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Abstract 

The paper investigates the use of surrogate models for 

probabilistic building performance simulation that can be 

used for multiple applications across life cycle phases. 

The workflow presented aims to highlight a possible 

continuity among design and operation phase practices, in 

order to contribute to the reduction of the gap between 

simulated and measured performance, considering in 

particular the uncertainties caused by users’ behaviour. 

Design phase simulation work is generally affected by 

relevant temporal and economic constraints and, 

consequently, a successful approach should enhance 

current design practices and implement new features 

which have to be automated, to decrease additional 

modelling effort. The parametric data obtained in the 

initial design phase by means of a detailed model are used 

to train an Artificial Neural Network model. The results 

obtained by this model are the compared with the ones 

obtained with a Resistance-Capacitance model. The 

approach is automated and tested for robustness using 

Monte Carlo simulation technique. This technique is used 

to identify, already in the design phase, probabilistic 

performance boundaries. The case study chosen is the 

eLUX Lab building at the Smart Campus of University of 

Brescia, in which highly variable occupancy patterns are 

present. 

 

Introduction 

The European Commission established a long-term 

objective of decreasing the CO2-emission levels for the 

building sector by 88-91% in 2050, compared to 1990 

levels (COM, 2011). This target represents also a 

prerequisite for meeting other EU economic and climate 

goals and energy performance in the whole life cycle of 

buildings becomes a relevant matter in terms of 

sustainability and resource efficiency at the EU level. 

Actual energy performance often differs from predicted 

one due to simplifications and approximations normally 

associated with modelling approaches (De Angelis et al., 

2015) and uncertainty in modeling assumptions. The 

impact of end-users’ behaviour is surely among the most 

important factors to be considered (Menezes et al., 

2012;Tagliabue et al., 2016). Further, the deployment of 

new economic (i.e. circular economy) and technological 

(i.e. Internet of Things) paradigms is routed on the 

digitization of equipment and assets, including buildings. 

The role of people is crucial also in the sense and 

determines the necessity to address appropriately the 

incidence of people behavior on energy performance. For 

this reason it is necessary to identify a reasonable 

compromise between time and computational effort in 

modelling and simulation of performance variability 

determined by people behavior, and to create a 

“continuity” in the use of models for multiple applications 

across life cycle phases (i.e. from design to operation). 

 

Methodology 

The increased awareness on sustainability matters is 

contributing to the evolution of energy and environmental 

policies for the building sector at the EU level, oriented 

toward resource efficiency. This evolution is challenging 

as it claims for an overall coherent, reliable, robust and 

interoperable model-based approach for performance 

optimization across building life cycle phases. In fact, 

while there exist today several possible strategies to 

model building performance from the energy and 

environmental standpoint, the relevant gap usually 

encountered between simulated and measured 

performance is clearly connected to biased assumptions in 

modeling, especially in the design phase, and to lack of 

performance monitoring, in the operation phase. The state 

of the art of building energy modelling is exhaustively 

discussed in literature (Zhao and Magoules, 2012; Harish 

and Kumar, 2016; Fumo, 2014; Foucquier et al., 2014; 

Coakley et al., 2014; Henze, 2013; Shaikh et al., 2014; Yu 

et al., 2015). Models used to simulate building energy 

performance should be aimed at maximizing the value of 

information, unveiling synergies across multiple 

processes and scales of analysis. There exists multiple 

potential feedbacks that can be exploited to improve 

performance (Fabrizio and Monetti, 2015; Evins, 2013; 

Nguyen et al., 2014). The first relevant distinction that can 

be made is among top-down (econometric, technological) 

and bottom-up (engineering) models (EN 16212, 2012). 

After that, an important subdivision is related to the 

different modelling strategies that can be applied in 

buildings: white-box, grey-box and black-box (Manfren 

et al., 2013). White-box models are detailed physics-

based models, grey-box models are simplified physics-

based models and black-box are data driven models based 

on little or no physical knowledge of the system. The 
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choice of the modelling approach is determined by the 

specific objectives and by the required level of detail, 

accuracy, precision and computational effort. In this 

research we start from a white-box model and we develop 

two surrogate models, a grey-box and a black-box one for 

performance modeling and energy management. The two 

surrogate modelling approaches selected are respectively 

a Resistance-Capacitance (RC) model and Artificial 

Neural Network (ANN), trained on parametric simulation 

data (Tagliabue et al., 2015). The objective of the research 

work is assessing the feasibility, reliability and robustness 

of these two types of surrogate models to compute the 

energy performance of a case study building in which 

highly variable occupancy patterns are present, ensuring 

a more efficient use of the simulation data generated in 

the design phase. The probabilistic simulation of energy 

demand is performed by means of Monte Carlo (MC) 

technique, as indicated in Figure 1. 

