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Abstract Many hydrological (as well as diverse earth, environmental, ecological, biological, physical,
social, financial and other) variables, Y, exhibit frequency distributions that are difficult to reconcile with
those of their spatial or temporal increments, DY. Whereas distributions of Y (or its logarithm) are at times
slightly asymmetric with relatively mild peaks and tails, those of DY tend to be symmetric with peaks that
grow sharper, and tails that become heavier, as the separation distance (lag) between pairs of Y values
decreases. No statistical model known to us captures these behaviors of Y and DY in a unified and consist-
ent manner. We propose a new, generalized sub-Gaussian model that does so. We derive analytical expres-
sions for probability distribution functions (pdfs) of Y and DY as well as corresponding lead statistical
moments. In our model the peak and tails of the DY pdf scale with lag in line with observed behavior. The
model allows one to estimate, accurately and efficiently, all relevant parameters by analyzing jointly sample
moments of Y and DY. We illustrate key features of our new model and method of inference on synthetically
generated samples and neutron porosity data from a deep borehole.

1. Introduction

Traditional geostatistical models consider data to represent samples of multivariate Gaussian functions. Yet
many earth, environmental, ecological, biological, physical, social, financial and other variables, Y, exhibit
frequency distributions that are difficult to reconcile with those of their spatial or temporal increments, DY.
Whereas distributions of Y (or its logarithm) are at times slightly asymmetric with relatively mild peaks and
tails, those of DY tend to be symmetric with peaks that grow sharper, and tails that become heavier, as the
separation distance (lag) between pairs of Y values decreases. Documented examples include porosity
[Painter, 1996; Guadagnini et al., 2014, 2015], permeability [Painter, 1996; Riva et al., 2013a, 2013b] and
hydraulic conductivity [Liu and Molz, 1997; Meerschaert et al., 2004; Guadagnini et al., 2013], electrical resis-
tivity [Painter, 2001; Yang et al., 2009], soil and sediment texture [Guadagnini et al., 2014], sediment transport
rate [Ganti et al., 2009], rainfall [Kumar and Foufoula-Georgiou, 1993], measured and simulated turbulent
fluid velocity [Castaing et al., 1990; Boffetta et al., 2008], and magnetic fluctuation [von Papen et al., 2014]
data. No statistical model known to us captures these behaviors of Y and DY in a unified and consistent
manner. A step in that direction is represented by the fractional Laplace motion model of Meerschaert et al.
[2004] and Kozubowski et al. [2006, 2013], which transitions automatically from heavy-tailed to Gaussian
with increasing lag.

Heavy tails are important because they control the distributions of extreme values, which are of central
interest in hydrology and many other fields [Katz et al., 2002; Riva et al., 2013c]. We propose a new statistical
model that reconciles the behaviors of variables and increments possessing heavy-tailed distributions, the
tails and peaks of which scale with lag in the above manner. Let the variable of interest be a stationary ran-
dom function Y xð Þ5hYi1Y 0 xð Þ defined on a continuum of points, x, in Euclidean space (or time) where hYi
is a constant ensemble mean (expectation) and Y 0 xð Þ a zero-mean random fluctuation about hYi. One way
to model heavy tail behavior of Y 0 xð Þ is to write it in standard sub-Gaussian form, Y 0 xð Þ5UG xð Þ, where G xð Þ
is a zero-mean stationary Gaussian function and U is a nonnegative random variable independent of G xð Þ
[e.g., Samorodnitsky and Taqqu, 1994]. This form subordinates Y 0 xð Þ to G xð Þ through action of the subordina-
tor U, rendering it a scale mixture of Gaussian functions with random variances proportional to U2. The scale
mixture is non-Gaussian with distribution that depends on that of U. Yet any single realization of Y 0 xð Þ,
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obtained upon multiplying one realization of G xð Þ by one draw from the distribution of U, is Gaussian. The
standard sub-Gaussian form is thus nonergodic, having different distributions in probability (ensemble) and
real spaces. It is therefore incompatible with any single spatial (or temporal) sample (realization) of Y 0 xð Þ
having a non-Gaussian frequency distribution. For this reason we [Neuman et al., 2013; T. Nan et al., Analyz-
ing randomly fluctuating hierarchical variables and extremes, submitted to Handbook of Groundwater Engi-
neering, edited by J. Cushman and D. M. Tartakovsky, CRC Press, N. Y., 2015] previously explored various
properties of standard sub-Gaussian functions by considering not one but a large number of such samples
simultaneously.

