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 Abstract    

Modelling indicates the presence of a region of lowest electronic density, a σ-hole, on Group 14 

elements and this offers a rationalization for the ability of these elements to act as electrophilic sites 

and to form attractive interactions with nucleophiles. Many papers describe theoretical investigations 

of interactions involving carbon and silicon, less frequently the heavier Group 14 elements. The 

purpose of this review is to fill the current lack of experimental evidences on interactions formed by 

Germanium and Tin with nucleophiles. A survey of crystal structures in the Cambridge Structural 

Database is reported here. It reveals that close contacts between Ge or Sn and lone pair possessing 

atoms are quite common, they can occur both intra- and intermolecularly, and they are usually on the 

extension of the covalent bond formed by the tetrel with the most electron withdrawing substituent. 

Several examples are discussed wherein germanium and tin atoms bear four carbon residues or 

wherein halogen, oxygen, sulfur, or nitrogen substituents replace one, two, or three such carbon 

residues. These short contacts are assumed as the result of attractive interactions between the involved 

atoms and afford experimental evidences of the ability of Germanium and Tin to work as electrophilic 

sites, namely to act as tetrel bond (TB) donors. This ability can govern and control the conformation 

and the packing of organic derivatives in the solid state. TB can thus be considered a promising and 

robust tool for crystal engineering. 
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Introduction 

 

A comprehensive knowledge of all the different interactions (i.e., weak bonds) that a molecule can 

give rise to is a fundamental prerequisite for the control and design of the conformation and the 

packing that it adopts in the crystal.  The interatomic distances slightly below the sum of the van der 

Waals radii of involved atoms (hereinafter named short contacts) are usually, while not always, the 

result of attractive interactions between the involved atoms.  To register the systematic occurrence of 

short contacts in crystalline solids is thus highly informative of the attractive interactions that atoms 

and molecular moieties can give rise to.  Short contacts play a crucial role in the properties of matter, 

especially in condensed phases, and their knowledge and control enables for designing and optimizing 

the functional properties of materials, either synthetic or natural [1–3].  

 The hydrogen bond (HB) is by far the most frequently occurring and widely studied 

interaction [4, 5]; – [6], cation- [7], anion- [8], and aurophilic bondings [9] are other week bonds 

which have traditionally received attention.  σ-Hole interactions [10–12] are quite recent entries in 

the set of the week bonds [13–15], but after the seminal papers of P. Politzer et al. [16, 17] they 

rapidly gained a position under the spotlight of the studies in the field [15, 18–20].  A covalently 

bonded atom characteristically has a region of lower electron density, the “σ-hole”, which is usually 

along the extension of the covalent bond and opposite to the atom.  The electrostatic potential at this 

region is frequently positive and a σ-hole bonding is the result of the attractive interaction between 

this positive region (electrophilic site, donor of the interaction) and a negative site (nucleophilic site, 

acceptor of the interaction, e.g. a lone pair possessing atom or an anion).  In general, the largest 

number of σ-holes that an atom can have, and which may drive the formation of attractive interactions, 

is equal to the number of the covalent bonds it is involved in.  The more electron withdrawing the 

group(s) covalently bound to a given atom are, the more extended and more positive the σ-hole(s) 

opposite to the bond(s) become [21], and the stronger and shorter the formed σ-hole interaction(s) 

become.  A distinctive feature of σ-hole interactions is their directionality, a consequence of the rather 

focused location of region(s) with positive electrostatic potential.  In an R–A∙∙∙B interaction, where 

A is the atom with the positive σ-hole potential and B is the nucleophile, the angle R–A∙∙∙B is 

generally between 155o and 180o.   

Experimental evidences and theoretical calculations consistently show that most elements of 

Groups 14-18 of the periodic table form σ-hole bondings.  A growing consensus is emerging in the 

chemists community to name these interactions from the name of the Group of the Periodic Table the 

electrophilic atom belongs to [22, 23].  The halogen bond (XB) [10, 24], namely the interaction 



wherein an element of Group 17 is the electrophilic site, is the best know subset of σ-hole interactions; 

the chalcogen bond has been studied in silico [25, 26] and in both the solid [27], liquid [28], and gas 

phases [29]; the pnictogen bond received mainly attention in silico [30] and in the solid [31]; and the 

aerogen bond (AB) is the most recent member of this type of interactions [32a].   

