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Abstract. The formulation is model-independent, in the sense that it does not require knowledge of the equa-
tions of motion of the periodic system being analyzed, and it is applicable to an arbitrary number of blades and
to any configuration of the machine. In addition, as wind turbulence can be viewed as a stochastic disturbance,
the method is also applicable to real wind turbines operating in the field.

The characteristics of the new method are verified first with a simplified analytical model and then using a
high-fidelity multi-body model of a multi-MW wind turbine. Results are compared with those obtained by the
well-known operational modal analysis approach.

1 Introduction

Stability analysis can help address very practical issues, such
as assessing the proximity of flutter boundaries, identify-
ing low-damped modes, understanding the vibratory content
of a machine, evaluating the effectiveness of control strate-
gies for enhancing modal damping, detecting incipient fail-
ures, and many others. For linear time-invariant (LTI) sys-
tems, the stability analysis is a well-understood problem,
and several methods are available (e.g. Hauer et al., 1990;
M. O. L. Hansen et al., 2006; Murtagh and Basu, 2007).
However, it is unfortunately not possible to ignore the peri-
odic nature of wind turbines (Eggleston and Stoddard, 1987;
Manwell et al., 2009). In fact, blades experience different
wind conditions in their travel around the rotor disk, for ex-
ample due to shears and wind misalignment, so that the aero-
dynamically induced damping and stiffness vary cyclically.
Furthermore, the blade structural stiffness also varies period-
ically under the effects of its own weight, while couplings
among tower and blades depend on the azimuthal position
of the rotor. Additionally, the use of individual pitch control
(IPC) may introduce yet a further source of periodicity in
the system dynamics. The design of future, very large wind
turbines, principally for the exploitation of off-shore wind
resources, will highlight even further the importance of a rig-

orous treatment of the periodic nature of the system when
studying its stability. In fact, the system dynamics will be
complicated by the hydro-elastic characteristics of the sub-
merged – possibly floating – structure, including the excita-
tion caused by periodic waves.

One popular approach to the stability analysis of rotors in
general and of wind turbines in particular (see Hansen, 2004;
Skjoldan and Hansen, 2011) is to use the multi-blade coordi-
nate (MBC) transformation of Coleman and Feingold (1958).
Given the dynamical system equations of motion, this peri-
odic transformation expresses the model rotating degrees of
freedom in a new set of coordinates, in this way achieving a
significant reduction, but in general not an exact cancellation,
of the periodic content of the state matrix. The remaining pe-
riodicity is typically removed by averaging, and the resulting
LTI model is finally analyzed using standard time-invariant
techniques.

In principle, there are at least three issues connected with
any Coleman-based stability analysis approach.

– First, the level of approximation implied by the aver-
aging of the remaining periodicity is difficult to assess
and quantify a priori. In fact, to the authors’ knowl-
edge, there is no theoretical proof yet that the period-
icity that remains after the application of the Coleman
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178 R. Riva et al.: Turbulent periodic stability analysis of wind turbines

transformation is small in general nor that this approach
amounts to some consistent and bounded approximation
of a rigorous Floquet analysis. Given the widespread use
of the Coleman transformation, and its generally excel-
lent behavior, such a proof remains a goal very much
worth pursuing but, to date, unattained.

– Second, the Coleman transformation unfortunately ex-
ists only for a number of blades greater than or equal to
three. Although this is the most common wind turbine
configuration nowadays, a revival of the two-bladed
concept is possible.

– Third, codes implementing the Coleman transformation
require access to the linearized equations of motion of
the system. As a consequence, any addition to a simula-
tion code has an impact on the associated stability anal-
ysis tool, resulting in extra software maintenance work.

Other possible approaches to the stability analysis of rotors
have been formulated in the frequency domain. For example,
the estimation of power spectra along with modal frequen-
cies and damping ratios of an operating wind turbine has
been addressed by Avendaño-Valencia and Fassois (2014).
That paper considered several parametric and non-parametric
methods and their application to experimental data, including
the periodic autoregressive (PAR) model. In addition, peri-
odic autoregressive moving average (PARMA) models have
been considered by Avendaño-Valencia and Fassois (2013).
Two subspace algorithms for periodic systems have been pre-
sented by Skjoldan and Bauchau (2011) and Mevel et al.
(2014), one being used for numerically generated time series
and the other for experimentally measured ones.

The operational modal analysis (OMA) has been extended
to the periodic case (Allen et al., 2011b) by using the con-
cept of the harmonic transfer function (HTF). In Allen et
al. (2011b), the simple peak-picking method was used for
extracting relevant properties from the spectra, while more
specialized fitting algorithms were proposed by Allen et al.
(2011a). Subsequent applications and developments can be
found in Shifei and Allen (2014, 2012). Although the method
is general, the estimation of the quantities of interest for a sta-
bility analysis from noisy spectra remains a somewhat deli-
cate operation, as will be shown later on in the following
pages.

In the authors’ opinion, there are two desirable goals in
the stability analysis of wind turbines that still need further
investigation in order to be fully attained.

– First, one would like to account completely rigorously
for the periodicity of such systems, without introducing
approximations of unknown effects.

– Second, one would like to formulate the analysis so
that it is system-independent. System independence is
here intended to mean that a method can be applied to

wind turbine models of arbitrary complexity and topol-
ogy (e.g., any number of blades and horizontal or verti-
cal axis) and also to real wind turbines operating in the
field.

To answer these needs, Bottasso and Cacciola (2015) pro-
posed a periodic stability analysis formulated in terms of
input–output discrete-time responses. Such time histories
could come from “virtual” experiments performed on a given
model, from simplified ones to the more advanced contem-
porary comprehensive multi-body-based aero-hydro-servo-
elastic models. Using this approach, a reduced periodic au-
toregressive with exogenous input (PARX) model is first
identified from a recorded response of the system and then
used for conducting a stability analysis according to Floquet
theory. On the practical side, this implies that the analysis re-
spects the periodic nature of the problem. Furthermore, one
can easily replace the model with a different one, without
having to modify or adjust in any way the stability analysis
procedure.

Although this approach attains the two goals outlined
above, one of its limits is that it can not be used with mea-
surements obtained on a real wind turbine operating in the
field, since the effects of wind turbulence are not considered
within the PARX model structure. To address this issue, the
same approach was extended to account for the presence of
turbulence (Bottasso et al., 2014). Using this new technique,
one first identifies a periodic autoregressive moving average
with exogenous input (PARMAX) model, whose stability is
then analyzed according to Floquet. Bottasso et al. (2014)
showed only one example related to the first blade edgewise
mode of a wind turbine rotor. The goal of the present pa-
per is to expand and formulate in detail the PARMAX-based
method originally proposed by Bottasso et al. (2014). A sec-
ond goal of this paper is to compare the PARMAX method
with the periodic operational modal analysis (POMA) (see
Allen et al., 2011a), which is taken here to represent the ac-
cepted state of the art for the stability analysis of wind tur-
bines operating in turbulent wind conditions.

The article is organized according to the following plan.
The problem of the identification of PARMAX models is ad-
dressed in Sect. 2. Here, a newly developed algorithm that
has its basis in the prediction error method (PEM) is formu-
lated, with particular emphasis on the guaranteed stability of
the PARMAX predictor. Section 3 is devoted to POMA the-
ory. After reviewing the concept of HTFs, the treatment pro-
ceeds by discussing the method and its use for conducting
periodic stability analyses. As the authors are not aware of a
reference collecting together all useful background informa-
tion on Floquet theory and the signal analysis tools needed
for POMA, this material is synthetically reviewed in Ap-
pendix A, to ease reading. The accuracy of the PARX and
POMA identification techniques is then compared to an ex-
act reference in Sect. 4. To this purpose, first a nonlinear wind
turbine analytical model is developed. Then, the stability of
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its linearized version is studied according to Floquet theory,
providing a reference ground truth used for comparing PARX
and POMA. The equations of such an analytical model are
derived in Appendix B. In Sect. 5, a procedure to obtain the
Campbell diagram of a rotor with the PARMAX method is
described. PARMAX and POMA techniques are then used to
identify the first low-damped modes of a high-fidelity wind
turbine model, operating in the partial load region in turbu-
lent winds. Conclusions and recommendations are then given
in the final section of the paper.

2 The PARMAX model

2.1 Modeling of wind turbine behavior in turbulent wind
conditions using the PARMAX sequence

Bottasso and Cacciola (2015) showed that the relevant dy-
namics of a wind turbine output can be accurately captured
by a PARX sequence. Stability is then verified by applying
Floquet theory to the PARX reduced model. The resulting
process is model-independent and fully compliant with the
periodic nature of the problem. However, the use of PARX
models must be restricted to systems subjected to determin-
istic inputs, as their structure does not consider the presence
of process noise, such as atmospheric turbulence. As a step
towards the application of this periodic stability analysis con-
cept to real wind turbines, a PARMAX sequence is consid-
ered here.

In accordance with Bottasso and Cacciola (2015), the de-
terministic behavior of a wind-turbine-measured output z can
be modeled with a PARX sequence as

A(q;k)z(k)=B(q;k)ut(k), (1)

where k is the time index and q the back-shift operator, such
that z(k)q−i = z(k− i). The autoregressive and exogenous
parts are defined, respectively, by polynomials A(q;k) and
B(q;k) as

A(q;k)= 1−
Na∑
i=1

ai(k)q−i, (2a)

B(q;k)=
Nb∑
j=0

bi(k)q−i, (2b)

both being characterized by periodic coefficients ai(k)=
ai(k+K) and bj (k)= bj (k+K), where Na and Nb indicate
the order of the AR and X part, respectively, while K is the
period of the system. Finally, ut is the input, assumed here to
be the turbulent wind.

The stochastic nature of the turbulent wind field violates
the assumption of a deterministic and fully measurable in-
put ut. To account for this, the actual wind is viewed as a
sum of two distinct contributions: a mean wind u(k) and a
turbulence-induced perturbation δut(k). As the spectrum of

the atmospheric turbulence is far from being constant, δut(k)
is modeled by means of a shape filter F(q;k) such that

ut(k)= u(k)+F(q;k)e(k), (3)

where e(k) is a zero-mean, white, and Gaussian noise, with
periodic variance σ (k)2.

Inserting Eq. (3) into Eq. (1), the following is derived:

A(q;k)z(k)=B(q;k)u(k)+G(q;k)e(k), (4)

where C(q;k)=B(q;k)F(q;k). Equation (4) is a PARMAX
model whose MA part is represented by polynomial G(q;k),
defined as

G(q;k)= 1+
Ng∑
i=1

gw(k)q−i, (5)

where gw(k)= gw(k+K) are the MA periodic coefficients
and Ng the MA order. The overall order of the system is de-
fined as n=max(Na, Nb, Ng). The resulting PARMAX se-
quence is then

z(k)=
Na∑
i=1

ai(k)z(k− i)+
Nb∑
j=0

bj (k)u(k− j )

+

Ng∑
w=1

gw(k)e(k−w)+ e(k). (6)

It should be remarked that the present approach does not
consider the effects of nonlinearities nor of rotor speed vari-
ations induced by turbulence. The former potential problem
can be checked a posteriori by looking at the matching be-
tween predicted and measured quantities. The latter can be
partially solved by averaging the rotor speed over the ana-
lyzed time window. Typically, because of the large inertia of
wind turbine rotors, angular speed variations are not expected
to be highly significant, especially within the short time win-
dows required by the proposed approach.