To allow dealing with unique non-Gaussian data sets we introduce in this paper a generalized sub-Gaussian
model

Y 0 xð Þ5U xð ÞG xð Þ (1)

in which U xð Þ is now a function (not a variable), independent of G xð Þ, consisting of independent and identi-
cally distributed (iid) nonnegative values at all points x. Some authors have previously used (1) to generate
synthetic samples of non-Gaussian random functions [Georgiou and Kyriakakis, 2006; Neuman, 2011;
Guadagnini et al., 2012; Riva et al., 2013a], without, however, having at their disposal a formal theory relating
the statistical properties of U xð Þ and G xð Þ to those of Y 0 xð Þ and its increments. The purpose of this paper is
to derive and explore such relationships with the aim of developing and demonstrating a method of statisti-
cal inference based on (1). Correspondingly, we derive in section 2 analytical expressions for bivariate (two-
point) and marginal distributions of Y 0 xð Þ together with associated lead moments for the case of lognormal
U xð Þ; use them in section 3 to develop analytical expressions for marginal distributions of DY x; sð Þ and the
variogram of Y xð Þ as functions of lag, s; explore and demonstrate these results numerically on synthetically
generated samples, as well as propose and test a new method of statistical inference based on (1), in sec-
tion 4; and illustrate our newly proposed theory and method of inference on neutron porosity data from a
deep borehole in section 5.

2. Probability Distributions and Lead Moments of Y 0

We introduce the following notation to define Y 0 at two points, x1 and x2,

Y 0 x1ð Þ5U x1ð ÞG x1ð Þ5Y15U1G1; Y 0 x2ð Þ5U x2ð ÞG x2ð Þ5Y25U2G2: (2)

The bivariate probability distribution of Y1 and Y2 is

FY1 ;Y2 y1; y2ð Þ5P Y1 � y1; Y2 � y2ð Þ5
ð ð

D1

ð ð
D2

fU1U2G1 G2 u1; u2; g1; g2ð Þdu1du2dg1dg2; (3)

where Di5 ui; gið Þ 2 R2 : uigi � yif g for i 51, 2 and fU1U2G1G2 is the joint probability density function (pdf) of
U1;U2;G1;G2ð Þ. Since the random variables U1 and U2 are independent of each other and of Gi (3) simplifies

to

FY1 ;Y2 y1; y2ð Þ5
ð ð

D1

ð ð
D2

fU1 u1ð ÞfU2 u2ð ÞfG1G2 g1; g2ð Þdu1du2dg1dg2: (4)

Here fUi uið Þ is the pdf of Ui and fG1G2 is the bivariate pdf of G1;G2ð Þ, i.e.,

fG1 G2 g1; g2ð Þ5 1

2pr2
G

ffiffiffiffiffiffiffiffiffiffiffiffi
12q2

G

p e
2

g2
1

1g2
2

22qG g1 g2

2r2
G

12q2
Gð Þ ; (5)

where r2
G is the variance of G and qG is the coefficient of correlation between G1 and G2, a function of lag,

s 5 |x1 2 x2|. As U1 and U2 are nonnegative (4) reduces to

FY1;Y2 y1; y2ð Þ5
ð1

u150

ð1
u250

ðy1=u1

g1521

ðy2=u2

g2521

fU1 u1ð ÞfU2 u2ð ÞfG1G2 g1; g2ð Þdg1dg2du2 du1: (6)

The bivariate pdf of Y1 and Y2 is
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fY1;Y2 y1; y2ð Þ5 @2

@y1@y2
FY1;Y2 y1; y2ð Þ5

ð1
u150

ð1
u250

1
u2u1

fU1 u1ð ÞfU2 u2ð ÞfG1G2

y1

u1
;

y2

u2

� �
du2 du1: (7)