The tetrel bond (TB), namely the interaction wherein a Group 14 element is the electrophile, has 

received non-minor attention, probably in relation to its huge impact, e.g., its possible role in SN2 

reactions and hydrophobic interactions [13, 32b].  Convincing evidence of the non-occasional ability 

of carbon to attractively interact with lone pair possessing atoms begun to be reported more than forty 

years ago.  In 1975 Johnson et al. calculated that in the water/carbon dioxide dimer the arrangement 

bonded via a short C∙∙∙O contact is more stable than the arrangement bound through a short H∙∙∙O 

contact [33a] and in 1984 Klemperer et al. confirmed, via microwave spectra analyses, that the 

equilibrium geometry of the adduct features a tetrel bond, namely the tetrel bonded O2C∙∙∙OH2 

geometry is preferred over the hydrogen bonded HO–H∙∙∙O=CO geometry [33b].  During the nineteen 

eighties, tetrel bond was shown to overcome hydrogen bond in driving the formation of other lowest 

energy complexes formed by carbon dioxide, for instance with HBr [33c] and HCN [33d].  Most 

papers on the ability of tetrels to function as electrophiles describe theoretical investigations of 

interactions involving carbon [34] and silicon [35, 36a,b], less frequently the heavier Group 14 

elements [37].  Experimental studies of TBs are quite limited [29, 38–40] and to the best of our 

knowledge they never focused on interactions involving germanium or tin.  We thus decided to 

analyse structures in the Cambridge Structural Database (CSD) in order to assess if organic 

derivatives of these two elements show the presence of TBs in crystalline solids.  We looked for 

systems wherein germanium and tin are forming short contacts with nucleophilic sites.  Directionality 

being a characteristic of σ-hole interactions, a particular attention was paid in this survey to the 

geometrical features of the observed short contacts and their linearity was considered an experimental 

evidence that they can be rationalization as TBs.  

In this paper we discuss a selected number of crystalline structures of organic derivatives of 

germanium and tin wherein these elements form TBs, i.e., short and linear contacts with lone pair 

possessing heteroatoms.  Structurally simple and poorly functionalized molecular systems have been 

preferentially analyzed as the Ge/Sn∙∙∙nucleophile interactions occurring in these systems are more 

likely a straightforward product of the features of the two involved sites, contributions from other 

parts of the molecule(s) being probably minor.  A wider coverage of organic Ge and Sn derivatives 

presenting TBs in the solid is given in the references.  The interactions lengths will be analysed by 

using the normalized contact (Nc), defined as the ratio between experimentally observed separation 

of interacting atoms and the sum of their respective van der Waals radii [41, 42].  Nc values allow a 



linear comparison between contacts involving different atoms.  While the number of CSD structures 

where Ge/Sn∙∙∙nucleophile interactions are present is not large enough to enable for definitive, 

general, and in depth generalizations, the survey of CSD reported here shows that the formation of 

attractive interactions between organic Ge and Sn sites and a donor of electron density can become a 

structural determining factor in crystalline solids.  Intra- and intermolecular TBs are observed and 

they can affect the preferred conformation of a molecule and/or the network of intermolecular 

interactions in the crystal packing.  Importantly, cases collected here give convincing experimental 

evidence that TBs tend to be more linear than PBs [31].  