2.2 State space representation of PARMAX sequences

In order to perform a stability analysis according to Floquet
theory (cf. Bottasso and Cacciola, 2015 and the review re-
ported in Appendix A), it is necessary to realize the PAR-
MAX Eq. (6) in an equivalent state space representation. To
this end, consider a linear discrete-time system with time-
varying coefficients in observable canonical form:

x(k+ 1)= A(k)x(k)+B(k)u(k)+E(k)e(k), (7a)
y(k)= C(k)x(k)+D(k)u(k)+F(k)e(k), (7b)

where x(k)= (x1(k), . . .,xn(k))T , while the system matrices
are given by[

A(k) B(k) E(k)
C(k) D(k) F(k)

]
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=


0 0 · · · 0 αn(k) βn(k) γn(k)
1 0 · · · 0 αn−1(k) βn−1(k) γn−1(k)
0 1 · · · 0 αn−2(k) βn−2(k) γn−2(k)
...

. . .
. . .

...
...

...
...

0 0 · · · 1 α1(k) β1(k) γ1(k)
0 0 · · · 0 1 β0(k) 1

 . (8)

Including the presence of the MA part, the input–output se-
quence of system Eq. (7) can be derived as

y(k)=
n∑
i=1

αi(k− i)y(k− i)

+

n∑
i=1

(
βi(k− i)−β0(k− i)αi(k− i)

)
u(k− i)+β0u(k)

+

n∑
i=1

(
γi(k− i)−αi(k− i)

)
e(k− i)+ e(k). (9)

Comparing Eq. (6) with Eq. (9), the following equivalence
relations are obtained

αi(k)= ai(k+ i) ∀i = (1, . . .,Na), (10a)
β0(k)= b0(k), (10b)
βi(k)= bi(k+ i)+ ai(k+ i)b0(k) ∀i = (1, . . .,Nb), (10c)
γi(k)= gi(k+ i)+ ai(k+ i) ∀i = (1, . . .,Ng), (10d)

which readily give the state space system matrices. Once
these are known, stability is assessed according to Floquet
theory as described in Appendix A.

2.3 Identification through the prediction error method

In the present context, a single-input single-output (SISO)
PARMAX model must be identified from a sequence of
N measurements. Among the plethora of existing estima-
tion methods, which may range from time to frequency do-
main and from optimization-based to subspace algorithms,
the PEM (Bittanti et al., 1994) is chosen here. This method
has been frequently used for rotating systems, such as rotor-
craft vehicles and wind turbines. For example, the periodic
equation-error method was used for identifying a reduced-
order model of a helicopter rotor by Bertogalli et al. (1999),
whereas Bottasso and Cacciola (2015) proposed a periodic
output-error method for the identification of reduced wind
turbine models.

The estimation problem, formalized according to the
PEM, is the one of finding the periodic coefficients ai(k),
bj (k), and gw(k) that minimize the cost function J defined
as the mean value of the square of the prediction error, i.e.,

J =
1
N

N∑
k=1

ε2(k). (11)

Here ε(k)= z(k)−ẑ(k|k−1) is the prediction error at time in-
stant k, being ẑ(k|k−1) (hereafter more concisely written as
ẑ(k)), the optimal one-step-ahead prediction of z(k) based on

knowledge of all data until time step k−1. According to Bit-
tanti and De Nicolao (1993) and Ljung (1999), the optimal
one-step-ahead predictor of process (6) is

ẑ(k)=−
n∑
i=1

gi(k)ẑ(k− i)

+

n∑
j=1

(aj (k)+ gj (k))z(k− i)+
n∑

w=1
bi(k)u(k− i). (12)

As previously argued, the presence of the MA part in the
PARMAX model allows for a more adequate characteriza-
tion of the process noise term, at the cost of a more com-
plex estimation procedure. In fact, the optimal predictor of
the PARMAX process expressed by Eq. (12) is nonlinear in
the parameters, as any ẑ(k) is a function of its previous val-
ues ẑ(k−w), which in turn depend on the parameters. Conse-
quently, the minimization of cost function Eq. (11) involves
an iterative optimization. If the MA part in Eqs. (6) and
(12) is neglected, a PARX sequence is obtained and the es-
timation problem reduces to the so-called equation-error ap-
proach (Bottasso and Cacciola, 2015; Bottasso et al., 2014).

Moreover, it is easy to verify that predictor Eq. (12) is by
itself a PARX dynamic system, in which the autoregressive
part is described by coefficients−gw(k), whereas coefficients
aj (k)+ gj (k) and bj (k) define two X parts with inputs z(k)
and u(k), respectively. This fact is not surprising, since it of-
ten happens that the poles of the predictor coincide with the
zeros of the system to be predicted. As a consequence, it may
happen that, during the optimization, coefficients gw define
an unstable predictor, jeopardizing the entire identification
process (see Bittanti and De Nicolao, 1993).

In the literature there are basically two methods to enforce
the stability of the MA part. The first is a heuristic approach
in which the coefficients gw(k) are perturbed (for example,
halved) repeatedly until the achievement of a stable predic-
tor. This method actually corresponds to a re-initialization of
the parameters with unpredictable effects on the convergence
of the estimation. The second approach is based on the com-
putation of a new predictor, with different coefficients gw but
the same autocorrelation of the unstable one. For the time-
invariant case, this new canonical model can be obtained us-
ing Bauer’s algorithm (Sayed and Kailath, 2001), whereas
for the periodic case it can be obtained by solving a suitable
periodic Riccati equation (Bittanti and De Nicolao, 1993) or
through the multivariate Rissanen factorization (Bittanti et
al., 1991; Rissanen, 1973).

In this work, an alternative and original method is pro-
posed. The stability of the predictor is enforced by a nonlin-
ear constraint within the estimation process, and the resulting
constrained optimization is performed by an interior-point al-
gorithm (cf. Byrd et al., 2000, 1999; Waltz et al., 2006). The
estimation problem is then reformulated as

p = argmin
p

J (ε(k); p), (13a)
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s.t. : |P(p)|< 1, (13b)

where p is the vector of the unknown coefficients and P(p)
are the characteristic multipliers of the PARMAX predictor.

The characteristic multipliers that constrain the estimation
problem can be computed from the autoregressive part of
Eq. (12), i.e., ŷ(k)=

∑
w−gw(k)ŷ(k−w), which can be real-

ized as a state space form according to Eqs. (7)–(10), leading
to the following dynamic matrix

N(k)=


0 0 · · · 0 −gNg (k+Ng)
1 0 · · · 0 −gNg−1(k+Ng − 1)
0 1 · · · 0 −gNg−2(k+Ng − 2)
...

. . .
. . .

...
...

0 0 · · · 1 −g(k+ 1)

 . (14)

The periodic coefficients ai(k), bj (k), and gw(k) are approx-
imated by using truncated Fourier expansions, i.e.,

ai(k)= ai0+
NFa∑
l=1

(
acil cos(lψ(k))+ asil sin(lψ(k))

)
, (15a)

bj (k)= bj 0+

NFb∑
m=1

(
bcjm cos(mψ(k))+ bsjm sin(mψ(k))

)
, (15b)

gw(k)= gw0+

NFg∑
r=1

(
gcwr cos(rψ(k))+ gswr sin(rψ(k))

)
, (15c)

where ψ(k) is the rotor azimuth. The unknown amplitudes of
such expansions are collected in the vector of parameters p

p =
(
. . ., ai0,a

c
il
,asil , . . .,bj 0,b

c
jm
,bsjm , . . .,gw0,g

c
wr
,gswr , . . .

)T
, (16)

where i = (1, . . ., Na), j = (1, . . ., Nb), w = (1, . . ., Ng),
l = (1, . . ., NFa ), m= (1, . . ., NFb ), and r = (1, . . ., NFg ),
NFa , NFb , and NFg being the number of Fourier harmonics
of the periodic coefficients for the AR, X, and MA parts, re-
spectively.

Due to the nonlinear behavior of the predictor, the possi-
ble presence of multiple local minima has to be taken into ac-
count. A suitable starting point for the nonlinear problem can
be selected by fitting the recorded data with simpler models
such as ARMAX or PARX (Bittanti et al., 1991) or by us-
ing a recursive extended least-squares algorithm (Avendaño-
Valencia and Fassois, 2013; Spiridonakos and Fassois, 2009).
In the present work, convergence to the global minimum is
ensured by performing several optimization trials from a ran-
domly chosen set of initial conditions.

3 Theory of periodic operational modal analysis

The OMA is an output-only system identification technique,
which has been widely used to conduct modal analyses of
different mechanical systems. Recently, special attention has
been devoted in the literature to the application of OMA in

the field of wind energy (Carne and James, 2010) and to the
related underlying hypotheses (Chauhan et al., 2009; Tcher-
niak et al., 2010). An output-only technique specifically tai-
lored to time periodic systems was developed by Allen et al.
(2011b). This technique, called periodic OMA (POMA), ex-
ploits the particular behavior of a linear time periodic (LTP)
system in the frequency domain, as described by the HTF
(see Sect. A2 for details). In the present paper, POMA will be
briefly reviewed and then compared to the PARMAX-based
stability analysis proposed here.

Consider a strictly proper periodic system and the expo-
nentially modulated periodic (EMP) expansions of its input
and output, noted, respectively, as U and Y , as described in
Sect. A2. The input–output behavior of the system can be
analyzed through the HTF G as

U (s)= G(s)Y(s), (17)

with s ∈C and G(s) defined according to Eq. (A44). Pro-
jecting Eq. (17) onto the imaginary axis, each element of the
EMP expansion of Y and U can be computed as the Fourier
transform of frequency-shifted copies of y(t) and u(t) as

yk(ω)=

∞∫
−∞

y(t)e(ıω+ık�)tdt, (18a)

uk(ω)=

∞∫
−∞

u(t)e(ıω+ık�)tdt. (18b)

As reported in Wereley (1991) and briefly reviewed in Allen
et al. (2011b), the input–output behavior in the frequency do-
main can be expressed as

Y (ω)=G(ω)U (ω), (19)

where

Y (ω)= (· · · y−1(ω) y0(ω) y1(ω) · · ·)T , (20a)

U (ω)= (· · · u−1(ω) u0(ω) u1(ω) · · ·)T . (20b)

Accordingly, the harmonic frequency response function
(HFRF) G(ω) is given by

G(ω)=
Ns∑
j=1

∞∑
w=−∞

Cj,wBTj,w
ıω− (ηj + ıw�)

, (21)

where Cj,w and Cj,w are defined in Eqs. (A45) and (A46) of
Sect. A2.

The power spectrum of the output, noted as SYY (ω), can be
written in terms of the HFRF G(ω) and the power spectrum
of the input SUU (ω) as

SYY (ω)=G(ω)SUU (ω)G(ω)H , (22)
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where (·)H denotes the complex-conjugate transpose. Insert-
ing Eqs. (21) into (22), the following expression is derived:

SYY (ω)=
Ns∑
j=1

∞∑
w=−∞

Ns∑
p=1

∞∑
q=−∞

Cj,wW(ω)j,w,p,qCHp,q(
ıω− (ηj + ıw�)

)(
ıω− (ηp + ıq�)

)H , (23)

where Wj,w,r,t = Bj,rSUUBHw,t . Equation (23) can be sim-
plified first by considering a flat expanded input power spec-
trum Wj,r (ω)= Bj,rSUUBHj,r , at least in the band of interest
of a specific mode, and secondly by assuming that all modes
of the system are “suitably separated”.

The first requirement was analyzed extensively for wind
turbine problems in Tcherniak et al. (2010). There the au-
thors pointed out that the extended input spectrum could be
significantly colored, a problem that requires particular care
with simplified output-only methods. The second require-
ment deserves special attention as well. In fact, not only is
the separation of the principal harmonics of two modes re-
quired, but it is also necessary that all super-harmonics with
significant participation are well separated. For rotary wing
systems, this requirement has to be considered especially
carefully when looking at the whirling modes, as the princi-
pal harmonics of backward and forward modes are typically
separated by about 2�. This typically creates a crisscross-
ing of modes in the frequency–rotor-speed plane, leading to
frequent frequency encounters.