 

 

Figure 1: Graphical scheme of research  

 

The overall methodology presented aims at enhancing 

current practices in performance simulation, highlighting 

the possibility of using semi-automated/automated 

approaches to analyze design-phase data, therefore 

establishing a continuity among design phase tasks (such 

as design optimization) and operation phase tasks (such 

as performance monitoring and energy management). The 

methodology presented is general and an overview of the 

potential applications using surrogate models in buildings 

is described in the following section. 

 

Applications of surrogate models in 

buildings 

The models generally used to simulate building energy 

behaviour (white-box, physics-based models) present 

several limitations with respect to automated applications 

(Hazyuk et al., 2012; Oldewurtel et al., 2012; Prívara et 

el., 2013; Afram and Janabi-Sharifi, 2015). The basic 

conditions that a model for automated applications should 

satisfy are reasonable simplicity, enough accuracy in the 

estimation of system dynamics, usability for prediction in 

real time operation (Maasoumy and Sangiovanni-

Vincentelli, 2012; Hazyuk et al., 2012). 

On the one hand, white-box models generally need 

detailed information and are non-linear problem while 

linearity (more in general convexity) is an important 

feature to obtain easily solvable optimization problems 

(Oldewurtel et al., 2012; Morari and Lee, 1999; Široký et 

al., 2011). On the other hand, black-box models, have 

been widely used in optimal control applications because 

they can deal efficiently with non-linear problems (Wang 

S, Jin, 2000). However, they are obtained by means of 

statistical/machine learning algorithms and, 

consequently, the identified parameters don’t have a 

physical interpretation, losing a substantial part of the 

useful information that can be extracted by measured data 

(Oldewurtel et al., 2012; Afram et al., 2015; Zavala et al., 

2011; Zacekova and Privara, 2012; Ferkl and Privara, 

2010). In order to overcome these issues, grey-box 

models, mixing knowledge-based (physics-based) and 

statistical techniques are used in several applications 

(Afram and Janabi-Sharifi, 2015; Zacekova and Privara, 

2012; Mahdavi, 2001; Jiménez and Madsen, 2008; Bacher 

and Madsen, 2011). In grey-box modeling the size of the 

problem is reduced using lumped parameters (Hazyuk et 

al., 2012; Foucquier et al., 2013; Kramer et al., 2013). The 

structure of the model (i.e. the reduction strategy) is found 

by applying basic physical principles (e.g. energy and 

mass balance) and the parameters can then be estimated 

both a priori or calibrated on measured data by using 

identification techniques (Hazyuk et al., 2012; Afram and 

Janabi-Sharifi, 2015; Hazyuk et al., 2012; European 

Commission, 2007; Froisy, 2006). The feasibility of 

integrated and automated performance modeling 

approaches is confirmed by different international studies 

on model predictive control (Gwerder et al., 2013) and on 

building performance characterization based on full-scale 

dynamic measurement (IEA-EBC). Considering these 

elements, it is possible to envision a path for the creation 

of synergies in research field such as design optimization, 

energy management, diagnostics, and automatic control. 

 

Case study: the eLUX Lab of Brescia 

University 

The case study presented is the eLUX Lab of the 

University of Brescia in Italy. The University Campus 

hosts a multi-disciplinary research initiative focused on 

Smart technologies (Unibs, 2014; Unibs, 2016). The 

research, involves multiple topics ranging from BIM 

(Building Information Modelling) to BEM (Building 

Energy Modelling), performance optimization, 

performance monitoring, energy management, user 

behavioral modeling. In particular, the research on 

behavioral modeling aims to improve the knowledge of 

user behavior from a cognitive stand-point, using multiple 

information sources. In the starting phase of the research 

activity, prior to refurbishment, a building survey and an 

energy audit have been conducted. The building has three 

floors, underground, ground and first floor, with lecture 

halls and computer labs, and a glazed atrium in which the 

students can conduct their individual studies, as shown in 

Figure 2. 