Clark [1973] and Guadagnini et al. [2015] found some financial and environmental variables to be well repre-
sented by normal-lognormal (NLN) distributions. Correspondingly, we consider U1 and U2 to be lognormally
distributed according to ln N 0; 22að Þ2

� �
, i.e.,

fUi uið Þ5
1ffiffiffiffiffiffi

2p
p

ui 22að Þ
e

2
ln 2 ui

2 22að Þ2 ; with i51; 2 and a < 2; (8)

other potential distributions of U that, like the lognormal, possess finite moments of all orders include the
exponential, Weibull and gamma. We show that (8) renders the marginal distribution of Y 0 NLN. Substituting
(5) and (8) into (7) yields the following bivariate pdf of Y1 and Y2,

fY1;Y2 y1; y2ð Þ5 1

4p2 22að Þ2
1ffiffiffiffiffiffiffiffiffiffiffiffi

12q2
G

p ð1
0

ð1
0

1
u2

2u1
2

e
2 1

2
1

22að Þ2
ln2 u1

rG
1ln 2 u2

rG

� �
1 1

12q2
G

y1
2

u1
21

y2
2

u2
222qG

y1
u1

y2
u2

� �� �
du2du1: (9)

The marginal pdf of Y 0 follows from (9) in the form

fY 0 Y 0ð Þ5
ð1

21

fY1 ;Y2 y1; y2ð Þdy15
1

2p 22að Þ

ð1
0

1
u2 e

21
2

1
22að Þ2

ln 2 u
rG

1
y2

u2

� �
du; (10)

which coincides with NLN [e.g., Guadagnini et al., 2015]. Note that when a! 2 the lognormal distribution
(8) tends to a delta function so that (10) coincides with the Gaussian distribution.

As (10) is symmetric, Y 0 moments of odd orders vanish and those of even orders q become

hY ’qi5
ð1

21

y’qfY 0 y0ð Þdy05
2

q
2ffiffiffi
p
p C

q11
2

� �
e

22að Þ2 q2

2 rq
G; (11)

where C is the gamma function. In particular the variance and kurtosis of Y 0 become, respectively,

r2
Y 5hY 02i5 e2 22að Þ2 r2

G; (12)

hY 04i5 3e8 22að Þ2 r4
G: (13)

A global measure of how sharp is the peak and how heavy are the tails of fY 0 is provided by the standar-
dized kurtosis

jY 5
hY 04i
hY 02i2

53e4 22að Þ2 : (14)

Since jY � 3 the pdf fY 0 is leptokurtic, tending to the Gaussian distribution with jY 5 3 as a! 2.

3. Probability Distribution and Variogram of Y Increments

We define increments DY s5ð jx12x2jÞ5 Y12Y2 for lags, s, equal to or larger than the measurement and/
or resolution scale of given data; this scale, represented formally by a lower cutoff kl , is introduced in
(23) – (24) below. The probability distribution of increments associated with a given lag is

FDY Dyð Þ5P DY � Dyð Þ5
ð ð

y12y2�Dy
fY1Y2 y1; y2ð Þdy1dy25

ð1
y2521

ðDy1y2

y1521

fY1 Y2 y1; y2ð Þdy1dy2; (15)

the corresponding pdf being
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fDY Dyð Þ5 d
d Dyð Þ FDY Dyð Þ5

ð1
21

fY1Y2 Dy1y2; y2ð Þdy2: (16)

Substituting (9) into (16) yields

fDYðDyÞ5 1

2p2 22að Þ2

ffiffiffi
p
2

r ð1
0

ð1
0

e
2 1

2
1

22að Þ2
ln2 u1

r
G
1ln 2 u2

r
G

� �
1

Dyð Þ2

u1
21u2

222u1 u2q
G

h i
u2u1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1

21u2
222u1u2qG

p du2du1; (17)

from which one may derive lead statistical moments of DY . In particular, all moments of odd order vanish
while the variance, kurtosis and standardized kurtosis are given, respectively, by

hDY2i52r2
Ge 22að Þ2 e 22að Þ2 2qG

h i
; (18)

hDY4i56r4
Ge4 22að Þ2 e4 22að Þ2 1124e 22að Þ2qG12q2

G

h i
; (19)

jDY 5
hDY4i
hDY2i2

53e2 22að Þ2 11
1
2

e2 22að Þ2 21

e 22að Þ2 2qG

 !2( )
: (20)

