, let H = 1
w.l.g. For Nt = 1, Nr > 1, let H = h to improve clarity. The
channel input vector is subject to the average power constraint∑N
n=1 E[||Xn||22] ≤ NP where || · ||2 is the 2-norm.
The antenna output vector is processed by Nsq sign quantiz-

ers, each receiving a linear combination of the antenna output
vector plus a constant

Yn = sign(VWn + t), n ∈ [1 . . . N ], (2)

where V is the analog combining matrix of size Nsq×Nr, t is
a threshold vector of length Nsq and sign(u) is the function
producing the sign of each component of the vector u as plus
or minus one, so that Yn ∈ {−1,+1}Nsq . For a given {V, t},
the capacity of the model in (2) is

C(V, t) = max
PX(x), E[||X||22]≤P

I(X;Y). (3)

The analog processing capabilities at the receiver are modeled
as a set of feasible values of {V, t}, denoted as F . Our goal
is to maximize the capacity expression in (3) over F , namely

C(F) = max
{V,t}∈F

C(V, t). (4)

2This condition guarantees the existence of a right pseudo-inverse for H
and holds with high probability in a richly scattering environment.

Relevant receiver architectures: For the problem formula-
tion in (4), sign quantizers can be seen as a resource to be
allocated optimally among a set of possible configurations F .
As such, it captures the trade-off between the quantization of
few antennas with high precision versus the quantization of
many antennas with low precision.

To exemplify the insights provided by our approach, we
study four receiver architectures:
(a) Multiple antenna selection and sign quantization:
Here F in (4) is selected as

Fa =
{
V =

[
INsq

,0Nsq×(Nr−Nsq)

]
K, K ∈ PπNr

,

t = 0Nsq×1
}
, (5)

that is, each sign quantizer is connected to one of the channel
outputs.

Fig. 1a represents this model for Nr = 4 and Nsq = 3.
(b) Single antenna selection and multilevel quantization:
In this configuration, a single antenna output is processed by
all the quantizers:

Fb =
{
V =

[
1Nsq×1,0Nsq×(Nr−1)

]
K, K ∈ PπNr

,

t ∈ RNsq
}
, (6)

This model is presented in Fig. 1b.
(c) Multiple antenna selection and multilevel quantization:
Each sign quantizer can select an antenna output and a voltage
offset before performing quantization. This is obtained by
choosing

Fc =

V s.t. Vij ∈ {0, 1},
Nr∑
j=1

Vij = 1, t ∈ RNsq

 . (7)

This architecture is shown Fig. 1c.
(d) Linear combining and multilevel quantization:
Corresponds to

Fd =
{
V ∈ RNsq×Nr , t ∈ RNsq

}
. (8)

Architecture (c) encompasses architectures (a) and (c); ar-
chitecture (d) subsumes all other architectures. Note that an
M–level multilevel quantizer is obtained utilizing M − 1
sign quantizers: it follows that sign quantization produces the
most information bits per sign quantizer and increasing the
number of quantization levels increases the information bits
only logarithmically.
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III. SIGN QUANTIZATION

The effect of quantization on the capacity of the MIMO
channel has been investigated thoroughly in the literature. For
conciseness, we review only the results on sign quantization
of the channel outputs, corresponding to architecture (a) in
Fig. 1a when Nsq = Nr.

The capacity of the SISO channel with sign quantization of
the outputs is attained by antipodal signaling.

Lemma III.1. [3, Th. 2]: The capacity of the SISO channel
with sign quantization of the antenna output is

CSISO = 1−H2

(
Q
(√

P
))

. (9)

The capacity of the MISO model with sign output quantiza-
tion is obtained from the result in Lem. III.1 by transforming
the MISO channel into a SISO channel through transmitter
beamforming, thus yielding

CMISO = 1−H2

(
Q
(
|h|
√
P
))

. (10)

For the SIMO and MIMO channel, capacity with sign quan-
tization is known in the high-SNR regime. Here, capacity is
obtained as the number of points in the received signal space
that can be distinguished after sign quantization: this prob-
lem is closely related to classical problems in combinatorial
geometry.