PROBABILISTIC	
ENERGY	DEMAND

DETERMINISTIC	
ENERGY	DEMAND

ACTUAL	ENERGY	
DEMAND

PROBABILISTIC	
ENERGY	DEMAND

ENERGY	
PLUS

ANNRC	MODEL

MCMC



Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

2036

 

Figure 2: External and internal views of the case study 

building. 

The building zones considered for modeling and their net 

floor surfaces, together with the maximum allowable 

number of people, are reported respectively in Table 1 and 

Table 2. The operating schedules of the building are 

highly variable, due to the different uses of internal 

spaces. 

Table 1: Use of the internal spaces. 

Floor Name Type of use Zone 

Underground MLAB1 Computer lab 1 

MLAB2 Computer lab 

Ground MTA Classroom 2 

MTB Classroom 

Atrium Common area 3 

First M1 Aula magna 4 

 

Table 2: Size and maximum number of people of the 

internal spaces. 

Floor Name Surface  People 

no,max 

  m2 - 

Underground MLAB1 151.8 56 

MLAB2 207.9 82 

Ground MTA 178.3 168 

MTB 177.5 168 

Atrium 180.8 56 

First M1 337.5 262 

 

Detailed building energy model 

A detailed (white-box) building energy model has been 

created in EnergyPlus, starting from building survey and 

energy audit data. The model has been used initially for 

the generation of probabilistic energy demand scenarios, 

considering the use of a Demand Controlled Ventilation 

(DCV) system, using CO2 concentration data to control 

the outdoor fresh airflow rate. In order to generate 

coherent scenarios, operating schedules and simulations 

settings have been defined according to the scheme 

reported in Figure 3 and described in detail in previous 

research work (Tagliabue et al., 2015). Parametric 

simulation data obtained from this model have been used 

to train the ANN model, as explained before. 

 

 
 

Figure 3: Scheme of the correlation among occupancy 

schedules and relevant factors affecting thermal 

balance. 

A south-west facing external view of the detailed building 

energy model is reported in Figure 4. 

 

 

Figure 4: Building energy model in EnergyPlus. 

Resistance-Capacitance (RC) building energy model  

The simplified (grey-box) model is based on Resistance-

Capacitance approach (RC), exploiting the electrical 

analogy for thermal modeling. Therefore, the model is a 

lumped parameters model for dynamic hourly simulation 

and optimization. 

The building energy model is formulated following the 

indication given in international standards (UNI EN ISO 

13790; UNI EN ISO 13791; UNI EN ISO13792; UNI EN 

15255; 24 ISO 52000). The essential elements of the 

model are nodes (i.e. temperatures), resistors (i.e. thermal 

resistances) and capacitors (i.e. thermal capacities). The 

resistors are necessary to account for heat transfer through 

construction components and for ventilation. The 

capacitors are necessary to account for the inertia of 

construction components. A graphical representation of 

the model is reported in Figure 5. 

 

Figure 5: Graphical representation of RC model. 
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In the graphical representation: 

 nodes are: 

 the external air temperature θe; 

 the internal air temperature θi; 

 the surface temperature θs; 

 the mass temperature θm. 

 

 resistances are: 

 the mechanical ventilation Rve,mech; 

 the natural ventilation and infiltration Rve,nat; 

 the transmission due to no inertia elements Rtr,es; 

 the transmission due to massive elements Rtr,em and 

Rtr,ms; 

 the transmission due to heat exchange between 

internal air and the internal surface Rtr,is. 

 

 capacity is: 

 the global thermal capacity Cm 

 

 heat fluxes are: 

 the solar and internal gains fraction on the internal 

air node Фi 

 the solar and internal gains fraction on the surface 

node Фs 

 the solar and internal gains fraction on the mass node 

Фm 

 the heat flow fraction due to heating/cooling system 

on the internal air node FiФHC,nd 

 the heat flow fraction due to heating/cooling system 

on the surface node FsФHC,nd 

 the heat flow fraction due to heating/cooling system 

on the mass node FmФHC,nd 

 

Generally windows elements are considered to have 

negligible inertia and the related heat transfer coefficient 

Htr,es connects directly the external node θe to the surface 

node θs. The heat transmission through the massive 

elements is divided into three parts, respectively Htr,em, 

Htr,ms and Htr,is:  

 from the external node θe to the mass node θm;  

 from the mass node θm to the surface node θs;  

 from the surface node θs to the internal air node θi.  