If such conditions are verified, the extended input spec-
trum W loses its dependency on ω, and the contribution of
mode ηp + ıq� to mode ηj + ıw� can be neglected when
p 6= j and q 6= w. Hence, Eq. (23) is simplified to

SYY (ω)≈
Ns∑
j=1

+∞∑
w=−∞

Cj,wWj,wCHj,w(
ıω− (ηj + ıw�)

)(
ıω− (ηj + ıw�)

)H . (24)

From Eq. (24) one can see that the peak related to any super-
harmonic of a given mode can be viewed as the peak of a lin-
ear time-invariant mode. Accordingly, one is allowed to use a
standard LTI frequency domain identification technique (e.g.,
peak picking, curve fitting) to compute frequencies, damping
factors, and modal shapes from the measured spectra.

Moreover, neglecting again the contribution of overlap-
ping modes, one can also estimate the participation by eval-
uating the power spectra at the peak frequency, since

Cj,wCHj,w ∝ SYY (ωj +w�). (25)

Expressing the product Cj,wCHj,w, one gets

Cj,wCHj,w =
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.
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.

. . .


, (26)

(·)∗ being the complex conjugate. From Eq. (26), one could
envision several criteria for extracting the participation fac-
tors for each harmonic belonging to the j th mode. The sim-
plest one is to compute the central column of the HTF and to
pick the amplitudes of the spectra at the frequency of inter-
est. The participation factors are then extracted according to
Eq. (A27), reported in Sect. A1, as

φ
y
j n
=

∣∣cj n∣∣∑
n

∣∣cj n∣∣ =
∣∣cj n∣∣ ∣∣∣c∗j 0

∣∣∣∑
n

∣∣cj n∣∣ ∣∣∣c∗j 0

∣∣∣ =
∣∣∣cj nc∗j 0

∣∣∣∑
n

∣∣∣cj nc∗j 0

∣∣∣ . (27)

One can also perform multiple estimations of the participa-
tion factors by looking again at the central column of SYY .
In fact, from Eq. (26), it appears that the amplitudes picked
from the `th column at frequency ωj +w� are equivalent
to those picked from the central column at ωj + (w+ `)�.
This also means that computing the central column could be
sufficient for having an estimation of frequencies, damping,
and participation factors, as already noted in Shifei and Allen
(2012).

The POMA technique can then be summarized as follows:

– Compute the Fourier transforms of the frequency-
shifted copies of the recorded output y(t), yk(ω)=
FFT

(
y(t)e−ık�t

)
and collect them in vector Y (ω)=

(. . ., yk(ω), . . .)T .

– Compute the autospectrum SYY (ω) using a standard fre-
quency domain analysis method; in the present paper
the method of Welch was employed for this purpose.

– Extract the related natural frequency and damping fac-
tors from each peak present in SYY (ω) using any stan-
dard LTI frequency domain estimation tool (Allen and
Ginsberg, 2006). In this paper the straightforward peak-
picking method was used, as also done by Allen et al.
(2011b).

– Reconstruct the Fourier coefficients cjn , and in turn the
participation factors, by evaluating the spectrum in cor-
respondence to each peak.

It is possible to restrict the analysis to the right-half plane
just by noting that

yn(−ω)= y∗−n(ω). (28)
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Figure 1. Harmonic power spectrum of the output of the Mathieu
oscillator.

Equation (28) is particularly useful for identifying the
Fourier coefficients from the peaks of the “reflected super-
harmonics”, since according to Eq. (28) one can demonstrate
that

cj n

∣∣
correct peak = c

∗

j−n

∣∣∣
reflected peak

. (29)

3.1 Application of periodic operational modal analysis to
the Mathieu oscillator

As the actual use of POMA and the correct interpretation of
all peaks is not a straightforward exercise in general, a simple
Mathieu oscillator is analyzed here in preparation for the ap-
plication of this method to the wind turbine problems studied
later on. The dynamics of a Mathieu oscillator is governed by
the following equations:(
ẋ

ẍ

)
=

[
0 1

−ω2
0 −ω

2
1 cos(�t) −2ξω0

](
x

ẋ

)
, (30a)

y =
[

1 0
]( x

ẋ

)
. (30b)

The parameters in Eq. (30) were set, following Allen et al.
(2011b), as ω2

0 = 1, ω2
1 = 0.4, ξ = 0.04, and �= 0.8. The

system was numerically integrated from x(0)= (1000,0)T ,
and studied by means of POMA. The results were then com-
pared with those obtained by the full Floquet theory de-
scribed in Sect. A1.

Figure 1 shows the power spectra of the central column of
SYY , yk(ω)yH0 (ω) for k =−4, . . .,4. The fundamental peak
(i.e., the highest one) is found on the 0-shift curve at 0.16 Hz
and corresponds to the amplitude cj 0 cj

H
0 . At such a fre-

quency, all curves show a prominent peak, from which one
may also easily compute the damping factors using, for ex-
ample, the standard half-power bandwidth method. The par-
ticipation factors are then extracted by looking at the ampli-
tudes of the power spectra using Eq. (27).

Table 1. Frequencies and damping factors for the Mathieu oscillator
and analytical results.

Frequencies Damping factors

Peak Identified Exact Identified Exact

−4� 0.3523 0.3523 0.0156 0.0090
−3� 0.2254 0.2250 0.0220 0.0142
−2� 0.0969 0.0977 0.0363 0.0326
−1� 0.0299 0.0299 0.1071 0.1065

0 0.1571 0.1571 0.0203 0.0203
+1� 0.2848 0.2844 0.0114 0.0112
+2� 0.4121 0.4117 0.0124 0.0077
+3� 0.5390 0.5390 0.0102 0.0059
+4� 0.6663 0.6664 0.0083 0.0048

Starting from this peak and moving to the right, the subse-
quent higher peaks are found on the negative-shift curves,
first in the −1-shift one at 0.28 Hz and then in the −2-
shift one at 0.41 Hz, etc. The opposite happens when mov-
ing to the left. Peaks located at negative frequencies appear
as reflected in the positive frequency range but with oppo-
site shifts. This is clear if one looks at the peak located at
−0.10 Hz, which has the −2-shift curve as the one with the
highest amplitude, whereas the reflected peak at 0.10 Hz is
associated with the 2-shift curve. This complex behavior is
easily explained by means of Eq. (28), which also states that
the information in the negative frequency range can be re-
constructed by looking at the curve with the opposite shift in
the positive frequency plane.

Frequencies and damping factors computed from such
spectra using the peak-picking method are reported in Ta-
ble 1. The same table also displays the results obtained
from the full Floquet analysis of the system. The comparison
shows good accuracy, especially for frequencies and damp-
ing factors of the first highest super-harmonics.

The output-specific participation factors are displayed in
Table 2. Multiple estimates have been computed from each
spectrum peak in the positive frequency plane. The last col-
umn also shows the analytical results. As expected, in general
super-harmonics with lower participation factors are associ-
ated with higher estimation errors.

4 Stability analysis of a model wind turbine problem

Next, a simplified wind turbine model is used for comparing
the results obtained with the PARX and POMA approaches.
This is useful because it gives a way of comparing the basic
performance of the two methods with respect to a known ex-
act ground truth in the ideal case of zero disturbances. Later
on in this work, the two methods will be compared for the
case of a higher-fidelity wind turbine model operating in tur-
bulent wind conditions. As no exact solution is known in that
case, the preliminary investigation of this section serves the
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Table 2. Most relevant output-specific participation factors for the Mathieu oscillator and related analytical results.

0.35 Hz 0.23 Hz 0.10 Hz 0.03 Hz Peak at 0.28 Hz 0.41 Hz 0.54 Hz 0.67 Hz
Exact

(−4�) (−3�) (−2�) (−1�) 0.16 Hz (+1�) (+2�) (+3�) (+4�)

φx1−4
0.0174 0.0167 0.0164 0.0162 0.0163 – – – – 4.961× 10−4

φx1−3
0.0352 0.0346 0.0316 0.0323 0.0328 0.0323 – – – 0.0097

φx1−2
0.0659 0.0587 0.0660 0.0626 0.0618 0.0652 0.0667 – – 0.0477

φx1−1
0.1509 0.1405 0.1419 0.1409 0.1410 0.1433 0.1473 0.1560 – 0.1583

φx10
0.7000 0.6614 0.6445 0.6499 0.6537 0.6562 0.6753 0.7234 0.8527 0.7160

φx11
– 0.0642 0.0687 0.0666 0.0661 0.0685 0.0703 0.0731 0.0862 0.0655

φx12
– – 0.0134 0.0131 0.0130 0.0134 0.0137 0.0144 0.0170 0.0023

φx13
– – – 0.0085 0.0085 0.0086 0.0089 0.0095 0.0111 4.401× 10−5

φx14
– – – – 0.0067 0.0067 0.0069 0.0074 0.0087 5.325× 10−7

purpose of clarifying whether significant differences exists
between the two approaches even at this more fundamental
level. Indeed, it will be shown here that some of the under-
lying hypotheses of POMA are not always fulfilled, and this
leads occasionally to some imprecisions in the estimates of
the modal quantities of interest.

The analytical model is derived in detail in Appendix B,
which also gives a schematic sketch of the system in Fig. B1.
The model considers the coupled motion of tower and blades
subjected to aerodynamic and gravitational forces. The fore–
aft and side–side flexibility of the tower is rendered by two
equivalent linear springs, whereas each blade is represented
as a rigid body connected to the hub through two coincident
linear torsional springs, allowing, respectively, the blade flap-
wise and edgewise rotations. The characteristics of each ele-
ment in the model are chosen so as to match the first tower
fore–aft and side–side modes and the first blade flap-wise
and edgewise modes in vacuo of a reference 6 MW wind tur-
bine, as computed using a high-fidelity multi-body model.
The aerodynamic formulation is inspired by the treatment
of Eggleston and Stoddard (1987), in which the aerodynamic
forces and moments at the blade hinges are computed assum-
ing linear aerodynamics, small flap and lag angles, uniform
inflow over the rotor disk, and constant rotor speed. The aero-
dynamic forces induced by tower motion, not present in the
treatment of Eggleston and Stoddard (1987), are additionally
considered in this paper. The model represents the complete
lower spectrum of a wind turbine, including the first side–
side and fore–aft tower modes, the first in-plane and out-of-
plane blade modes as well as their related whirling modes.

After having collected all degrees of freedom in vector
ξ = (β1, . . .,βB ,ζ1, . . ., ζB ,yH ,zH )T , B being the number of
blades, and the inputs in vector ν = (θp1 , . . .,θpB )T , θk be-
ing the pitch angle of the kth blade, the resulting nonlinear
second-order implicit system writes

f (ξ , ξ̇ , ξ̈ ,ν, t)= 0. (31)

System Eq. (31) can be integrated in time using any suitable
numerical scheme, starting from a consistent set of initial
conditions. This was done for generating the time histories
used for PARX and POMA, paying attention not to excite
the system nonlinearities, as the reference solution is based
on the Floquet analysis of the linearized problem.