Lemma III.2. [5, Prop. 3]. The capacity of the MIMO
channel with sign quantization and Nsq = Nr for which
H satisfies a general position condition (see [5, Def. 1]), is
bounded at high SNR as

log(K(Nsq, Nt)) ≤ CSNR→∞
MIMO,a ≤ log(K(Nsq, Nt) + 1),

if Nt < Nsq, where

K(Nsq, Nt) = 2

Nt−1∑
k=0

(
Nsq − 1

k

)
. (11)

If Nt ≥ Nsq, then CSNR→∞
MIMO,a = Nsq.

At finite SNR, upper and lower bounds on the capacity of
the MIMO channel with sign quantization are known but are
not tight in general.

Lemma III.3. [5, Sec. V.A]. The capacity of a MIMO channel
with output sign quantization with Nt ≥ Nr = Nsq is bounded
as

NR

(
1−H2

(
Q

(√
P

trace (K)

)))
≤ CMIMO,a ≤ NR

(
1−H2

(
Q
(√

Pλmax

)))
, (12)

where K = (HHT )−1 and λmax is the largest eigenvalue of
K.

Note that, in the setting of [5], the authors consider the
complex MIMO model while the results it Lem. III.2 and Lem.
III.3 hold for a real channel.

IV. MAIN RESULTS

We begin by considering the capacity of the SISO channel
for the receiver architectures in Sec. II. Capacity for archi-
tecture (a) is provided in Lem. III.1 (as we have, necessarily,
Nsq = 1). Architectures (b), (c) and (d) all correspond to the
same model in which the channel output is quantized through
an (Nsq + 1)-level quantizer.

Proposition 1. The capacity of the SISO channel with multi-
level output quantization, Nsq > 1, is upper–bounded as

CSISO ≤
1

2
log
(
min

{
P + 1, (Nsq + 1)2

})
, (13)

and capacity is to within 1 bits-per-channel-use (bpcu) from
the upper bound in (13).

Proof: The proof substantially follows [7]. The upper
bound (13) is the minimum between the capacity of the
model without quantization constraints and the capacity of the
channel without additive noise. For the achievability proof, the
input is chosen as an equiprobable M -PAM signal for

M = min
{
b
√
P c, Nsq + 1

}
, (14)

in which the distance between the constellation points is
chosen such that the power constraint is met with equality.
At the receiver, the quantization thresholds are selected as the
midpoints of the M -PAM constellation points.

In the remainder of the paper, we focus on approximate
characterization of capacity for the SIMO and MIMO channel3

in the spirit of Prop. 1, that is:
• upper bounds are obtained as the minimum among

two expressions: the capacity for the channel without
quantization constraint and the capacity of the channel
without additive noise, and

• lower bounds rely on PAM modulation and uniform mul-
tilevel quantization, as the performance of these schemes
can be more easily explicitly quantified.

1) SIMO case: For receiver architecture (a), capacity is at
most 1 bpcu so that Lem. III.3 is sufficient to characterize
capacity to within a small additive gap. For receiver archi-
tecture (b), capacity can be characterized through a rather
straightforward extension of the result in Prop. 1.

Proposition 2. The capacity of the SIMO channel with sin-
gle antenna selection and multilevel quantization is upper–
bounded as

CSIMO,b ≤
1

2
log
(
min

{
1 + ||h||2∞P, (Nsq + 1)2

})
, (15)

where || · ||∞ is the max-norm; capacity is to within 1 bpcu
from the outer bound in (15).

Note that (15) reduces to (13) when Nr = 1.
For architecture (c), sampling more antennas allows the

receiver to collect more information on the input but reduces
the number of samples that can be acquired from each antenna.

3Note that the MISO case follows from the SISO case as in (10) using
transmitter beam-forming.
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Proposition 3. The capacity of the SIMO channel with
multiple antenna selection and multilevel quantization for
P > log(Nsq) > 2 and h2i > 1 is bounded as

max
K

1

2
log

(
min

{
1 + ||h(K)||22P,

(
Nsq

K
+ 1

)2
})
− 2

(16a)

≤ CSIMO,c ≤
1

2
log
(
1 + ||h||22P, (Nsq + 1)2

)
, (16b)

where h(K) is the vector of the K largest channel gains in
k.

Note that the upper and lower bounds in (16a) and (16b)
differ of at most 2 bpcu.