 

Oxygen atoms as TB acceptors  

The conformation adopted by (2,6-bis(methoxymethyl)phenyl)-triphenyl-tin (Refcode MUBVOU) in 

the crystal (Fig. 1, left) seems to be determined by two intramolecular Sn∙∙∙O TBs [44].  One 

interaction is slightly shorter than the other, the two Nc values being 0.76 and 0.78.  Shorter -hole 

interactions usually tend to be more linear and consistent with this characteristic the two C–Sn∙∙∙O 

angles in TBs mentioned above are 168.05° and 172.55°, respectively.  As discussed above, another 

common feature of -hole interactions is that for a given donorof -hole interactions, the more 

electron withdrawing a covalently bonded residue is, the more positive the -hole it give rise to is, 

and the shorter and stronger the interactions with incoming nucleophiles are.  Interestingly, in an 

analogue of the compound discussed above wherein two chlorine atoms substitute for two phenyl 

rings, the two intramolecular TBs are much shorter, namely in (2,6-bis(ethoxymethyl)phenyl)-

dichloro-phenyl-tin (Refcode LIVHOO) the Nc values for the Sn∙∙∙O TBs are 0.66 and 0.78 (Fig. 1, 

right) [43]. 

 

Fig. 1  Ball and stick representation (Mercury 3.9) of (2,6-bis(methoxymethyl)phenyl)-triphenyl-tin 

(MUBVOU, left) and of a (2,6-bis(ethoxymethyl)phenyl)-dichloro-phenyl-tin (LIVHOO, right).  TBs are 

black dotted lines, hydrogens have been omitted for clarity.  Nc values are reported close to the respective 

interactions.  Color code:  Grey, carbon; green, chlorine; red, oxygen; dark teal, tin.   

 



It is extensively documented that the propensity of an halogen atom to form XBs increases with its 

molecular weight [10] and that the heavier halogens usually form stronger and shorter XBs than the 

lighter ones, both features being independent of the used XB acceptor.  Similar trends are observed 

when elements of Groups 16 and 15 form CBs and PBs, respectively.  In all cases this is probably 

due to the fact that the polarizability in a Group increases with the molecular weight of the element 

and a high polarizability favours the anisotropic distribution of the electron density in an atom, and 

thus the strength of -hole interactions.  It is no surprise [45] that methyl-tris((2-

methoxymethyl)phenyl)germane (Refcode IMUTEP) shows only one C–Ge∙∙∙O contact and that the 

corresponding Nc value (0.87) is greater than Nc values of the structurally similar tin derivatives 

MUBVOU and LIVHOO [46] (Fig. 2, top left).  

 

Fig. 2  Ball and stick representation (Mercury 3.9) of methyl-tris((2-methoxymethyl)phenyl)germane 

(IMUTEP, top left), bromo-tris((2-methoxymethyl)phenyl)germane (IMUTAL, top right), chloro-tris((2-

methoxymethyl)phenyl)germane (IMUSUE, bottom left), and of fluoro-tris((2-

methoxymethyl)phenyl)germane (IMUSOY, bottom right).  TBs are black dotted lines, hydrogens have been 

omitted for clarity.  Nc values are reported close to the respective interactions.  Color code:  Grey, carbon; 

brown, bromine; green, chlorine; yellowish green, fluorine; red, oxygen; light teal, germanium.   

 

Bromine is more electronegative than carbon and in bromo-tris((2-methoxymethyl)phenyl)germane 

(Refcode IMUTAL) the Br–Ge∙∙∙O TB is shorter (Nc = 0.79) than the C–Ge∙∙∙O in IMUTEP (Fig. 2, 

top right) [46]; chlorine is more electronegative than bromine and in chloro-tris((2-

methoxymethyl)phenyl)germane (Refcode IMUSUE) the Cl–Ge∙∙∙O TB is even shorter (Nc = 0.76) 

(Fig. 2, bottom left).  Also in these three structures the linearity of TBs correlates with their lengths 



(C–Ge∙∙∙O, Br–Ge∙∙∙O, and Cl–Ge∙∙∙O angles are 171.79°, 172.64°, and 173.24°, respectively).  In 

fluoro-tris((2-methoxymethyl)phenyl)germane(IV) (Refcode IMUSOY) a fluorine has substituted for 

the methyl of IMUTEP and depletion of electron density at germanium becomes high enough that 

two TBs are present in the crystal (Fig. 2, bottom right).  An F–Ge∙∙∙O and a C–Ge∙∙∙O TB are present 

and, consistent with the relative electronegativity of fluorine and carbon, the former interaction is 

shorter and more directional than the latter one (Nc values for Ge∙∙∙O separations are 0.78 and 0.95, 

respectively).  Also, a tin bonded iodine atom can promote the formation of short contacts (Fig. 3).  