Since any mechanical system is linear in ξ̈ , one may com-
pute the mass matrix M̂(ξ , ξ̇ , t) and rewrite the system as
M̂(ξ , ξ̇ , t)ξ̈ = g(ξ , ξ̇ ,ν, t). System Eq. (31), if asymptotically
stable, converges to a periodic trajectory ξ̃ (t) when subjected
to a periodic input ν̃(t). In such a regime, the linearized peri-
odic equations of motion write

M(t) ¨̂ξ +T(t) ˙̂ξ +K(t)ξ̂ +W(t)ν̂ = 0, (32)

where the new state ξ̂ (t) and input ν̂(t) are defined as

ξ̂ (t)= ξ (t)− ξ̃ (t), ν̂(t)= ν(t)− ν̃(t), (33)

and the periodic mass, damping, stiffness, and input matrices
are defined as

M(t)=
∂f

∂ ξ̈

∣∣∣∣̃
ξ ,
˙̃
ξ ,
¨̃
ξ ,̃ν

, T(t)=
∂f

∂ ξ̇

∣∣∣∣̃
ξ ,
˙̃
ξ ,
¨̃
ξ ,̃ν

, (34)

K(t)=
∂f

∂ξ

∣∣∣∣̃
ξ ,
˙̃
ξ ,
¨̃
ξ ,̃ν

, W(t)=
∂f

∂ν

∣∣∣∣̃
ξ ,
˙̃
ξ ,
¨̃
ξ ,̃ν

. (35)

Note that M(t) is equal to M̂(ξ , ξ̇ , t), evaluated on the peri-
odic trajectory ξ̃ . These linearized equations of motion about
a periodic orbit were then used for developing the analysis
according to Floquet, yielding the ground truth solution.

4.1 Stability analysis of a wind turbine analytical model

The parameters of the wind turbine analytical model loosely
represent a conceptual 6 MW wind turbine, and they are
listed in Table 3. The stability of the model is studied in a
uniform axial wind of 9 m s−1 for a collective pitch angle of
−0.54◦, corresponding to operation towards the end of the
partial load region.
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Table 3. Parameters of the analytical wind turbine model.

Parameter Symbol Value

Number of blades B 3
Rotor radius R 75 m
Rotor speed � 11.5 rpm
Hinge offset e 25.651 % R
Mass of hub mH 7.500× 104 kg
Blade mass (movable part) mD 1.448× 104 kg
Blade mass (fixed part) mU 1.087× 104 kg
Blade CG after hinge rGD 18.72 m
Blade moment of inertia JD 7.488× 106 kg m2

Edgewise spring stiffness Kζ 2.119× 108 N m
Edgewise spring damper Cζ 1.756× 106 N m s
Flap-wise spring stiffness Kβ 5.215× 107 N m
Flap-wise spring damper Cβ 1.756× 106 N m s
Tower SS spring stiffness Ky 7.312× 105 N m−1

Tower SS spring damper Cy 1.329× 104 N s m−1

Tower FA spring stiffness Kz 6.581× 105 N m−1

Tower FA spring damper Cz 1.329× 104 N s m−1

Lock number γ 20
Wind shear gradient K1 0.018 s−1

The linearized periodic system was first studied using Flo-
quet theory (see Appendix A) in order to get the exact nat-
ural frequencies, damping, and output-specific participation
factors. Next, the model was used for generating all outputs
needed for performing the PAR(MA)X and POMA analyses
by integrating the system forward in time starting from suit-
able initial non-zero conditions, chosen in order to excite the
modes of interest. In this exercise, the wind was considered
as stationary, so that the PARMAX identification reduces to
the simpler PARX one as the MA part is not necessary.

Both PARX and POMA estimates were compared with the
full Floquet results in terms of relative errors for frequencies
and damping factors and absolute errors for participation fac-
tors. Relative errors are defined as vE/vR−1, while absolute
errors are defined as vE−vR, where v is a specific modal pa-
rameter and the subscripts E and R refer, respectively, to an
estimated and a real (exact) quantity.

4.1.1 Identification of the blade edgewise mode

The blade edgewise mode was excited by imposing the ini-
tial edgewise angles of all blades equal to a unique non-zero
value, whilst all other states were set to zero at the initial
time. This way the blade in-plane mode was excited while
avoiding the onset of the whirling modes.

Considering first the POMA approach, the harmonic
power spectrum for the second blade edgewise angle, ζ2, was
computed with frequency shifts from −2� to +2�. The re-
sults obtained this way are reported in Fig. 2.

Clearly, the 0-shift PSD shows a prominent peak at ωE =

0.86 Hz, related to the blade in-plane mode, from which one
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Figure 2. Harmonic power spectrum of the ζ2 output of the wind
turbine analytical model. The peak of the n= 0 curve is caused by
the blade in-plane mode, while spikes are due to the rotational fre-
quency and its multiples.

may easily extract the frequency and damping factor of the
principal harmonic. The peak-picking method could in prin-
ciple be applied to any of the peaks displayed in the figure;
however, one may observe that most of the peaks are of a
low amplitude and often barely noticeable from the side band
of the principal harmonic. For example, the super-harmonic
at 0.67 Hz, even if visible within the 0-shift curve, does not
have enough energy to allow one to estimate its modal quan-
tities to any reasonable accuracy. Therefore, it was preferred
to compute frequency and damping factors only by look-
ing at the highest peaks: the frequency and damping fac-
tor of the super-harmonic at ωE+� were extracted from
the peak at 1.05 Hz of the -1-shift curve, while those of the
super-harmonic at ωE+ 2� were extracted from the peak at
1.24 Hz of −2-shift curve, and similarly for the other super-
harmonics. For the same reason, participation factors were
obtained only by looking at the PSD amplitude at ωE. In fact,
at this frequency all curves show peaks that are prominent
and distinct enough to compute the participation factors ac-
cording to Eq. (27).

Next, the PARX analysis was considered. As long as only
the blade in-plane mode is significantly excited, as indicated
from the 0-shift curve in Fig. 2, the order of the AR part
may be set as Na = 2. A first-order X part (Nb = 1) was con-
sidered as the inputs (wind speed and pitch angle) are con-
stant in this case. Finally, the number of harmonics for the
Fourier series expansion of both the AR and X parts, NFa
andNFb , were both set equal to 1. The matching between pre-
dicted and simulated output, not reported here for the sake of
brevity, showed excellent correlation, proof of the fact that
the identified model captures the dynamics of interest very
well.
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Table 4. Analytical results and estimation errors of blade in-plane modal parameters.

Frequencies Damping factors Participation factors

Analytical
Relative error

Analytical
Relative error

Analytical
Absolute error

PARX POMA PARX POMA PARX POMA

0.4796 0.0015 0.0011 0.0367 0.0071 0.8773 0.0010 −0.0009 0.0261
0.6712 0.0010 −0.0005 0.0262 0.0075 0.6569 0.0208 −0.0038 0.0579
0.8628 0.0008 −0.0003 0.0204 0.0077 0.0325 0.9584 0.0074 −0.1757
1.0544 0.0007 −0.0048 0.0167 0.0079 1.3739 0.0181 −0.0011 0.0494
1.2461 0.0006 −0.0009 0.0141 0.0080 0.7958 0.0016 −0.0015 0.0425

Table 5. Analytical results and estimation errors of tower side–side modal parameters.

Frequencies Damping factors Participation factors

Analytical
Relative error

Analytical
Relative error

Analytical
Absolute error

PARX POMA PARX POMA PARX POMA

0.0374 −0.0066 −0.0276 0.1874 −0.0887 0.8103 0.0000 0.0000 0.0081
0.1550 0.0007 0.0014 0.0453 −0.0953 0.7953 0.0000 0.0085 0.0196
0.3466 0.0003 0.0009 0.0202 −0.0950 0.0030 0.9990 −0.0250 −0.1375
0.5383 0.0002 0.0006 0.0130 −0.0949 0.7199 0.0000 0.0161 0.0640
0.7299 0.0002 −0.0022 0.0096 −0.0948 2.8363 0.0000 0.0013 0.0468

Table 4 reports the Floquet modal parameters, assumed as
ground truth, as well as the errors obtained by the two meth-
ods considered here.

Looking at the results, it appears that both the PARX and
POMA methods are able to capture the relevant dynamics
related to the principal harmonics, as frequencies, damping,
and participation factors are of good quality. In particular,
damping and participation factors are slightly better esti-
mated by PARX.

The estimation of the super-harmonic modal parameters
deserves a special mention. The PARX method is able to pro-
vide a good matching for all modal parameters of all harmon-
ics: frequencies and participation factors have negligible er-
rors, whereas damping factors show an error lower than 1 %.
On the other hand, the error of the POMA super-harmonic
estimates is typically quite large especially for the damping
factors, even though the principal harmonic is well captured.

This fact has mainly two possible explanations. First, the
hypothesis of well-separated modes is here not fully satis-
fied, as the side band of the tower principal harmonic af-
fects all super-harmonic peaks. The lower the rotor speed,
the more pronounced this effect is, as the frequency separa-
tions among super-harmonics coincide with multiples of the
rotor frequency. Second, but more importantly, according to
the dynamics of a periodic system all harmonics belonging to
a specific mode descend from a sole characteristic multiplier.
Therefore, their frequencies and damping factors are strictly
connected to each other. This relation is totally ignored by
POMA (cf. Allen et al., 2011b), as it considers each peak in
the frequency response as a stand-alone mode.

4.1.2 Identification of other low-damped modes

The tower side–side and blade in-plane whirling modes were
excited by imposing different initial conditions for each
blade edgewise angle and a suitable lateral displacement of
the tower.

Figure 3 shows the harmonic power spectral density
(HPSD) for the tower side–side displacement yH , with fre-
quency shifts from −2� to +2�. Here again, the 0-shift
curve shows three distinct peaks: the tower side–side mode
and the backward and forward in-plane whirling modes, re-
spectively, at 0.34, 0.68 and 1.1 Hz. Accordingly, the PARX
complexity was set as Na = 6, Nb = 1, NFa = 1, and NFb =
1. As for the previous case, the matching between predicted
and simulated output, not reported here, is excellent. Com-
parisons among the exact and identified modal parameters
are displayed in Table 5 through Table 7.

Figure 3 clearly shows that a good mode separation is
not fully achieved here, as whirling super-harmonics interact
with each other. This is not due to the specific wind turbine or
condition considered here, as in fact any rotating blade sys-
tem will always have the principal harmonics of its whirling
modes separated by about 2�. In addition, it also appears that
the second super-harmonic of the tower mode at 0.73 Hz is
very close to the second super-harmonic of the forward (FW)
whirling mode at 0.71 Hz; additionally, both harmonics are
close to the backward (BW) whirling mode at 0.68 Hz. For
this reason, there are missing values in Table 5 through Ta-
ble 7, wherever it was not possible to pick all peaks for all
modes of interest using POMA.
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Table 6. Analytical results and estimation errors of in-plane backward whirling modal parameters.

Frequencies Damping factors Participation factors

Analytical
Relative error

Analytical
Relative error

Analytical
Absolute error

PARX POMA PARX POMA PARX POMA

0.3050 −0.0135 − 0.0619 −0.1675 − 0.0000 0.0007 –
0.4964 −0.0081 −0.0096 0.0380 −0.1720 5.3415 0.0000 0.0258 0.1234
0.6880 −0.0058 −0.0040 0.0274 −0.1739 0.0740 0.9889 −0.0533 −0.6323
0.8796 −0.0045 0.0002 0.0215 −0.1750 0.7516 0.0000 0.0339 0.0315
1.0712 −0.0037 0.0056 0.0176 −0.1757 0.3572 0.0000 0.0040 0.2431

Table 7. Analytical results and estimation errors of in-plane forward whirling modal parameters.

Frequencies Damping factors Participation factors

Analytical
Relative error

Analytical
Relative error

Analytical
Absolute error

PARX POMA PARX POMA PARX POMA

0.7108 0.0012 − 0.0281 0.0192 − 0.0000 0.0061 –
0.9024 0.0010 0.0025 0.0222 0.0195 0.9598 0.0000 0.0411 0.0579
1.0940 0.0008 −0.0005 0.0183 0.0197 0.0000 0.9610 −0.0168 −0.3787
1.2857 0.0007 −0.0027 0.0156 0.0198 0.8850 0.0000 0.0084 0.0566
1.4773 0.0006 −0.0010 0.0135 0.0199 0.8131 0.0000 0.0000 0.0239
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Figure 3. Harmonic power spectrum of the yH output of the wind
turbine analytical model. Three modes are visible on the n= 0
curve, along with the rotational frequency and its harmonics.