As a! 2 (the distribution of Y 0 tends to the Gaussian), jDY ! 3 and the distribution of DY likewise tends to
the Gaussian. Otherwise jDY increases (the peak of fDY sharpens and its tails become heavier) with qG. In
other words, the shape of fDY scales with the correlation coefficient of G or, equivalently, with lag. Figure 1
illustrates how excess kurtosis, jDY 23, varies with qG and a. At small lags (large qG) jDY 23 exceeds zero by
a significant margin, even at large values of a (when the pdf of Y 0 is near-Gaussian). Excess kurtosis
decreases as qG decreases (lag increases), rendering the peak of fDY less sharp and its tails lighter. When
a � 1:8, the asymptotic value of jDY 23 at large lags is very small (<< 1) and fDY is virtually Gaussian.

Included in Figure 1 are horizontal lines depicting excess kurtosis of the pdf of Y 0, jY 23. From (14) and (20)
it follows that when a > 22

ffiffiffiffiffiffiffiffi
ln 3
p

� 0:95, fDY at small lags has sharper peaks and heavier tails than does fY 0 ,
the opposite being true at large lags. When a < 22

ffiffiffiffiffiffiffiffi
ln 3
p

the pdf of Y 0 has higher peaks and heavier tails
than the pdfs of DY regardless of lag. This behavior of fDY is indicated by Figure 1. Figure 2 depicts on arith-
metic and semi logarithmic scales fDY for rG51:0, a51:8 and three values of qG. Also shown for comparison
is a Gaussian distribution having the same mean and variance as DY . As noted earlier, fDY exhibits sharp
peaks and heavy tails when qG 5 0.99 (at small lag) and becomes virtually Gaussian as qG decreases (lag
increases).

The variogram of Y is obtained directly from (18) as

cY 5
hDY2i

2
5r2

Ge 22að Þ2 e 22að Þ2 2qG

� �
5r2

Ge 22að Þ2 e 22að Þ2 21
� �

1cGe 22að Þ2 ; (21)

where cG is the variogram of G. Note
that cY includes a nugget effect (a
constant independent of lag) that
vanishes only in the Gaussian limit
a! 2. From (21) and (12) we obtain
an expression for the covariance of Y,

CY 5r2
Y 2cY 5e 22að Þ2 CG; (22)

where CG5r2
GqG is the covariance of G.

This in turn yields the integral scale of
Y, IY 5 e2 22að Þ2 IG, where IG is the inte-
gral scale of G. It is thus seen that a log-
normal subordinator dampens, but
does not destroy, the covariance struc-
ture of G; the smaller is a the shorter is

Figure 1. Excess kurtosis of DY (continuous curves) and of Y 0 (horizontal dashed
lines) versus qG for five values of a.
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the integral scale of Y. When a! 2, IY ! IG. The integral scale of Y vanishes only in the limit as a !21,
i.e., when the variance of subordinator U tends to infinity.

4. Synthetic Examples

We generate synthetic realizations of Y 0 xð Þ according to (1) at Ne 5 30,000 discrete points spaced a distance
d 5 1024 (measured in arbitrary consistent length units) apart, on a line of length l 5 3. As a first step we
use a version of SGSIM [Deutsch and Journel, 1998] modified to generate a zero-mean stationary Gaussian
random function, G xð Þ, constituting truncated fractional Brownian motion (tfBm) with truncated power var-
iogram (TPV) [Di Federico and Neuman, 1997]

c2
G sð Þ5c2 s; kuð Þ2c2 s; klð Þ; (23)

where

c2 s; kmð Þ5 Ak2H
m

2H
12exp 2

s
km

� �
1

s
km

� �2H

C 122H;
s

km

� �" #
m5l; u; (24)

A is a coefficient, H is a Hurst scaling exponent, kl and ku being lower and upper cutoff scales proportional,
respectively, to the resolution and sampling domain scales of given data. In the limits as kl ! 0 (perfect
data resolution) and ku !1 (infinite sampling domain) G xð Þ becomes (nonstationary) fBm. Our samples
are generated with A 5 1, H 5 0.33, kl 5 1024 and ku 5 1, which in turn yield rG51:22 and IG 5 0.40.