 

The main capacitor of the network represents the lumped 

global thermal capacity, indicated with Cm. The total 

solar Φsol and internal gains Φint are distributed on the 

internal air node θi, surfaces node θs and mass node θm 

using coefficients to account for conductive and radiative 

heat transfer components; the conductive part is assigned 

to the internal air node θi while the radiative one to the 

surface θs and to the mass θm nodes. Similarly, the heat 

flow due to heating and cooling plant ΦHC,nd is split into a 

conductive component, applied to the internal air node θi, 

and a radiative component, distributed to the surface θs 

and mass nodes θm according to other factors that are 

respectively called Fi, Fs and Fm as suggested by the 

standards (UNI EN ISO 13792; UNI EN 15255). 

However, these coefficients can be considered as tunable 

parameter, within certain limits, for example in a model 

calibration process. The simulation with the RC model 

requires the construction of coherent operating schedules 

and settings, similarly to the detailed model and  

differently from the ANN model, which directly learns 

from data generated by simulation. 

Artificial Neural Network (ANN) model 

ANN models for dynamic building performance 

prediction have already been successfully used in several 

studies (Paudel et al., 2014; Khayatian et al., 2016). The 

ANN model used is in this case is a three-layer (input 

layer-hidden layer-output layer) supervised feedforward 

network with 59 sigmoid hidden neurons and linear 

output neurons. The best performing layout has been 

selected based on the lowest Mean Square Error (MSE) in 

an automated way. The network used to predict heating 

demand has a 6 input hourly dataset and 1 output hourly 

dataset: 

 Input 1: outdoor air temperature; 

 Input 2: global horizontal solar radiation; 

 Input 3-6: occupancy data (i.e. number of users) 

of the four thermal zones; 

 Output 1: thermal energy demand. 

 

The ANN was trained using the Bayesian regularization 

method and the split of the dataset between training and 

testing was respectively 75% and 25%. The determination 

coefficient R2 obtained by ANN is 0.819 for the training 

set, 0.812 for the test set, 0.818 for the whole dataset, as 

reported in Figure 6. R2 coefficient represents the 

goodness of fit of the model (maximum value is 1). These 

values are in line with the ones found in other research 

studies on dynamic neural network used for heating 

prediction (Khayatian et al., 2016), which however use 

additional pseudo dynamic parameter inputs (to improve 

computing performance and reduce network dimension) 

that require a priori knowledge of occupancy patterns, 

while in this case we consider a training process directly 

on simulation data. 

 

Figure 6: Training and testing of ANN for heating 

demand prediction 
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Monte Carlo simulation of RC and ANN models 

Monte Carlo (MC) simulation is one of the most powerful 

techniques in modern probabilistic analysis. MC methods 

rely on repeated random sampling to obtain numerical 

results. By means of MC simulations it is possible to: 

1. define a domain of possible model inputs;  

2. generate inputs randomly from a probability 

distribution over the domain;  

3. perform a deterministic computation of model 

outputs;  

4. aggregate results and analyze their statistical 

distribution.  

In this research MC simulations have been used to 

measure how the uncertainty in users’ behavior 

(occupancy patterns) affects heating energy demands 

calculate by means of RC model and ANN. 