Considerations similar to ones previously made for the
blade in-plane mode can also be stated here for these other
three modes. Specifically, the frequency and damping factors
of the principal harmonic of all modes are almost perfectly
captured by both methods. The PARX method is the one
that gives the most accurate results globally for both prin-
cipal and super-harmonics: damping and participation factor
estimates are characterized by small errors, while only the
damping factors of the backward whirling mode have errors
greater than 10 %. On the other hand, the POMA technique

does not provide consistent results for the super-harmonic
damping factors, which are characterized by large errors even
when the damping factor of the principal harmonic is well
captured. Moreover, the participation factors of the whirling
modes exhibit non negligible errors for both principal and
super-harmonics. This last issue is mainly due to the fact that,
especially for the whirling case, the underlying hypothesis of
well-separated modes is not completely fulfilled, as previ-
ously mentioned.

5 PARMAX-based damping estimation using a
high-fidelity multi-body model

A detailed 6 MW wind turbine high-fidelity multi-body
model operating in a closed loop, implemented with the aero-
servo-elastic simulator Cp-Lambda (Bottasso and Croce,
2006–2016), was then used for a comparison of the POMA
and the proposed PARMAX stability analysis techniques in
a more sophisticated setting. Blades and tower are modeled
with geometrically exact beam elements, discretized in space
using the finite-element method, whereas the classical blade
element momentum (BEM) theory is used to model the aero-
dynamics, with the usual inclusion of wake swirl, tip and
hub losses, unsteady corrections, and dynamic stall. The total
number of degrees of freedom in the resulting finite-element
multi-body model is about 2500. A pitch–torque controller
complements the aero-servo-elastic model. Wind histories
compliant with IEC-61400 design guidelines were generated
through TurbSim (Jonkman and Kilcher, 2012). The con-
sidered wind fields are characterized by a 5 % turbulence
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Figure 4. Comparison between measured (solid line) and predicted (dashed line) normalized blade root edgewise bending moment, in the
time (left) and frequency (right) domains.
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Figure 5. Periodic Campbell diagram of the first blade edgewise
mode obtained from PARMAX identifications. The results of the
single identifications along with the confidence level of the fitting
curves are shown. Participation factors are computed in the rotating
reference frame.

intensity and 10 min averaged wind speeds ranging from 3
to 10 m s−1, an upflow of 8◦, and an atmospheric boundary
layer power law exponent equal to 0.2.

According to the PARMAX-based stability analysis, the
system should be perturbed so as to induce a signifi-
cant response of one or more modes of interest. Among
the many possible ways of exciting a specific wind tur-
bine mode, as, for example, the use of pitch and torque
actuators (M. H. Hansen et al., 2006) or of eccentrical
masses (Thomsen et al., 2000), impulsive forces were used
in this work. Such forces could be realized in practice by py-
rotechnic exciters. The rotor angular speed is averaged over
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Figure 6. HPSD for the blade in-plane mode, obtained for a 3 m s−1

average wind speed.

the length of the recorded history and used to compute the
system period. Afterwards, the signal is resampled in order
to have an integer number of steps within a period.

The selection of the model complexity deserves special
care. As the order of the AR part, Na , is strictly related to the
number of system modes, it can be estimated by looking at
the number of principal-harmonic peaks present in the output
PSD. This heuristic approach for the problem at hand turned
out to be simple and effective and was preferred to more so-
phisticated criteria (Skjoldan and Bauchau, 2011; Avendaño-
Valencia and Fassois, 2014). As described in Sect. 2.1, the
input wind speed was considered as the sum of two contribu-
tions, a constant deterministic part and a turbulence-induced
one. As long as the deterministic input is considered to be
constant, one is allowed only to estimate an X part with or-
der Nb = 1. The MA-part order (noted as Ng) as well as the
number of harmonics used to model the periodicity of the co-
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Figure 7. Periodic Campbell diagram of the first blade edgewise
mode obtained from POMA identifications.

efficients (noted asNFa ,NFb andNFg ) were set with a trial an
error approach, until the achievement of satisfactory results.

After having performed the estimation for different wind
conditions and therefore at different rotor speeds, the results
of the analyses in terms of frequency, damping, and partici-
pation factors were fitted using low-order polynomials, com-
puted by means of the robust bi-square algorithm (Kutner et
al., 2005). The fitting process was applied only to the fre-
quency and damping of the principal harmonic, indicated
with the subscript (·)0. The corresponding characteristic ex-
ponent was then computed as

ηj0 =−ωj 0ξj 0+ ı ωj 0

√
1− ξj 2

0. (36)

The super-harmonics were finally obtained by means of
Eq. (A17). On the other hand, the participation factors of
all super-harmonics were fitted with the same bi-square al-
gorithm.

5.1 Blade edgewise mode

Two mainly edgewise doublets, applied at mid span and near
the tip of the blade, were used to excite this mode. The PAR-
MAX reduced-order model considered the following choice
of parameters: Na = 6, NFa = 1, Nb = 1, NFb = 1, Ng = 2,
and NFg = 0. This setting allows for the modeling of three
periodic modes.

The result of an identification executed at the rated rotor
speed is shown in Fig. 4. The excellent superposition of the
curves indicates a reduced-order PARMAX model of very
good quality, capable of modeling the signal behavior despite
the small nonlinearities and rotor speed variations character-
izing the system that generated the data.

To draw the Campbell diagram, eight different identifica-
tions were made in order to cover the entire range of angular

speeds of the machine. The results are shown in Fig. 5, where
red dots indicate each specific identification, whereas lines
refer to their quadratic fits. The gray bands are the 2σ non-
simultaneous functional prediction bounds, and measure the
confidence level of the fitting curves. From the gray bands
one can infer that each frequency and damping factor iden-
tified at a specific rotor speed is coherent with the others, as
all the estimates define a clear trend. On the other hand, a
significant but acceptable uncertainty still characterizes the
participation factors.

Similar analyses were conducted by Bottasso et al. (2014),
where a different turbulence intensity (IEC level “B”, instead
of a uniform 5 % over the whole wind speed range) was used,
caeteris paribus. As the Campbell diagram is similar in both
works, one may conclude that the PARMAX-based analysis
does not appear to be significantly influenced by turbulence
level.

Much longer portions of the time histories analyzed with
PARMAX were then processed with the POMA method. In
Fig. 6, the HPSD obtained for a wind field with a 3 m s−1

average speed is shown (note the similarities with Fig. 2).
For this case the turbulence intensity was quite low, and
the HPSD lines present well-defined peaks. However it was
found that, for increasing wind speed, while the n= 0 lines
remain well defined, the quality of the peaks associated with
the super-harmonics progressively degrades, making the es-
timation of damping (and, in some cases, also of frequency)
increasingly more difficult.

The Campbell diagram obtained from POMA is displayed
in Fig. 7. Comparing this figure with the PARMAX plot
shows that frequencies are well identified, but the high dis-
persion of damping factors masks the expected trend. Several
differences may also be seen between the plots with respect
to the participation factors. While both approaches indicate
that the principal harmonic is the most important in the re-
sponse, they do, however, detect a markedly different behav-
ior as a function of rotor speed. In addition, POMA overesti-
mates the participation factors of the ±2 super-harmonics.

5.2 Tower side–side mode

The tower side–side mode was excited with a chirp-shaped
force applied at the tower top. The frequency band of such
signal was set in order to excite only that single mode. The
tower base side–side moment was then recorded and used
as output. As only the tower side–side peak is visible in the
PSD of the response, then Na was set equal to 2. The other
coefficients were set as NFa = 1, Nb = 1, NFb = 1, Ng = 2,
and NFg = 1.

The agreement between the output predicted with the
PARMAX reduced model and the measure, not shown here
for the sake of brevity, is very good. The left plot of Fig. 8
shows the Campbell diagram obtained with the PARMAX
approach. In this diagram the results of the identifications
are approximated with straight lines. Looking at this plot, it
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Figure 8. Periodic Campbell diagram for the tower side–side mode obtained from PARMAX (left) and POMA (right) identifications.
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Figure 9. HPSD of the Md load, obtained for a 7 m s−1 average
wind speed.

appears that at 0.8�r the principal harmonic intersects the
2×Rev. For the PARMAX identification this is not partic-
ularly problematic, and in fact only the participation factor
has been slightly underestimated. On the other hand, this
poses a major problem for POMA. In fact, when the signal
is frequency-shifted by+2�, its average value is transported
over the principal peak, making it difficult to estimate the
mode shape and the damping of the tower side–side mode.

The Campbell diagram obtained from POMA identifica-
tions is shown in the right-hand plot of Fig. 8. The plot
clearly shows that the damping of the principal harmonic
estimated with the half-power bandwidth is double the one
estimated by PARMAX.

5.3 Backward and forward whirling in-plane modes

The backward and forward whirling in-plane modes were ex-
cited with a tower top side–side doublet, whose amplitude

and duration were selected such that the input force spectrum
is almost flat in the frequency range of interest. The three-
blade root edgewise bending momentsM1,M2, andM3 were
recorded, and the multi-blade coordinate transformation(
M0
Md
Mq

)
=

1
3

[
1 1 1

2cos(ψ1) 2cos(ψ2) 2cos(ψ3)
2sin(ψ1) 2sin(ψ2) 2sin(ψ3)

](
M1
M2
M3

)
(37)

was used to yield the direct and quadrature moments, noted,
respectively, as Md and Mq . The spectra of Md , displayed in
Fig. 9, show well-defined peaks.

The PARMAX reduced model was set with the follow-
ing choice of parameters: Na = 8, NFa = 1, Nb = 1, NFb =
1, Ng = 2, and NFg = 1. Both the backward and forward
whirling in-plane modes, as well as the side–side tower
mode, were nicely visible in the frequency plot of the per-
turbed time histories. Thus, for each wind speed, only one
reduced model capable of representing the behavior of all
these three modes was identified.

Figures 10 and 11 show on the left the periodic Camp-
bell diagram obtained using the PARMAX approach and on
the right the one computed with POMA, respectively, for the
backward and the forward whirling in-plane modes. It should
be noted that both approaches provide the same results in
terms of frequencies. The overall trend of the principal-
harmonic damping factors as functions of the rotor speed
is similarly captured. In particular, the PARMAX results are
characterized by a lower uncertainty for the backward mode
and a higher uncertainty for the forward one. The rising of the
damping factors with the angular speed, for these two modes,
has been observed also in Skjoldan and Hansen (2013), al-
though for an isotropic condition.

Once again, the damping of the super-harmonics obtained
with the POMA technique are not well estimated, as already
noted in Sect. 4. Moreover, the participation factors of the
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Figure 10. Periodic Campbell diagram of the backward whirling in-plane mode obtained from PARMAX (left) and POMA (right) identifi-
cations.
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Figure 11. Periodic Campbell diagram of the forward whirling in-plane mode obtained from PARMAX (left) and POMA (right) identifica-
tions.

±2 super-harmonics are typically too high: for example, in
the right-hand plot of Fig. 11, one can see that the partici-
pation of super-harmonic +2 of the forward whirling mode
is higher than that of the principal one. This strongly over-
estimated participation is due to the nearly 2� spacing of
the whirling modes, which causes their super-harmonics to
nearly overlap.