Our next step in generating synthetic Y 0 xð Þ samples is to multiply each discrete value of G xð Þ, generated in
the first step, by a random lognormal draw of U(x). We do so twice, once by setting a 5 1.8 (to obtain rY 5

1:27 and IY= IG5 0:92) and again by setting a 5 1.5 (resulting in rY 51:57 and IY= IG5 0:61). Results

Figure 2. fDY (17) on (a) arithmetic and (b) semilogarithmic scales for rG51:0, a51:8 and three values of qG (continuous curves). Also
shown are Gaussian distributions having the same mean and variance as DY (dashed curves).

Figure 3. Analytical expression (21) and sample variogram, cY, of a single Y realization generated with a 5 1.8 on (a) arithmetic and (b) log-
log scales.
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corresponding to a 5 1.8 are presented below and those obtained with a 5 1.5 are provided as supporting
information.

Figure 3 compares on arithmetic and logarithmic scales the sample variogram of a single Y realization gener-
ated with a 5 1.8 at lags d � s � l=2, as is common in practice, with the corresponding analytical expression
(21) evaluated with the generating parameters. Agreement between the two variograms is seen to be very
good at small lags and acceptable at large lags. A relatively small theoretical nugget of 6.4 3 1022 is correctly

Figure 4. Sample pdf of Y 0 on (a) arithmetic and (b) semi-logarithmic scales obtained on a single realization generated with a 5 1.8. Also
shown are: the theoretical (input) NLN pdf (NLN_input), a Gaussian pdf with variance equal to that of the generated Y 0 sample, NLN with
parameters ~aa and ~ra (NLN ~aa; ~ra), NLN with parameters âa and r̂a (NLN âa; r̂a).

Figure 5. Sample pdf of increments associated with four lags obtained on a single realization generated with a 5 1.8; Gaussian pdf with
variance equal to that of the generated DY sample; ML fit of NLN (NLN_ML). Also shown is the pdf (17) evaluated using (i) input parameters
(17_input), (ii) ~ab , ~rb , ~qG (17_~ab , ~rb , ~qG). Some curves are not clearly distinguishable since they overlap, e.g., 17 ~ab; ~rb; ~qG and 17_input in
(a) and (b), NLN_ML and 17_input in (c), 17 ~ab; ~rb; ~qG and NLN_ML in (d).

Water Resources Research 10.1002/2015WR016998

RIVA ET AL. SCALING MODEL FOR VARIABLES WITH HEAVY-TAILED DISTRIBUTIONS 4628



reproduced and clearly visible on logarith-
mic scale. One can verify in supporting
information Figure S1 that, in line with (21),
the nugget obtained with a 5 1.5 is larger
(i.e., it is equal to 0.55). For illustration pur-
poses, we present here results associated
with a single realization for each value of a
analyzed. Results of similar quality are
obtained for diverse realizations (not
shown).

Figure 4 depicts on arithmetic and semilo-
garithmic scales the sample frequency dis-
tribution of Y 0 obtained with a 5 1.8 and

rG51:22. Also shown for comparison are the theoretical (input) NLN pdf (10) and a Gaussian pdf with var-
iance equal to that of the generated Y 0 sample (which we calculate as MY

2 5 1.53). Whereas the input NLN is
unimodal and symmetric, the frequency distribution of Y 0 is slightly bimodal and asymmetric with relatively
sharp peak. Even though the sample mean (52 0:09) and standard deviation (5 1.24) of the sample are
quite close to their input values of 0 and 1.27, the sample and input distributions differ markedly. We attrib-
ute this difference to insufficient size of the generated sample, noting that an increase in sample size by
one order of magnitude from Ne 5 30,000 to Ne 5 300,000 in supporting information Figure S2 results in
much improved agreement between the distributions. This notwithstanding, the peak and fine tail details
of the input NLN are not captured fully by the very large sample in supporting information Figure S2. As the
sizes of real data samples are often relatively small, we expect corresponding sample frequencies to provide
less than perfect representations of their parent sub-Gaussian pdfs.