Proof: The upper bound in (16b) is derived similarly to
Prop. 1. The inner bound in (16a) is obtained by considering
the transmission scheme in which the channel input is the
sum of a uniformly distributed M-PAM signal plus a dither.
For the model in which the channel output undergoes infinite,
uniform quantization, the dither has the effect of making the
quantization noise independent of the channel input and of
the additive Gaussian noise. By accounting for the rate loss
incurred with finite, uniform quantization of the channel output
under the conditions P > log(Nsq) and h2iP > 1, we obtain
the achievable rate in (16a).

Next, we consider the SIMO channel with architecture (d).

Proposition 4. The capacity of the SIMO channel with linear
combining and multilevel quantization is upper–bounded as

CSIMO,d ≤
1

2
log
(
min

{
1 + |h|22P, (Nsq + 1)2

)
, (17)

and the capacity is to within 1 bpcu from the upper bound in
(17).

Proof: With this architecture, the maximal ratio combin-
ing at the receiver results in the equivalent SISO channel with
channel gain ||h||2. The result in Prop. 1 can then be used to
obtain the approximate capacity.

The results in Prop. 2, Prop. 3 and Prop. 4 are related as
follows: all the architectures attain the same high SNR perfor-
mance, log(Nsq+1), as in the high SNR regime the number of
available quantizers determines the attainable rate, regardless
of the architecture. Receiver architecture (b) performs close
to architecture (c) when the number of receive antennas is
sufficiently small or the channel gains vary widely. As for
architectures (c) and (d): in architecture (d) the combining
of the channel information occurs before quantization while,
in architecture (c), the combining of the channel information
takes place after quantization. Let us refer to the former
scenario as analog combining and the latter scenario as digital
combining. From Prop. 3 we gather precise conditions on the
channel realizations under which digital combining performs
sufficiently close to analog combining. The result in Prop. 3
can be further refined so that the performance gap from archi-
tecture (d) decreases with the number of available quantizers.

2) MIMO case: We begin by deriving an approximate
characterization of capacity for architecture (b).

Proposition 5. The capacity of the MIMO channel with
single antenna selection and multilevel quantization is upper–
bounded as

CMIMO,b ≤
1

2
log
(
min

{
1 + |hTmax|22P, (Nsq + 1)2

})
, (18)

where hTmax is the row of H with the largest norm and the
upper bound in (18) can be attained to within 2 bpcu.

For architecture (c), we are currently unable to provide
matching inner and outer bounds. For architecture (d), the
approximate capacity can be obtained as a variation of the
classic water-filling solution. Through the classic singular
value decomposition, the MIMO channel can be transformed
in K = min{Nt, Nr} parallel sub-channel with independent
additive noise and gains λ(H). By assigning power Pi and
NSQ,i sign quantizers to the ith sub-channel and coding as in
Prop. 1, we attain the rate

K∑
i=1

1

2
log
(
min

{
1 + λ2iPi, (NSQ,i + 1)2

})
−K, (19)

where (19) can be maximized over Pi ∈ R+,
∑
i Pi = P ,

NSQ,i ∈ N,
∑
iNSQ,i = Nsq. By relaxing the integer

constraint on NSQ,i, standard convex optimization techniques
yield the achievable region

C ≤ R?(λ, P,Nsq) =
∑K

i=1
1
2
log(1 + λiPi)−K

if
∑K

i=1

(√
1 + λiPi − 1

)
≤ Nsq

K log
(

Nsq

K
+ 1
)
−K

otherwise,

(20)

where Pi are chosen as Pi = (µ− λ−2i )+ and µ ∈ R+ is the
smallest value for which

∑
i Pi = P .

The achievable rate in (20) can be interpreted as follows.
The optimal solution for the (relaxed) maximization in (19)
has two regimes: either the rate is limited by the power
constraint or by the quantization constraint. When the rate
is limited by the power constraint, then classic water–filling
solution determines the power allocation on each sub-channel
while sign quantizers are allocated as in (14). When the rate
is limited by the quantization constraint, then the optimal
solution is the equal SNR and equal sign quantizer allocation
in each sub-channel.

The approximate capacity for architecture (d) is obtained by
deriving an outer bound matching the achievable rate in (20).