Following case studies in literature and previous research 

work (Tagliabue et al., 2015) we decided to use triangular 

probability density functions for occupancy. However, 

differently from to the original simulation work, aimed at 

exploring highly variable occupancy scenarios, the 

schedules have been constructed by differentiating the 

value of the triangular probability distributions in three 

time intervals, from 9am to 10am, from 11am to 4pm and 

from 5pm to 7pm. The values assumed in this work are 

based on the following assumptions: 

1. from 9am to 10am: 

a. minimum value, the corresponding minimum 

deterministic occupancy pattern; 

b. mode, the corresponding 1st quartile of 

deterministic occupancy pattern; 

c. maximum value, the corresponding maximum 

deterministic occupancy pattern; 

2. from 11am to 4pm: 

a. minimum value, the corresponding minimum 

deterministic occupancy pattern; 

b. mode, the corresponding maximum deterministic 

occupancy pattern; 

c. maximum value, the corresponding maximum 

deterministic occupancy pattern; 

3. from 5pm to 7pm: 

a. minimum value, the corresponding minimum 

deterministic occupancy pattern; 

b. mode, the corresponding 3rd quartile of 

deterministic occupancy pattern; 

c. maximum value, the corresponding maximum 

deterministic occupancy pattern. 

 

The results obtained by using MC technique with RC and 

ANN models are described in the following section. 

 

Results and discussion 

MC simulations have been used to compute a 

probabilistic distribution of energy demand, using both 

RC and ANN models, as a function of uncertainty in 

occupancy patterns, The relation among occupancy 

patterns and energy balance is described in Figure 3. Both 

models proved to be suitable in MC simulation because 

they are much less computational time than detailed 

energy simulations and provide reliable results if 

compared to the ones given by Energy Plus. 

Main results are shown in Figure 7 (RC as surrogate 

model) and in Figure 8 (ANN as surrogate model) where 

the Cumulative Distribution Function (CDF) of heating 

demand computed with MC simulations is depicted and 

compared with a Gaussian distribution having the same 

mean and standard deviation of MC results.  

 

 
Figure 7: Cumulative Distribution Function of heating 

demand computed with MC simulation using the RC 

model compared to a Gaussian with the same mean and 

standard deviation (blue line). 

 

The small difference in the mean value between the two 

MC simulations is due to the overestimation of heating 

energy demand when the demand is small (at the very 

beginning or at the end of the heating period) made by the 

ANN. A better tuning of the RC model parameters may 

also reduce the difference between the two means. 

 

 
Figure 8: Cumulative Distribution Function of heating 

demand computed with MC simulation using the ANN 

compared to a Gaussian with the same mean and 

standard deviation (blue line). 

 

The quantiles of the results of MC simulation are reported 

in Table 3 and compared in Figure 9. This figure 

highlights the fact that while ANN can be used effectively 

to reproduce the results of a detailed dynamic model 

(EnergyPlus) and RC can be used to calculated dynamic 



Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

2039

performance producing a similar interval of results, the 

assumptions on model parameters can produce a 

misalignments in the data. It is therefore necessary to 

define strategies to improve the alignment of results 

computed by the different models, using appropriate data 

parametrization and metrics (Yang and Becerik-Gerber, 

2015). 

Table 3: Heating Demand Quantile computed using ANN 

and RC model 

 RC ANN  RC ANN 

 kWh kWh  kWh kWh 

5% 37,156 39,221 55% 39,863 38,166 

15% 37,513 39,435 65% 39,954 38,315 

25% 37,745 39,568 75% 40,067 38,485 

35% 37,892 39,673 85% 40,195 38,713 

45% 38,039 39,766 95% 40,418 39,009 

50% 38,095 39,813   

 

 
Figure 9: Comparison between heating demand CDF 

computed with Monte Carlo simulation using RC model 

and ANN 

 

Conclusion 

The objective of the research work was assessing the 

feasibility, reliability and robustness of the use of 

surrogate models to compute energy performance in 

highly variable conditions. In the research presented, 

surrogate models have been used to compute efficiently 

the dynamic energy performance of buildings in presence 

of highly variable occupancy patterns. These techniques 

are therefore suitable for the analysis of the impact of end-

users’ behaviour already from the design phase, 

identifying probabilistic performance boundaries. The 

proposed approach aims to ensure a more efficient use of 

the parametric simulation data generated in the design 

phase by means of semi-automated/automated modeling 

tools. Despite the similar ranges of results obtained by the 

two models, RC and ANN, the research highlighted how 

further work should be oriented to the definition of 

appropriate strategies for the alignment of results 

computed by different models, potentially suitable for 

multiple applications across building life-cycle phases. 

These strategies could be based on the definition of 

macro-parameters and multi-level metrics, as shown in 

recent research work in the field of model calibration. 
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