In contrast to somewhat irregular frequency distributions of Y 0 samples, those of increments DY are found
to be symmetric with sharp peaks and heavy tails at small lags, milder peaks and lighter tails at larger lags,
as seen in Figure 5 (and supporting information Figure S4). These increment frequency distributions are rep-
resented closely by our novel pdf expression (17) when one evaluates it using input parameters of the
Y 0-generating NLN distribution. These inputs consist of constant parameters a, rG and a lag-dependent
parameter qG. We describe two methods of estimating these parameters, method a using only Y data to esti-
mate a and rG and method b using Y and DY data jointly to estimate a, rG and qG.

4.1. Parameter Estimation Method a
Method a relies on the marginal frequency distribution and moments of Y 0 which depend only on two
parameters, a and rG. One therefore cannot estimate qG by this method.

Fitting the NLN pdf (10) of Y 0 by
maximum likelihood (ML) to a fre-
quency distribution of mean-
removed Y data yields estimates âa

and r̂a of a and rG. Doing so for
synthetic Y 0 data generated with
a 5 1.8 and rG51:22 yields âa5

1:6360:01 and r̂a51:0960:01, the
half-width of the confidence inter-
vals being calculated as twice the
square root of the diagonal com-
ponents of the Cramer-Rao lower-
bound approximation of the
parameter estimation covariance
matrix. Alternatively one can
replace the second and fourth
moments, hY 02i and hY 04i, of Y 0 in
(12) and (13) by their sample

Table 1. Estimates of a and rG Computed With Methods a and b for Two Syn-
thetic Test Casesa

Synthetic Test Case Synthetic Test Case
a 5 1.8; rG 5 1.22 a 5 1.5; rG 5 1.22

~aa 1.73 (3.8%) 1.53 (2.2%)
âa 1:6360:01 (9.6%) 1.6060.02 (6.8%)
Mean of ~ab 1.78 (1.4%) 1.55 (3.2%)
CV of ~ab 0.05 0.02
~ra 1.15 (5.8%) 1.21 (0.9%)
r̂a 1:0960:01 (10.8%) 1.2760.02 (4.0%)
Mean of ~rb 1.19 (3.0%) 1.23 (0.3%)
CV of ~rb 0.04 0.03

aThe relative percentage differences between estimates and reference val-
ues are listed in parentheses.

Figure 6. Estimates of a versus lag obtained on a single realization generated with a 5 1.8.
Input value and ML estimates computed by fitting NLN to DY data are also reported
(ML_NLN). The 95% confidence intervals (CIs) of the ML estimates are plotted only when
not negligible.
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counterparts, MY
2 and MY

4 , to obtain
explicit estimates ~aa51:73 and ~ra

51:15 of the same parameters.
These as well as estimates
obtained in the case of a 5 1.5,
and associated estimation errors,
are listed in Table 1. Inserting each
pair of estimates into (10) yields
pdf curves illustrated in Figure 4
(and supporting information Fig-
ure S3).

4.2. Parameter Estimation
Method b
Method b provides estimates of
all three parameters a, rG and qG

characterizing Y 0 and DY by rely-
ing jointly on samples of both
functions. Replacing hY 02i, hDY2i
and hDY4i in (12), (18) and (19) by

their sample counterparts MY
2 , MDY

2 and MDY
4 provides explicit estimates ~ab, ~rb and ~qG of the three param-

eters. Whereas a and rG are constant, their estimates ~ab and ~rb, obtained jointly with the lag-dependent
parameter qG, do vary slightly with lag at small values of s and oscillate at larger lags (within the range
d� s� l/2), as seen in Figures 6 and 7 (also supporting information Figures S5 and S6). Included in these
figures are horizontal lines indicating input values of these parameters and estimates obtained by
method a. Mean values of ~ab and ~rb are listed in Table 1 together with their coefficients of variation
(CV). All estimates are close to the true input values and are characterized by small CVs. Estimates of the
correlation coefficient, ~qG, decrease with lag as do their input values (Figure 8 and supporting informa-
tion Figure S7). The same figures also depict sample qG of simulated G. Agreement between all three
curves is remarkable.

We recommend using methods a and b in tandem to verify that they yield comparable estimates of a
and rG.