Two independent molecules are present in the unit cell of crystalline iodo-(2,6-

bis(methoxymethyl)phenyl)diphenyl-tin (Refcode RAKBOV) and in both of them the conformation 

is locked by an I–Sn∙∙∙O and a C–Sn∙∙∙O intramolecular TB.  Former interactions are shorter and more 

directional than latter ones (Nc values are 0.70, 0.72 for I–Sn∙∙∙O separations and 0.79, 0.81 for C–

Sn∙∙∙O separations; mean I–Sn∙∙∙O angles are 166.19° and mean C–Sn∙∙∙O angles are 166.68°).  

 

 

 

Fig. 3  Ball and stick representation (Mercury 3.9) of the two molecules of the unit cell of iodo-(2,6-

bis(methoxymethyl)phenyl)diphenyl-tin (RAKBOV).  TBs are black dotted lines, hydrogen atoms have been 

omitted for clarity.  Nc values are reported close to the respective interactions.  Color code: Grey, carbon; red, 

oxygen; purple, iodine; dark teal, tin. 

 

Carbonyl oxygen atoms can act as effective TB acceptors.  In (Z)-2-methyl-4-phenyl-3-

(trimethylgermanyl)but-2-enoic acid (Refcode QIBDOV) [47] a short C-Ge∙∙∙O contact is present in 

both conformations adopted by the compound in the crystals (Fig. 4, left) (Nc for Ge∙∙∙O separations 

is 0.80, C–Ge∙∙∙O angles are 174.17°, 175.00°) and a shorter TB occurs in a trimethylstannyl-

carbomethoxy derivative (Refcode KASYOS) [48] where a quite similar tin based tecton is present 

(Nc for C–Sn∙∙∙O separation is 0.76) (Fig. 4, mid).  Similar TBs are given by the carbonyl oxygen of 

carbamates (e.g., trans-N-t-butyloxycarbonyl-2-methyl-6-(trimethylstannyl)-4-phenyl)piperidine, 

Refcode EABFES; Nc = 0.75 and C–Sn∙∙∙O angle is 165.31°; Fig 4, right) [49, 50], and several other 

carbonyl derivatives, e.g., amides [51], aldehydes [52, 53], and ketones [54].   

 



 

Fig. 4 - Ball and stick representation (Mercury 3.9) of one of the two independent molecules in the unit cell of 

(Z)-2-methyl-4-phenyl-3-(trimethylgermanyl)but-2-enoic acid (QIBDOV, left), (2-carbomethoxy-1,4-

cyclohexadien-1-yl)-trimethyl-tin (KASYOS, mid) and trans-N-t-butyloxycarbonyl-2-methyl-6-

(trimethylstannyl)-4-phenyl)piperidine (EABFES, right) derivatives.  TBs are black dotted lines, hydrogen 

atoms have been omitted for clarity.  Nc values are reported close to the respective interactions.  Color code: 

Grey, carbon; red, oxygen; light blue, nitrogen; light teal, germanium; dark teal, tin. 

 

Both intra- and intermolecular TBs are found in the CSD wherein a carbonyl oxygen is working as 

the TB acceptor and discrete adducts [55] or infinite chains (one-dimensional networks, 1D nets) can 

be generated.  In ethyl trimethytin-diazoacetate (Refcode SIWRAR) [56], the diazoacetate residue is 

expected to form a -hole on tin more positive than the -holes formed by the methyl groups.  