6 Conclusions

In this paper we have considered a model-independent pe-
riodic stability analysis capable of handling turbulent distur-
bances. The approach is based on the identification of a PAR-

MAX reduced model from a transient response of the ma-
chine. The full Floquet theory is then applied to the reduced
model, yielding all modal quantities of interest. As only time
series of measurements are necessary, the method appears to
be suitable for the application to real wind turbines operating
in the field.

In order to assess the validity of the proposed method, the
well-known POMA was implemented and used for compar-
ison. Tests were performed first with the help of a wind tur-
bine analytical model, whose exact solution can be obtained
by the theory of Floquet, and then with a high-fidelity wind
turbine multi-body model operating in turbulent wind condi-
tions.
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Based on the results obtained in this study, one may draw
the following considerations.

– Both methods are able to characterize the relevant be-
havior of the wind turbine in turbulent wind conditions.
However, the results provided by the proposed PAR-
MAX analysis are in general more accurate than those
given by the POMA technique, especially if one looks
not only at the principal harmonics but also at the super-
harmonics.

– Often the underlying hypotheses of POMA are not ex-
actly fulfilled, and this leads to inaccuracies especially
in terms of damping and participation factors. These ef-
fects are more visible for the whirling modes, as they are
separated by about 2�, which means that there will al-
ways be a perfect overlap between the super-harmonics
of these two modes at some angular velocity. The PAR-
MAX analysis is less prone to such problems.

– A major advantage of PARMAX over POMA is that it
requires shorter time histories. This is important in tur-
bulent conditions, where the rotor speed is hardly con-
stant (which, on the other hand, is a fundamental hy-
pothesis of both methods).

The development of the present SISO PARMAX approach
suggests a number of extensions, which are currently under
investigation.

– The use of multiple outputs in a multiple-input multiple-
output (MIMO) PARMAX framework could improve
the quality of the results.

– Due to the stochastic nature of turbulence, a multi-
history PARMAX applied to different realizations of the
same experiment could provide more robust modal re-
sults, along with the associated variances.

– The peak-picking method is rather simple, and it is un-
able to exploit all the informational content available in
the HPSD, especially in the presence of noisy peaks.
Fitting algorithms have been preliminarily explored (see
Allen et al., 2011a), but their application to the multiple
output case has not yet been attempted.

Wind Energ. Sci., 1, 177–203, 2016 www.wind-energ-sci.net/1/177/2016/
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Appendix A: Review of linear time periodic systems

A1 Floquet theory in continuous time

A generic SISO LTP system in continuous time can be writ-
ten in state space form as

ẋ = A(t)x+B(t)u, (A1a)
y = C(t)x+D(t)u, (A1b)

where t is time and x, u, and y the state, input, and output
vectors, respectively, while A(t), B(t), C(t), and D(t) are pe-
riodic system matrices such that

A(t + T )= A(t), B(t + T )= B(t), (A2a)
C(t + T )= C(t), D(t + T )= D(t), (A2b)

for any t . The smallest T satisfying Eq. (A2) is defined as
the system period. Scalar u can be any of the wind turbine
control inputs (i.e., blade pitch angles, electrical torque, pos-
sibly the yaw angle) as well as exogenous inputs related to
the wind states (e.g., wind speed, vertical or lateral shears,
cross-flow).

To study the stability of Eq. (A1a), its autonomous version
is considered together with the associated initial conditions:

ẋ = A(t)x, x(0)= x0. (A3)

The state transition matrix 8(t, τ ) maps the state at time τ ,
x(τ ), onto the state at time t , x(t),

x(t)=8(t, τ )x(τ ), (A4)

and it obeys a similar equation with its associated initial con-
ditions

8̇(t, τ )= A(t)8(t, τ ), 8(τ,τ )= I, (A5)

where I is the identity matrix. It can be shown that in the
continuous-time case the transition matrix is always invert-
ible (Bittanti and Colaneri, 2009).

An important role in the stability analysis of periodic sys-
tems is played by the state transition matrix over one period
9(τ )=8(τ + T ,τ ), termed monodromy matrix. By defini-
tion, the monodromy matrix relates two states separated by
a period; consequently, a generic state that is sampled at ev-
ery period, noted as x̃τ (k)= x(τ + kT ), obeys the following
linear-invariant discrete-time equation

x̃τ (k+ 1)=9(τ )̃xτ (k). (A6)

The system is asymptotically stable if all the eigenvalues of
the monodromy matrix, characteristic multipliers and noted
as θj , belong to the open unit disk in the complex plane. It
can be shown that the eigenvalues of the monodromy ma-
trix and their multiplicity are time-invariant even if the mon-
odromy matrix is periodic (Bittanti and Colaneri, 2009). For

this reason, one can ignore the time lag τ when referring to
the characteristic multipliers. The eigenvalues θj and associ-
ated eigenvectors sj are obtained by the spectral factorization
of the monodromy matrix, i.e.,

9(τ )= Sdiag(θj )S−1, (A7)

with S= [. . .,sj , . . .].
In order to determine the frequency content of a periodic

system, it is necessary to introduce the so-called Floquet–
Lyapunov transformation. The Floquet–Lyapunov problem is
the one of finding a bounded, periodic, and invertible state
space transformation z(t)=Q(t)x(t) such that the resulting
governing equation

ż= Rz (A8)

is time-invariant, i.e., the Floquet factor matrix R is constant.
Since R=Q(t)A(t)Q−1(t)+Q̇(t)Q−1(t), the periodic trans-
formation Q(t) must obey the following matrix differential
equation

Q̇(t)= RQ(t)−Q(t)A(t), (A9)

whose solution is

Q(t)= eR(t−τ )Q(τ )8−1(t, τ ). (A10)

Exploiting the periodicity condition Q(τ + T )=Q(τ ), one
gets the relationship between monodromy matrix and Flo-
quet factor, which writes

9(τ )=Q(τ )−1eRTQ(τ ). (A11)

The eigenvalues of the Floquet factor, called characteristic
exponents and noted as ηj , are computed by the spectral fac-
torization of R:

R= V diag(ηj )V−1, (A12)

with V= [. . .,vj , . . .]. Inserting Eqs. (A7) and (A12)
into Eq. (A11), the following result is derived

diag(θj )= S−1Q(τ )−1Vdiag(eηjT )V−1Q(τ )S, (A13)

which shows that V=Q(τ )S and, more importantly, that
characteristic multipliers and characteristic exponents are re-
lated as

θj = e
ηjT . (A14)

Note that there is an infinite number of Floquet factors,
and therefore an infinite number of Floquet–Lyapunov trans-
formations. In fact, one can choose any invertible initial con-
dition Q(τ ). In addition, computing characteristic exponents
from multipliers by inverting Eq. (A14) leads to a multiplic-
ity of solutions, as in fact

ηj =
1
T

ln(θj )=
1
T

(
ln
∣∣θj ∣∣+ ı( 6 (θj )+ 2`π )

)
, (A15)
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where ` ∈ Z is an arbitrary integer. This indeterminacy, how-
ever, does not affect the real frequency content of the re-
sponse, since the transition matrix is uniquely defined. This
aspect of the problem will be further analyzed later on in
these notes.

Given Q(τ ) and R, the transition matrix is readily obtained
from Eq. (A10) as

8(t, τ )= P(t)eR(t−τ )P(τ )−1, (A16)

where the periodic matrix P(t)=Q(t)−1 is termed periodic
eigenvector.

Consider now, for each mode, one of the infinite solutions
of Eq. (A15), for example, the one with `= 0, noted as η̂j .
Introducing�= 2π/T , any other characteristic exponent ηj
could be computed from η̂j as

ηj = η̂j + ı n�, n ∈ Z. (A17)

Inserting Eq. (A12) into Eq. (A16), one can express the state
transition matrix as the following modal sum:

8(t, τ )=
Ns∑
j=1

Zj (t, τ )eη̂j (t−τ ), (A18)

where Zj (t, τ )= P(t)VIjjV−1Q(τ ), while Ijj is a matrix
with the sole element (j, j ) equal to 1 and all others equal
to 0. Because of the particular definition of Ijj , matrix
Zj (t, τ ) is of unitary rank ∀(t, τ ), and it is also equal to
ψj (t)Lj (τ )T , where

ψj (t)= colj (4(t)), (A19a)

Lj (τ )T = rowj (4−1(τ )), (A19b)

with4(t)= P(t)V. Equation (A18) can be now reformulated
as

8(t, τ )=
Ns∑
j=1

ψj (t)Lj (τ )T eη̂j (t−τ ). (A20)

Exploiting the periodicity of ψj (t), Eq. (A20) becomes

8(t, τ )=
Ns∑
j=1

+∞∑
n=−∞

ψj nLj (τ )T e(η̂j+ı n�)(t−τ )eı n�τ , (A21)

where ψj n is the amplitudes of the harmonics of the Fourier
expansion of ψj (t). This expression of the state transition
matrix can also be found in Skjoldan and Hansen (2009),
Allen et al. (2011b), and Bottasso and Cacciola (2015).

From Eq. (A21) it appears that, for each mode, an infinite
number of exponents (playing the role of eigenvalues of the
LTI system) participates in the response of the system. Fur-
thermore, a single frequency is not sufficient for completely
characterizing that mode. All exponents have imaginary parts
that differ by integer multiples of � and have the same real

part; thus, all exponents of a given mode are either stable or
unstable. This fact is not surprising, as the stability of the
system is just determined by the characteristic multipliers,
which are uniquely defined.

For the LTP system, the exponents η̂j + ı n� play the
role of the eigenvalues of the LTI case, as they yield the
frequencies ωj n =

∣∣η̂j + ı n�∣∣ and damping factors ξj n =
−Re(η̂j )/ωj n of each mode. To describe this situation,
this infinite multiplicity of frequencies is termed a fan of
modes (cf. Bottasso and Cacciola, 2015). Each harmonic in
a fan contributes to the overall response according to its as-
sociated “modal shape” ψj n. The relative contribution of the
nth harmonic to the j th mode is measured through its partic-
ipation factor, defined as

φj n =

∣∣∣∣∣∣ψj n∣∣∣∣∣∣∑
n

∣∣∣∣∣∣ψj n∣∣∣∣∣∣ . (A22)

The triads {ωj n,ξj n,φj n} describe completely the behavior
of a periodic mode. The participation factors can be defined
also as functions of the Frobenius norm of the harmonics of
Zj (t, τ ), Zjn = ψj nLj (τ )T , as shown in Bottasso and Cac-
ciola (2015):

φj n =

∣∣∣∣Zj n∣∣∣∣F∑
n

∣∣∣∣Zj n∣∣∣∣F . (A23)

The two definitions are exactly equivalent as, in this specific
case,

∣∣∣∣Zj n∣∣∣∣F = ∣∣∣∣∣∣ψj n∣∣∣∣∣∣ ∣∣∣∣Lj (τ )
∣∣∣∣ and Lj (τ ) stays the same

for all harmonics.1

The apparent indeterminacy in the computation of the
imaginary part of the logarithm of the characteristic multi-
pliers in Eq. (A15) is then understood. In fact, all the expo-
nents that satisfy Eq. (A14) are present in the response of the
system, as it can be seen from Eq. (A21). Since the transi-
tion matrix is uniquely defined, any choice of the integer `
in Eq. (A15) would act as a shift in the frequency content
of Zj , such that all triads {ωj n, ξj n, φj n} remain exactly the
same, as first observed by Borri (1986) and later discussed
by Peters et al. (2011).

Often, although not always, the harmonic with the high-
est participation is very similar in terms of frequency and
damping to the one that would result from the invariant anal-
ysis of periodic systems based on the Coleman transforma-
tion (Coleman and Feingold, 1958; Hansen, 2004). As sug-
gested by Bottasso and Cacciola (2015), such a harmonic
may be called the principal one, while the others may be
termed super-harmonics. Furthermore, any one of these har-
monics could resonate with external excitations.

