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The positronium atom (Ps) is widely used as a probe to characterize nanoporous and mesoporous materials.
Existing theoretical models for describing Ps annihilation rates by pick-off processes generally treat Ps as a point
particle confined in a potential well. Hence these models do not justify any change in the internal structure of
Ps, which is experimentally accessible by means of the contact density parameter. Recently we formulated a two-
particle model in which only the electron is confined in the cavity, while the positron is moving freely and feels
the medium via a positive work function. We present here a numerical treatment of the problem of calculating
contact densities and pick-off annihilation rates, by using a variational method. Results are in agreement with
experimental data for a large class of materials, and suggest a way to connect these data with pore sizes and

positron work functions.
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1. Introduction

Positronium (Ps), the hydrogen-like bound state of an
electron and a positron, has a widespread use as a probe
for studying nanoscale structures in condensed matter,
thanks to its annihilation properties. As a matter of
fact, after formation (by implanting positrons) Ps can be
found into nanometric cavities where the lifetime of the
long-living component 0-Ps (142 ns) is strongly reduced
(until a few ns) by pick-off annihilation of the positron
with an electron of the surrounding cavity walls [1].
While in vacuum the annihilation rate depends on the
electron density at the positron position (the contact den-
sity [2]), pick-off processes, which dominates the annihi-
lation in small cavities, depend on the electron density in
the bulk around the cavity. Experimental data obtained
with positron annihilation lifetime spectroscopy (PALS)
concern pick-off annihilation lifetimes and contact densi-
ties [3]. By connecting these data with suitable models
of the properties of Ps in small cavities, it would be pos-
sible to obtain information on pore dimensions and other
material characteristics, like the work functions.

To describe Ps inside small cavities the most used mod-
els are based on the Tao—Eldrup approach [4], which re-
lates pick-off annihilation rates A.xors to pore sizes by
considering Ps as a single quantum particle inside an
potential well. However, by definition, this assumption
gives no information about contact densities. Another
family of models consider both Ps constituent particles
as independent but confined into the cavity [5, 6], or
interacting with the material through effective poten-
tials [7], or finally forming a bubble-like state in a dielec-
tric medium with special assumption about work func-
tions [8]. Only the last model can describe the well-
known observation that the contact density is usually
found to be well below the vacuum value, while all other

models predict an increase. Therefore these models are
not fully satisfactory. The reason for this may be rec-
ognized in the observation that the confining potential
acting on Ps is a net result of two independent and dif-
ferent contributions, acting on the electron and on the
positron separately. In particular, a positive value for the
positron work function, as derived by theoretical mod-
els [9] and found, for example, in silica [10], suggests that
the positron is attracted toward the medium and then is
not confined a priori. On the other hand, the strong re-
pulsive Pauli exchange forces with bulk electrons are ex-
pected to exert a confinement effect on the electron [11].
Starting from these observations, we reconsidered the
problem of Ps in nanopores, and have proposed [12] a
two-particle model with appropriate potentials, different
for each constituent particle. By applying approximate
semi-analytical techniques, we were able to demonstrate
that our model correctly describe the lowering of the con-
tact density, obtaining also promising results in the com-
parison with experimental data on this quantity and on
the pick-off annihilation rate, connected with the pore
radius and the positron work function. Here we make
a step further by exploring the potentiality of our two-
particle model with a numerical approach for deriving
the relevant quantities.

2. Theory

Assuming for definiteness a spherical cavity of radius
R, centered on the axes origin we write the Hamiltonian
operator for a system of 2 particles with the same mass
m and opposite charges +e subjected to different poten-

tials

p% p% 62
= — _—— ‘/ ‘/ 1
2m 2m |q1 . q2| + conf(ql) + bulk(q2)7( )

where g; (g2) is the position of the confined electron
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(positron). Veons and Viuir describe the interaction with
the surrounding medium. The confining potential acts
only on the electron and can be taken as a well with in-
finite depth

|q1| < RC,

‘/conf(ql) = { |q1| > Rc- (2)

On the other hand, the bulk potential acts only on the
positron and in the first approximation can be taken as
equal to the opposite of the positron work function ¢,
deep inside the bulk, and zero in the electron-confining

cavity
0 if |QQ| < R.,
Viu = 3
butk (92) { —é. it |qs| > R.. (3)

This way we assume that the positron is attracted to the
bulk and perceives a free volume cavity as a potential
barrier. Since the bulk potential has to be considered
small (in fact of the order of a few €V at most [10]) the
system is dominated by the confining and the Coulombic
potentials. Bearing this in mind, it is convenient to per-
form a non-standard change of coordinates that is more
suitable for the present situation

r=q2—q Te =q1 (4)
P=Dp2 P=p +ps’

which satisfy the usual commutation relations. Here 7.
is again the confined electron position, while r repre-
sents the relative distance with the positron. With this
variables the Hamiltonian operator in Schrédinger repre-
sentation becomes (in atomic units)