Proposition 6. The capacity of a MIMO channel with linear
combining and multilevel quantization is upper–bounded as

CMIMO,d ≤ R?(λ, P,Nsq) + 2K, (21)

and capacity is to within a gap of 3K bpcu from the upper
bound in (21) for R?(λ, P,Nsq) and K in (20).

The converse proof Prof. 6, as for the converse of Prop. 1, is
obtained as the intersection of the capacity of the channel with-
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Fig. 2: Average performance comparison.

out quantization constraint and the channel without additive
noise. For the channel with additive noise, the combinatorial
geometric approach in [5] is extended to architecture (d): each
sign quantizer partitions the signal space along an hyperplane.
Capacity is then obtained as the largest number of partitions
of the received channel space that can be obtained with the
available number of hyperplanes. Note that Prop. 6 does not
provide a tight characterization of capacity as the gap grows
with the rank of the channel matrix.

V. NUMERICAL EVALUATIONS

In this section, we evaluate the results in Sec. IV by
considering the expected value of capacity C(F) in (4) when
the channel gains Hij are drawn from a Gaussian distribution
with zero mean and unit variance. We begin by numerically
evaluating the performance for the SIMO channel with single
antenna and multilevel quantization selection in Prop. 2 and
with linear combining in Prop. 4. Fig. 2a shows the upper
bound expressions in (15) and (17) as a function of the number
of receive antennas Nr and for a fixed transmit power P and
number of sign quantizers Nsq. For Nr = 1, the performance
of the two architectures is the same as the SISO channel in
Prop. 1 while, when Nr increases, the performance approaches
log(Nsq+1), albeit at a slower rate than for the single antenna
selection case.

The performance of multiple antenna selection for the SIMO
case is shown in Fig. 2b: in this figure, we plot the upper
bound in Prop. 2 and the lower bounds in Prop. 3 and Prop. 4.
From Fig. 2b we observe how increasing the number of
antennas that are selected impacts the achievable rate, reducing
the gap from the performance of the architecture with linear
combining and multilevel quantization.

Upper bounds on the performance for the MIMO case are
presented in Fig. 2c. Single antenna selection with multilevel
quantization in Prop. 5 performs well when the number of
receive antennas is small but its performance is surpassed by
multi-antenna selection and sign quantization in Lem. III.3

as the number of receive antennas grows. This follows from
the fact that the attainable rate with single antenna selection
converges to log(Nsq+1) as Nr grows while sign quantization
converges to Nsq.

VI. CONCLUSION

A general approach to model MIMO channels with low–
resolution output quantization is proposed. In this problem
formulation, the antenna outputs undergo analog processing
before being quantized using a fixed number of sign quan-
tizers. Analog processing is embedded in the channel model
description so that the transmission rate is maximized over
the set of feasible analog processing operations. Through this
formulation, it is then possible to optimize the transmission
rate over the set of feasible analog processing operations while
keeping the number of sign quantizers fixed.
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[2] J. A. Nossek and M. T. Ivrlač, “Capacity and coding for quantized MIMO
systems,” in Proceedings of the 2006 international conference on Wireless
communications and mobile computing. ACM, 2006, pp. 1387–1392.

[3] J. Singh, O. Dabeer, and U. Madhow, “On the limits of communication
with low-precision analog-to-digital conversion at the receiver,” IEEE
Trans. Commun., vol. 57, no. 12, pp. 3629–3639, 2009.

[4] A. Mezghani and J. A. Nossek, “Capacity lower bound of MIMO channels
with output quantization and correlated noise,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), 2012.

[5] J. Mo and R. W. Heath, “Capacity analysis of one-bit quantized MIMO
systems with transmitter channel state information,” IEEE Transactions
on Signal Processing, vol. 63, no. 20, pp. 5498–5512, 2015.

[6] S. Rini, L. Barletta, Y. C. Eldar, and E. Erkip, “A general frame-
work for low-resolution receivers for MIMO channels,” arXiv preprint
arXiv:1702.08133, 2017.

[7] L. H. Ozarow and A. D. Wyner, “On the capacity of the Gaussian channel
with a finite number of input levels,” IEEE transactions on information
theory, vol. 36, no. 6, pp. 1426–1428, 1990.

5