1Given two-column vectors v = (. . ., vi , . . .)T and
w = (. . ., wj , . . .)T , the square of the Frobenius norm of the

product vwT can be expressed as
∣∣∣∣∣∣vwT ∣∣∣∣∣∣2

F
=
∑
i

∑
j (viwj )2

=∑
iv

2
i

∑
jw

2
j
= ||v||2||w||2.
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In order to understand how each harmonic appears in a
specific output of the system, the output-specific participa-
tion factor can be defined. To this end, consider an output of
the autonomous system Eq. (A3),

y(t)= C(t)8(t, τ )x(τ )=8y(t, τ )x(τ ). (A24)

Inserting Eq. (A20) into Eq. (A24) the following is derived:

8y(t, τ )=
Ns∑
j=1

C(t)ψj (t)Lj (τ )T eη̂j (t−τ ). (A25)

Exploiting now the periodicity of the product C(t)ψj (t),
Eq. (A25) can be rearranged as

8y (t, τ )=
Ns∑
j=1

+∞∑
n=−∞

cj ne
(
(η̂j+ın�)(t−τ )

)
Lj (τ )T eın�τ , (A26)

where cj n is the harmonics of the Fourier expansion of
C(t)ψj (t). The output-specific participation factor can fi-
nally be defined as

φ
y
j n
=

∣∣cj n∣∣∑
n

∣∣cj n∣∣ . (A27)

A2 The harmonic transfer function and the harmonic
frequency response function

The forced response of system Eq. (A1), called yF(t), can be
computed as

yF(t)=

t∫
0

h(t,σ )u(σ )dσ = (A28)

t∫
0

(
C(t)8(t,σ )B(σ )+D(σ )δ(t − σ )

)
u(σ )dσ,

where

h(t, τ )= C(t)8(t, τ )B(τ )+D(τ )δ(t − τ ) (A29)

is the impulse response. From Eq. (A28), it appears that the
periodicity of C(t), B(t), and 8(t, τ ) results in an input–
output behavior of an LTP system that is far from being de-
scribable as an LTI-like one. In particular, it can be shown
that an LTP system subjected to an input at a given frequency
may respond at an infinite number of frequencies, which in
addition to the input frequency itself include also the inte-
ger multiples of the system frequency (Bittanti and Colaneri,
2009; Wereley, 1991). This is also the reason why any out-
put of a wind turbine subjected to a constant-in-time wind
(i.e., at the zero frequency) is characterized by frequencies at
the multiples of the rotor speed (i.e., 0×Rev, 1×Rev, 2×Rev,
. . . ).

In the frequency domain, the input–output relation can be
expressed by means of the HTF (cf. Bittanti and Colaneri,
2009; Wereley, 1991), which can be interpreted as the exten-
sion to periodic systems of the standard time-invariant trans-
fer function. To this end, the so-called exponentially modu-
lated periodic (EMP) signal is defined as

v(t)=
∑
k∈Z
vke

(s+ık�)t , (A30)

where s ∈C. According to definition Eq. (A30), any vk can
be also viewed as the Laplace transformation of v(t) evalu-
ated at s+ ık� as

vk(s)=

∞∫
−∞

v(t)e−(s+ık�)tdt. (A31)

It can be shown that a periodic system subjected to an EMP
admits an EMP regime (Bittanti and Colaneri, 2009) and that
in such a regime its states are EMP signals. In order to ex-
ploit this property, one has first to define two doubly infinite-
dimensional vectors containing, respectively, the EMP har-
monics u(t) and y(t), as

Y(s)= (· · · y−1(s) y0(s) y1(s) · · ·)T , (A32a)

U (s)= (· · · u−1(s) u0(s) u1(s) · · ·)T . (A32b)

Next, the doubly-infinite Toeplitz matrices A, B, C, and D,
containing the Fourier expansions Ak , Bk , Ck , and Dk of the
corresponding system matrices, are defined as

A=



. . .
...

...
...

...

· · · A0 A−1 A−2 · · ·

· · · A1 A0 A−1 · · ·

· · · A2 A1 A0 · · ·

...
...

...
...

. . .

 , (A33)

and similarly for the B, C, and D matrices. Finally, by in-
serting the EMP expansions of y and u and the Fourier ex-
pansions of the system matrices into Eq. (A1), summing up
all terms at the same frequency, the input–output relationship
is derived as

Y(s)= G(s)U (s), (A34)

where the HTF is defined as

G(s)= C
(
sI − (A−N )

)−1
B+D, (A35)

with N = blkdiag{ık�I, k ∈ Z} and I and I being identity
matrices of suitable dimensions.

The HTF can also be represented by means of the impulse
response of the system (Bittanti and Colaneri, 2009). From
Eq. (A29), it is easily verified that function h(t, t − r) for a
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fixed time lag r is periodic and, consequently, that it can be
expanded in a Fourier series as

h(t, τ )=
∞∑

k=−∞

hk(t − τ )eık�t . (A36)

The output equation can then be written according to the fol-
lowing convolution:

y(t)=
∞∑

k=−∞

t∫
0

hk(t − τ )eık�(t−τ )u(τ )eık�τdτ, (A37)

which leads to the input–output relation in the Laplace do-
main:

Y (s)=
∞∑

k=−∞

Hk(s− ık�)U (s− ıkω), (A38)

where Y (s), U (s), and Hk(s) are, respectively, the Laplace
transforms of y, u, and hk . Equation (A38) can be evaluated
for each element of the EMP output signal Y by substitut-
ing the complex number s with the exponentially modulated
periodic one s+ ık� with k ∈ Z, leading to the following re-
lationship:

Y (s+ ık�)=
∑
n=−∞

Hk−n(s+ ın�)U (s+ ın�). (A39)

Consequently, since Y (s+ ık�)= yk(s) and U (s+ ık�)=
uk(s) because of Eq. (A31), the HTF can be written as

G(s)=

. . .
...

...
...

...

· · · H0(s− ı�) H−1(s) H−2(s+ ı�) · · ·
· · · H1(s− ı�) H0(s) H−1(s+ ı�) · · ·
· · · H2(s− ı�) H1(s) H0(s+ ı�) · · ·

...
...

...
...

. . .

 . (A40)

Inserting Eq. (A21) into Eq. (A29), one can derive the fol-
lowing expression

h(t, τ ) =
∞∑

n=−∞

 Ns∑
j=1

∞∑
m=−∞

cj ne
((
ηj+ın�

)
(t−τ )

)
ljme

ı(n+m)�τ


+

∞∑
k=−∞

dke
ık�tδ (t − τ ) , (A41)

where the product LTj (τ )B(τ ) and D(τ ) have been expanded
in Fourier series, ljm and dk being the related amplitudes.
After some manipulations (see also Wereley, 1991; Were-
ley and Hall, 1990), the Laplace transformation of hk(t −
τ )e−ın�(t−τ ) can be finally written as

Hk(s+ın�)=
Ns∑
j=1

∞∑
m=−∞

cj k+mlj−m

s− (ηj + ı(m− n)�)
+dk. (A42)

Consider now the row index ` ∈ Z and the column index
r ∈ Z of the HTF, defined such that the element with `=
r = 0 (noted as G0,0) corresponds to the median element
H0(s) and the element with `= r =−1 (noted asG−1,−1) to
H0(s− i�). Hence, according to such definitions and thanks
to Eq. (A42), the following holds:

G`,r (s)=H`−r (s+ ır�)

=

Ns∑
j=1

∞∑
w=−∞

cj `+wlj−r−w

s− (ηj + ıw�)
+ d`−r . (A43)

Consequently, the HTF can be computed as

G(s)=
Ns∑
j=1

∞∑
w=−∞

Cj,wBTj,w
s− (ηj + ıw�)

+D, (A44)

where

Cj,r =
(
· · · cj−1+w cj w cj 1+w · · ·

)T
, (A45)

Bj,m =
(
· · · lj 1−w lj−w lj−1−w · · ·

)T
, (A46)

and D=D.
From a practical standpoint, the use of the harmonic input–

output relation expressed by the HTF implies that one has
to consider a truncated finite dimensional approximation of
G(s), which corresponds to the use of truncated versions of
the EMP input and output signals. The convergence of trun-
cated HTFs has been discussed in Sandberg et al. (2005).

A3 The discrete-time case

In this section the stability analysis of periodic discrete-time
systems is briefly reviewed. For a more comprehensive treat-
ment, the reader is referred to Bittanti and Colaneri (2009)
and Bottasso and Cacciola (2015).

The autonomous dynamic equation of a generic LTP sys-
tem in discrete time and its initial conditions are

x(k+ 1)= A(k)x(k), x(0)= x0, (A47)

where k is a generic time instant and A(k) is a periodic matrix
of period K such that A(k+K)= A(k), ∀k. Similarly, the
transition matrix obeys the following equation with its initial
conditions:

8(k+ 1, κ)= A(k)8(k, κ), 8(κ, κ)= I. (A48)

In this work we consider only reversible systems, i.e., those
for which (8(k, κ)) 6= 0, ∀(k, κ).

For reversible discrete-time systems, the state transition
matrix 8(k, κ) can be decomposed into periodic and con-
tractive parts as

8(k, κ)= P(k)R(k−κ)P(κ)−1, (A49)
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where P(k) is periodic and R is constant. Here again,
the system is stable if the characteristic multipliers θj ,
i.e., the eigenvalues of the monodromy matrix 9(κ)=
P(κ)R(K)P(κ)−1, belong to the open unit disk in the com-
plex plane. The relationship between characteristic multipli-
ers and characteristic exponents is

θj = η
K
j . (A50)

In the discrete-time case, the apparent multiplicity of the
characteristic exponents manifests itself as a phase indeter-
mination since

ηj =
K

√∣∣θj ∣∣exp
(
ı
6 (θj )+ 2`π

K

)
, (A51)

where `= 0, . . ., K − 1 is an arbitrary integer. As in the
continuous-time case, this does not in reality generate any
inconsistency as frequencies, damping, and participation fac-
tors of the various harmonics are unaffected by this apparent
arbitrariness.

Following the same approach of the continuous-time case,
the transition matrix can be rewritten as

8(k,κ)=
Ns∑
j=1

ψj (k)Lj (κ)T eη̂j (k−κ), (A52)

where 4(k)= P(k)V and

ψj (k)= colj (4(k)), (A53a)

Lj (κ)T = rowj (4−1(κ)). (A53b)

After having expanded ψj (k) in Fourier series, one gets

8(k,κ)=
Ns∑
j=1

K−1∑
n=0

ψj nLj (κ)T

(∣∣η̂j ∣∣exp(ı( 6 (η̂j )+ n
2π
K

))
)k−κ

, (A54)

where ψj n is now the amplitudes of the harmonics of the
Fourier expansion of ψj (k). Coherently, the multiplication
of Eq. (A54) with C(k) leads to

8y(k,κ)=
Ns∑
j=1

K−1∑
n=0

cj nLj (κ)T

(∣∣η̂j ∣∣exp(ı( 6 (η̂j )+ n
2π
K

))
)k−κ

, (A55)

cj n being the harmonics of the Fourier expansion of
C(k)ψj (k). This shows that the j th mode is characterized
byK exponents with the same modulus and different phases.
Each exponent can be transformed into the continuous one
using the following expression (cf. Franklin and Powell,
1980):

ηj c =
1
1t

ln
(
ηj d

)
, (A56)

where1t is the sampling time and subscripts (·)c and (·)d re-
fer, respectively, to the continuous- and discrete-time cases.
Once the continuous-time exponents are computed, frequen-
cies, damping, and participation factors can be readily ob-
tained as in the continuous-time case.