0 if
oo if

1 1
H=—0V} = V4V V= — 4 Viou(re)

+‘/Lu1k(,r67 T) = HO + Vmix7 (5)
where we have defined the mixing potential
Viie = Vre Vi + Viune (Tev 7')~ (6)

It can be easily shown that the Hamiltonian Hy, which
contains both the V_,.. and the Coulombic potential, is
separable and has exact solutions. For the ground state,

one has Fy = 2’}; — % and
1 sin(wre/Re) T
Uy(re,T) = Nri/ eXP(—i)- (7)

Given the spherical symmetry, the problem is symmet-
ric both with respect to rotation around the direction of
7. and with respect to a rigid rotation of both the par-
ticles around the center of the cavity. In particular it
is invariant under the inversion operator I : (r,r.) —
(—=r, —7r.) which preserves the angle « between the two
vectors 7, and r. From these considerations, it seems
natural to search for a ground state wave function which
depends only on the absolute values r, r. € [0; R.] and
on the angle a(r,r.) € [0;7] between them. By using
these variables, the new Hamiltonian of the system as-
sumes the form

-1
H=—3|V:, +2Vi+

2r2 + 12 4 2rr, cos an
r2r2 *
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Te T

r2r,2 sin o
1
_; + chnf(Te) + Vbulk(ry Te, a) = H_..e + Vour, (8)

where H.,.; include both the confining and Coulombic
potential.

Calculation of the relative contact density requires the
knowledge of the two-particle ground state wave function
Uas(re,r,a) in r = 0, integrated over the electron posi-
tion in the cavity [12]:

R,
k, :4/ | Was(re,0,0)*r2dr,. (9)
0

To numerically solve the full Schrédinger equation of the
system we used the Ritz variational method to find an
approximated ground state wave function. The method
consists of choosing a basis set of parameter-dependent
trial wave functions ¥,[e], and finding the linear combi-
nation ¥ = 3" C,, ¥, ] for which the expectation value
of the energy (¥| H |¥) is the lowest possible.

Following Fiilép et al. [11] and inspired by the form of
the wave functions of Hy (see Eq. (7)) we introduce the
following ansatz for the basis set:

Viilel(re,r @) = 00 (re) - 07 () -4 (a). (10)
The three components are given by

W (re) = (R2=r2), i = (1, ),
w;z)(r) =ri7temr/e j=(1,--,Nao),
,(63)(04) =cos" ta, k<, (11)

where N7 and N5 determine the size of the basis expan-
sion while the condition k£ < j must be present in order to
make the wave function single-valued everywhere. Here
€ is an additional adjustable parameter, representing the
possibility of a homogeneous swelling of the Bohr Ps ra-
dius (for free Ps, ¢ = 2ap), and with respect to which
the energy is also minimized. Also note that the correct
boundary conditions for the electron wave functions are

satisfied: wgl)(Rc) = 0 and d;ﬁa(l) (0) = 0. These func-
tions are neither normalized nor orthogonal. However,
the variational method with minor theoretical modifica-
tions can be applied also with a non orthogonal basis
set.

Our total trial wave function can be expanded on this

basis set
N1 N2

@ == Zzzcijk Wijk[e]. (12)

it J k<

The energy minimization requires the calculation of
the Hamiltonian matrix HY,,, (k| H | Wi i) as well as
the overlap matrix S, = (¥;jx) Wi ji for every value
of the parameter e. Due to the simple form of the basis
functions, (H.e.)S,,, matrix elements can be calculated
analytically, however (Vi )nm must be calculated nu-

merically.



Numerical Solution of a Two-Particle Model. . .

We performed the analytical calculation with Mathe-
matica 10 and we subsequently evaluated the numerical
solution of the eigenproblem with a C++ code. For ev-
ery set of (R., ¢4 ), the lowest eigenvalue was minimized
as a function of € to obtain the ground-state energy Egs,
and the eigenvector ¥ corresponding to this eigenvalue
was determined to be the approximate ground-state wave
function.

Finally, the relative contact density and the pickoff life-
time was calculated from ¥.
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Fig. 1. Ground state energy as a function of the cav-

ity radius R., for different values of the positron work
function ¢4. The straight dotted line represents the en-
ergy of free Ps in vacuum (—6.8 e¢V) while the dashed
line represents the exact ground state energy of Hy. In
the limit R. — oo the energy of free Ps is recovered.