Yet another possibility is to estimate a and qG upon fitting (17) to frequency distributions of DY at various
lags by ML while setting the variance of Y 0 equal to its sample value, MY

2 . Due to CPU time constrains, we
tried this by resampling the available data at a subset of 1000, 2000, and 3000 points using a polyphase fil-

ter, as embedded in the "resam-
ple’’ subroutine implemented in
Matlab. Whereas parameter esti-
mates obtained with each subset
were virtually identical, their 95%
confidence intervals decreased
slightly with number of points.
CPU time ranged from 10 to more
than 100 h (using 3000 points) on
a 2.80 GHz Intel i7–860 processor.
Figures 6–8 (and supporting infor-
mation Figures S5–S7) show ML
estimates âb, r̂b, q̂G obtained in
this manner, using 3000 points,
together with their 95% confi-
dence intervals. For clarity, we
have not plotted the 95% confi-
dence intervals when negligible.
All these estimates are close to

Figure 7. Estimates of rG versus lag obtained on a single realization generated with
a 5 1.8. Input value and ML estimates computed by fitting NLN to DY data are also
reported (ML_NLN). The 95% confidence intervals (CIs) of the ML estimates are plotted
only when not negligible.

Figure 8. Estimates of qG obtained on a single realization generated with a 5 1.8. Input val-
ues and sample qG of simulated G are also reported. The 95% confidence intervals (CIs) of
the ML estimates are plotted only when not negligible.
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those obtained much more efficiently (requiring negligible CPU time) on the basis of (12) and (18) and (19).
Optimizing the ML computation of âb, r̂b and q̂G was outside the scope of this paper.

We end our analysis of synthetic data by noting that it is possible, though theoretically unjustified, to repre-
sent increment frequency distributions at various lags quite closely by NLN pdfs, as illustrated in Figure 5
(and supporting information Figure S4). This is what we did in some of our own previous studies, most
recently in Guadagnini et al. [2015], of which more is said in section 5. The practice has led us, and others
(see section 1), to the incorrect conclusion that parameters controlling the peaks and tails of increment dis-
tributions, such as our a and rG, vary with lag as do their ML NLN estimates in Figures 6 and 7 (and/or sup-
porting information Figures S5 and S6). It is now clear that this phenomenon is an artifact of using an
inappropriate (in this case NLN, in some previous cases L�evy stable or other) model to interpret incremental
data.

5. Field Application

To conclude we let Y represent neutron porosity data from a deep vertical borehole in southwestern Iran
recently analyzed by Dashtian et al. [2011] and Guadagnini et al. [2015]. The well is drilled in the Maroon
field within which gas drive is used to produce oil and natural gas. A large number (3,567) of neutron poros-
ity data taken at a distance of about 15 cm apart are available, having sample mean MY

1 5 14% and sample
standard deviation 5 6.4%. Figure 9 plots excess kurtosis of porosity increments, DY , versus lag which
ranges from 15 cm to l/2 where l 5 543 m is the total depth of the well segment along which data are

Figure 9. Excess kurtosis of mean-removed porosity data (continuous line) and of porosity increments (symbols) versus lag.

Figure 10. Sample pdf of neutron porosity data, Y 0 , on (a) arithmetic and (b) semilogarithmic scales. Also shown are: a Gaussian pdf with
variance equal to that of the Y 0 sample, NLN with parameters ~aa and ~ra (NLN ~aa; ~ra), NLN with parameters âa and r̂a (NLN âa; r̂a).
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available. Excess kurtosis jDY 23 is significantly larger than zero at small lags, then decreases with increasing
lags to oscillate around relatively small values (<< 1) at the largest lags. Included in Figure 9 is a horizontal
line denoting excess kurtosis, jY 2350:64, of mean-removed porosities Y 05 Y 2 MY

1 . As predicted by our
generalized sub-Gaussian model and observed in our synthetic examples, whereas at small lags
jDY 23> jY 23 implying that frequency distributions of DY exhibit sharper peaks and heavier tails than
does that of Y 0, the opposite happens at large lags. Indeed, these frequency distributions and models fitted
to them in Figures 10 and 11, respectively, are closely reminiscent of their synthetic counterparts in Figures