Appendix B: Derivation of the equations of motion
for a wind turbine analytical model

The simplified upwind horizontal-axis wind turbine model
used in this work, depicted in Fig. B1, considers the coupled
motion of tower and blades. The tower fore–aft and side–
side flexibility are rendered by two equivalent linear springs
and dampers. Each blade is modeled as two rigid bodies con-
nected to each other by means of two equivalent revolute
joints, which allow, respectively, the blade flap and edgewise
rotations. The inner part of the blade is rigidly connected
to the hub. Each joint is associated with a rotational spring
and a rotational damper. The inertial and structural charac-
teristics of each element are chosen so as to match the first
tower fore–aft and side–side mode and the first blade flap-
wise and edgewise modes in vacuo, computed using a high-
fidelity multi-body model of the wind turbine.

The reference frame used for the derivation of the equa-
tions of motions has its origin located at the hub, the x axis
directed downward, the z axis directed from the tower to the
rotor, and the y axis selected so as to form a right-handed
triad. To simplify the notation, in the following subscript k,
denoting the blade number, will be dropped together with the
time dependence whenever possible.

The contribution of the two blade parts to the total energy
can be developed separately. Thus, let rU and rD indicate,
respectively, the dimensional abscissa along the inner and the
movable parts of the blade. The position of a generic blade
point is given by

rU =

 rU cosψ
yH + rU sinψ

zH

 (B1)

when the point belongs to the inner part of the blade and by

rD =

 ecosψ + rD cosβ cos(ψ + ζ )
yH + e sinψ + rD cosβ sin(ψ + ζ )

zH + r sinβ

 (B2)

when it belongs to the movable part. The kinetic energy of the
whole rotor is obtained by summing up the kinetic energy of
the hub, TH , and of both the inner and the movable parts of
the kth blade, respectively, noted as TDk and TUk , resulting in

T = TH +

B∑
k=1

(
TUk + TDk

)
, (B3)

where

TH =
1
2
mH(ẏ2

H + ż
2
H ) (B4)
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Figure B1. Sketch of the wind turbine analytical model. Only one blade is shown in order to avoid cluttering the figure.

and

TUk =
1
2

e∫
0

ρ(r)ṙU (r) · ṙU (r)dr, (B5a)

TDk =
1
2

R∫
e

ρ(r)ṙD(r) · ṙD(r)dr, (B5b)

ρ(r) being the blade mass per unit span.
All springs and gravity contribute to the potential energy

of the system as

V = VyH +VzH +

B∑
k=1

(
Vβk +Vζk +VUk +VDk

)
, (B6)

where the potential energy of the side–side and fore–aft
springs is defined, respectively, as VyH = 1/2Kyy2

H and
VzH = 1/2Kzz2

H , while that of the flap-wise and edgewise
springs is defined as Vβk = 1/2Kββ2

k and Vζk = 1/2Kζ ζ 2
k .

Finally the contribution of gravity can be expressed as

VU =−mUgxCGU =−mUgrGU cosψ, (B7a)
VD =−mDgxCGD =−mDgrGD cosβ cos(ψ + ζ ). (B7b)

The damping function D follows a rather similar proce-
dure, where

D =DyH +DzH +

B∑
k=1

(
Dβk +Dζk

)
. (B8)

The aerodynamic model is based on a linearized BEM
approach with constant aerodynamic properties along the

Table B1. Definitions of the symbols in the aerodynamic loads.

Symbol Meaning Expression

θp Pitch angle
K1 Vertical shear gradient
U0, V0 Cross and axial wind
vi Axial induced velocity
λ Nondimensional inflow (V0− vi − żH )/(�R)
Ū0 Nondimensional cross-flow (U0− ẏH )/(�R)
V̄0 Nondimensional axial wind V0/(�R)
γ Lock number ρClα cR

4/JD

blade, mostly taken from Eggleston and Stoddard (1987),
with the addition of the hub velocity (ẏH , żH ) to the inflow
and cross-flow terms but neglecting the yaw rate. Table B1
gives the meaning of some symbols used in the following
equations.

The hub shear force in the fore–aft direction is

Saero
β =

1
2
γ JD

�2

R

{
λ

2
+
θp

3
−
β̇/�

3
− sinψ

[
Ū0β

2

]
− cosψ

[
Ū0

(
λ−

β̇/�

2
− θp

)
+
K1V̄0

3

]}
. (B9)

The hinge out-of-plane moment is

Maero
β =

1
2
γ JD�

2
{
λ

3
+
θp

4
−
β̇/�

4
− sinψ

[
Ū0β

3

]
− cosψ

[
Ū0

(
λ

2
−
β̇/�

3
+

2θp
3

)
+
K1V̄0

4

]}
. (B10)
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The hub shear force in the direction parallel to the chord of
the blade, and pointing towards the leading edge, is

Saero
ζ =

1
2
γ JD

�2

R

{
λ

(
λ+

θp

2

)
−
β̇

�

(
λ+

θp

3

)
−cosψ

[
K1V̄0

(
λ+

θp

3

)
+ Ū0θpλ−

β̇

�

(
2
3
K1V̄0+

Ū0θp

2

)]
− sinψ

[
βŪ0

(
2λ+

θp

2
−
β̇

�

)]}
. (B11)

The hinge moment in the edgewise direction is

Maero
ζ =

1
2
γ JD�

2
{
λ

(
λ

2
+
θp

3

)
−
β̇

�

(
2
3
λ+

θp

4

)
− cosψ

[
K1V̄0

(
2
3
λ+

θp

4

)
+
Ū0θpλ

2

−
β̇

�

(
K1V̄0

2
+
Ū0θp

3

)]
− sinψ

[
βŪ0

(
λ+

θp

3
−

2
3
β̇

�

)]}
. (B12)

This aerodynamic model assumes that the wind velocity
varies linearly over the rotor disc, and therefore it is not
suited to simulate turbulent wind fields.

The virtual work of the aerodynamic forces and moments
results in

δW aero
=

B∑
k=1

(
Saero
ζk

cos(ψk + ζk)δyH + Saero
βk

δzH

+Maero
βk

δβk +M
aero
ζk

δζk

)
. (B13)

The generalized forces follow directly from the previous ex-
pression.

Finally, the nonlinear Lagrangian equations of motion of
the system are

JDβ̈ +Cβ β̇ +Kββ =M
aero
β − JD(�+ ζ̇ )2 cosβ sinβ

− mDrGD
(
g cos(ψ + ζ ) sinβ + e�2 cosζ sinβ

− ÿH sin(ψ + ζ ) sinβ + z̈H cosβ
)
, (B14a)

JDcos2βζ̈ +Cζ ζ̇ +Kζ ζ =M
aero
ζ + 2JD(�+ ζ̇ )β̇ cosβ sinβ

− mDrGD cosβ
(
g sin(ψ + ζ )

+ e�2 sinζ + ÿH cos(ψ + ζ )
)
, (B14b)

(mH+B(mU +mD))z̈H +CzżH +KzzH

=

B∑
k=1

(
Saero
βk
−mDrGD

(
β̈k cosβk − β̇2

k sinβ
))
, (B14c)

(mH+B(mU +mD))ÿH +Cy ẏH +KyyH

=

B∑
k=1

(
Saero
ζk

cos(ψk + ζk)+mDrGD
(
�2 cosβk sin(ψk + ζk)

+ β̇2
k cosβk sin(ψk + ζk)+ 2β̇k ζ̇k sinβk cos(ψk + ζk)

+ ζ̇ 2
k cosβk sin(ψk + ζk + 2�(β̇k sinβk cos(ψk + ζk)

+ ζ̇k cosβk sin(ψk + ζk))+ β̈k sinβk sin(ψk + ζk)

− ζ̈k cosβk cos(ψk + ζk)
))
. (B14d)

All equations shown in this section and the system
linearization were computed analytically with Wolfram
Mathematica® (Wolfram Research, 2013).
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Appendix C: Nomenclature

A(q;k) Periodic autoregressive polynomial
B(q;k) Periodic exogenous polynomial
Na Order of the autoregressive part
Nb Order of the exogenous part
Ng Order of the moving average part
F(q;k) Shape filter polynomial
G(q;k) Periodic moving average polynomial
K Discrete-time system period
T Continuous-time system period
J Cost function
N Total number of samples used for identifica-

tion
Ns Number of states
P(p) Characteristic multipliers of the PARMAX

predictor p
NFa Number of harmonics of the autoregressive

coefficients
NFb Number of harmonics of the exogenous coef-

ficients
NFg Number of harmonics of the moving average

coefficients
C Complex number set
Z Integer number set
B Number of blades
Y (s) Laplace transformation of the output
U (s) Laplace transformation of the input
Hk(s) Laplace transformation of the kth harmonic

of the impulse response
z Measured output
ẑ Predicted output
q One-step-ahead shift operator
k Time index
ut Turbulent wind input
u Mean wind speed
n Order of the system, n=max(Na, Nb, Ng)
y System output
e Process noise
yk(ω) Fourier transformation of the kth shifted copy

of the output
uk(ω) Fourier transformation of the kth shifted copy

of the input
yk(s) Laplace transformation of the kth shifted

copy of the output
uk(s) Laplace transformation of the kth shifted

copy of the input
t Time
yF Forced response
h(t, τ ) Impulse response
hk(t) kth harmonic of the impulse response
ı Imaginary unit
s Laplace variable
A(t) State matrix
B(t) Input matrix

E(t) Process noise input matrix
C(t) Output matrix
D(t) Direct transition matrix
F(t) Measurement noise matrix
N(t) State matrix of the PARMAX predictor
G Harmonic transfer function
U Exponentially modulated periodic expansion

of the input
Y Exponentially modulated periodic expansion

of the output
Y (ω) Vector of Fourier transformations of all

shifted copies of the output
U (ω) Vector of Fourier transformations of all

shifted copies of the input
G(ω) Harmonic frequency response function
SYY (ω) Harmonic power spectrum of the output
SUU (ω) Harmonic power spectrum of the input
8 State transition matrix
I Identity matrix
9 Monodromy matrix
S Eigenvector matrix of the monodromy matrix
Q(t) Floquet–Lyapunov transformation
R Floquet factor
V Eigenvector matrix of the Floquet factor
P(t) Periodic eigenvector
x State vector
p Unknown vector of model coefficients
x0 Initial state vector
x̃τ State vector sampled at every period
sj j th eigenvector of the monodromy matrix
z Floquet–Lyapunov transformed state vector
� Rotor speed
δut Turbulent perturbation of the wind
αi ith coefficient of canonical system matrix A
βi ith coefficient of canonical input matrix B
γi ith coefficient of canonical process noise in-

put matrix E
ψ Azimuth angle
ε Prediction error
ω Generic frequency
ηj j th characteristic exponent
τ Time lag
θj j th characteristic multiplier
φj n Participation factor of the nth harmonic of the

j th mode
φ
y
j n

Output-specific participation factor of the nth
harmonic of the j th mode

(·)∗ Complex conjugate
(·)s Sine amplitude
(·)c Cosine amplitude
(·)T Transpose
(·)H Complex conjugate transpose
˙(·) Time derivative
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IPC Individual pitch control
HTF Harmonic transfer function
HFRF Harmonic frequency response function
MBC Multi-blade coordinate
LTI Linear time-invariant
LTP Linear time periodic
ARMAX Autoregressive moving average with exoge-

nous input
PARMAX Periodic ARMAX
POMA Periodic operational modal analysis
PEM Prediction error method
EMP Exponentially modulated periodic
SISO Single-input single-output
PSD Power spectral density
HPSD Harmonic PSD
BEM Blade element momentum
SS State-space
CG Center of gravity
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