3. Results

Here we discuss the obtained results with reference to
selected suitable values for the work function and cav-
ity radius. Generally speaking, for the calculation of the
energy, a base functions set of N; = 3, Ny = 3 was suffi-
cient, while the contact density and the pickoff annihila-
tion rate calculations required more care. For relatively
low values of ¢, (below 5.9 €V) a base functions set of
N1 = 5, Ny = 5 already gives good results, in the sense
that any further increase of this number has a negligible
influence on the calculated values of Egs,kr, Ackott- It
turns out that in order to fit almost all available exper-
imental data, this range of values for the positron work
function is sufficient. On the other side, for greater val-
ues of ¢, the behavior of the wave function started to
change drastically and the number of basis set needed to
reach the same accuracy increase exponentially, making
it manifest the need of a modified basis set. Anyway,
during our calculations we decide to use a basis set with
N; = 6, Ny = 6. The resulting ground state energy en-
ergy Ej is plotted in Fig. 1 as a function of the confining
radius R.. For large radii, free Ps energy of —6.8 eV is
recovered. The confinement tends to increase the energy
with respect to free Ps, while the bulk potential has a
lesser effect.

The mixing term V,,;, in (6) leads to a distortion of the
relative wave function of the positron around the electron
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position. As plotted in Fig. 2, the positron is strongly
polarized toward the inner of the cavity via V,, - V,,
while its attraction toward the outer bulk due to V.

N (a) ¢+ =0eV \ (b) ¢4 =6eV

Fig. 2. Polarization of the relative wave function of the
positron around the electron, for a cavity R. = 5 a.u.
The electron position is fixed at the wall of the cavity,
which is located on the left side of both figures.
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Fig. 3. Relative contact density k., as a function of the

confining radius R., for some values of the positron work
function ¢. Full lines are calculated with the basis set
N1 = 6, N2 = 6, while the dashed lines are calculated
with the basis N1 = 5, N2 = 5. The distance between
those lines can be considered as a raw error estimation.
The resulting relative contact density k, is plotted in
Fig. 3 as a function of the confining radius R, and for
some values of the positron work function ¢4. The ef-
fect of lowering of the contact density, with respect to
its vacuum value, shows up when ¢4 > 3 eV. This value
is slightly larger than the results found in our previous
work [12], but the qualitative trend is recovered. In the
point cavity limit R, — 0 the electron is stuck at the ori-
gin and the Schrédinger equation of the hydrogen atom
is recovered, where k. — 8. On the other hand, when
R, — oo free Ps solution is recovered, with &k, — 1.
Experimental data for Ps in small cavities usually di-
rectly concern the o-Ps lifetime 7 = Acioﬁ. By using the
Tao—Eldrup approximation [1, 4]:

Ackoff = 2Pout [ns]—l’ (13)
where Accor is the pickoff annihilation rate which domi-
nates the annihilation process in small cavities and which
is proportional to the probability of finding the positron
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outside the cavity
Pout = / | & (re, 7, @)|?r2r? sin adr drdo. (14)
|re+r|>R.

In Fig. 4 we plot some curves joining points correspond-
ing to calculated values of k, and 7 for a fixed ¢, and
different R.. Known experimental data for some mate-
rials are normalized following the discussion in [12] and
are indicated by markers.
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Fig. 4. Relative contact density k, of Ps as a function
of its lifetime 7, for different values of the positron work
function ¢4 (in eV). Selected lines are calculated with
the basis set N1 = 6, N2 = 6.

It must be noted that this kind of representation is
the better choice to compare theoretical and experimen-
tal data, because it is very difficult to gain independent
information on the positron work function and on the
pore sizes for most materials. The general trend shows
a lowering of the contact density and of the o-Ps life-
time for smaller cavities, as expected. There is a good
agreement between our theory and experimental data for
a large group of hydrocarbon molecular solids. On the
other hand, some compounds stand below the line ¢ ~
6 eV, probably because their effective electron density is
lower than our estimation, so that their position in the
picture should be shifted to the left.
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4. Conclusion

Our two-particle theoretical model describes the inter-
nal properties of Ps confined in nanosized cavities. Due
to the presence of different boundary conditions and po-
tentials for the two particles (only the electron is strictly
confined) a numerical solution is needed. We showed that
for a simple geometry a variational approach succeeds in
justifying the well known fact of the lowering of the con-
tact density. Measurements of Ps lifetime in solids have
a long story as a probe for guessing the size of internal
cavities. We showed here how information on this quan-
tity and on the positron work function can be inferred
from independent measurements on Ps pick-off annihila-
tion and contact density.
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