4 and 5 (supporting information
Figures S3 and S4): the pdf of Y 0

appears slightly asymmetric
while distributions of DY seem
symmetric with peaks and tails
that decay with lag. Applying
parameter estimation method a
to these porosity data we find
~aa51:78, ~ra56:10%, âa51:736

0:05 and r̂a55:98%60:19%.
The corresponding pdfs are
depicted in Figure 10. Parame-
ter estimates ~ab and ~rb

obtained by method b, plotted
respectively versus lag in Fig-
ures 12 and 13, oscillate at 15
cm� s� l/2 in an irregular fash-
ion about mean values of
~ab 5 1.75 and ~rb 5 6.15%. The

Figure 11. Sample pdf of increments of neutron porosity data, DY , at four lags. Also shown are Gaussian pdf with variance equal to that of
the sample, ML fit of NLN (NLN_ML) and expression (17) evaluated using ~ab , ~rb , ~qG (17_~ab , ~rb , ~qG).

Figure 12. Estimates of a versus lag for the neutron porosity data. ML estimates computed by
fitting NLN to DY data are also reported (ML_NLN). The 95% confidence intervals (CIs) of the
ML estimates are plotted only when not negligible.
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latter, characterized by small
coefficients of variation (0.05
and 0.07, respectively), are very
close to values estimated by
method a. Included in Figures
12 and 13 are estimates of a
and rG, respectively, obtained
on the basis of NLN fits by ML
to frequency distributions of
porosity increments at various
lags. Once again we see these
estimates to increase systemati-
cally with lag in a way that is
not supported by our theory.
Estimates of qG are shown in
Figure 14. Maximum likelihood
estimates âa and âb, r̂a and r̂b

and q̂G are also shown in Fig-
ures 12–14, respectively. As in

the case of synthetic data, methods a and b yield comparable estimates of model parameters a and rG, thus
strengthening our confidence in the quality of the results.

6. Summary and Conclusions

We proposed, explored and applied to synthetic and real data a new model that reconciles within a unique
theoretical framework the probability distributions of spatial (or temporal) variables (including physical,
hydrogeological, geophysical, environmental, biological, as well as financial data) and the way distributions
of their increments change with scale. When viewed in the context of theoretical developments and syn-
thetic as well as field data analyses in our related earlier works [e.g., Guadagnini et al., 2015 and references
therein], our model is seen to be unique in providing a comprehensive, self-consistent and rigorous expla-
nation of the above statistical scaling and related phenomena that have puzzled analysts for decades. These
related phenomena include power-law scaling of sample structure functions (statistical moments of abso-
lute increments) in midranges of lags, extended power-law scaling (linear relations between log structure
functions of successive orders) at all lags, and nonlinear (and eventually anisotropic) scaling of power-law
exponent with order of sample structure function.

The model has generalized sub-Gaussian form, subordinating variables to truncated fractional Brownian
motion (tfBm) through the action of a lognormal subordinator (leaving open the possibility of other

choices). Statistics of incre-
ments are functions of, and
thus scale with, lower and
upper cutoffs proportional to
data resolution and sampling
domain scales, respectively.
These statistics can thus be
scaled up or down to reflect
changing resolution and/or
sampling domain scales. For
given cutoffs the statistics are
fully defined in terms of two
constant parameters and a lag-
dependent correlation func-
tion that depends, in a known
way, on a coefficient and a
Hurst scaling exponent. Decay

Figure 13. Estimates of rG versus lag for the neutron porosity data. ML estimates computed by
fitting NLN to DY data are also reported (ML_NLN). The 95% confidence intervals (CIs) of the
ML estimates are plotted only when not negligible.

Figure 14. Estimates of qG versus lag for the neutron porosity data. The 95% confidence inter-
vals (CIs) of the ML estimates are plotted only when not negligible.
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of this correlation function with lag was shown to be the reason why sharp peaks and heavy tails of incre-
ment probability density functions flatten and lighten with lag. We proposed and tested relatively simple
ways to estimate model parameters by considering separately or jointly samples of the variable and its
increments at various lags. Our model opens the way for conditional and unconditional simulation, and
interpolation, of non-Gaussian random variables in one or more space-time dimensions.
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