Consistent with this expectation, a tetrel bonded infinite chain is present in the crystal of the 

compound (Fig. 5, top) wherein the carbonyl oxygen gets close to tin atom along the extension of the 

N2C–Sn covalent bond (the Sn∙∙∙O separation is 312.5 pm which corresponds to an Nc value of 0.85, 

the C–Sn∙∙∙O angle is 176.46°).  Similarly, the most positive -hole on germanium in 2,5-

bis(trimethylgermyl)thiophene-1,1-dioxide (Refcode QAHXIG) [57] is expected opposite to the 

O2SC–Ge covalent bond and an infinite chain (Fig. 5, bottom) is formed wherein the suphonyl 

oxygens gets close to germanium on the extension of the O2SC–Ge covalent bonds after a particularly 

linear geometry (the Ge∙∙∙O separation corresponds to an Nc value of 0.97 and the C–Ge∙∙∙O angle is 

179.77°). 

 



 

 

Fig. 5 – Ball and stick representation (Mercury 3.9) of 1D chains generated by ethyl trimethytin-diazoacetate 

(SIWRAR, top) and 2,5-bis(trimethylgermyl)thiophene-1,1-dioxide (QAHXIG, bottom).  TBs are black dotted 

lines, hydrogen atoms have been omitted for clarity.  Nc values are reported close to the respective interactions.  

Color code: Grey, carbon; red, oxygen; light blue, nitrogen; yellow, sulphur; light teal, germanium; dark teal, 

tin.  

 

N-triethylstannylsuccinimide (Refcode FUSZIC) [58] works as a self-complementary module and 

forms tetrel bonded infinite chains (one-dimensional networks, 1D nets) (Fig. 6, top).  Consistent 

with the expected involvement of an sp2 lone pair of the carbonyl oxygen as the nucleophilic site 

entering the elongation of the N–Sn covalent bond, the Sn∙∙∙O=C angle is 138.28° and the tin atom is 

approximately in the succinimide plane (the distance between the mean square plane through the 

seven heavy atoms of the succinimide moiety and the tetrel bonded tin atom is 219 pm).  The halogen 

bonded infinite chains formed by N-chloro- and N-bromosuccinimide (Refcodes CSUCIM01 and 

NBSUCA, respectively) [59] are also reported in Fig. 6 (mid and bottom in the order) in order to 

make apparent the analogous supramolecular features of TB and XB.  

 



 
Fig. 6  Ball and stick representation (Mercury 3.9) of the 1D network formed by N-triethylstannylsuccinimide 

(FUSZIC) thanks to N–Sn∙∙∙O TBs (top), by N-chlorosuccinimide (CSUCIM) thanks to N-Cl∙∙∙O XBs (mid), 

and by N-bromosuccinimide (NBSUCA) thanks to N–Br∙∙∙O XBs (bottom).  The three methyl groups of the 

ethyl residues of N-triethylstannylsuccinimide and hydrogen atoms have been deleted for sake of simplicity.  

TBs and XBs are black dotted lines and green dotted lines, respectively.  Color code: Grey, carbon; red, 

oxygen; purple, iodine; brown, bromine; dark teal, tin. 

 

In several structures of the CSD, the tin atom of a trialkyl-alkanoyl-tin moiety (namely in R3Sn–

OC(O)R’ derivatives) shows the presence of a TB with a carbonyl oxygen opposite to the Sn–O 

covalent bond and one-dimensional [60], two-dimensional [61], or three-dimensional [62] networks 

are formed depending on the overall structure of the compounds (Figs. 7-9). 

 

 



Fig. 7  Ball and stick representation (Mercury 3.9) of the 1D network wherein the ketone oxygen of O-

tricyclohexyltin-4-oxo-4-phenylbutanoate (APAZIB) functions as the TB acceptor site.  Hydrogen atoms and 

five of the cyclohexyl carbons have been deleted for sake of simplicity.  Color code: Grey, carbon; red, 

oxygen; dark teal, tin. 

 

 
 

Fig. 8  Ball and stick representation (Mercury 3.9) of the two-dimensional network formed by 

bis(tricyclohexyltin)nonanoate (CUXSOF).  Five atoms of the cyclohexyl residues bound to tin have been 

deleted for sake of simplicity.  Color code: Grey, carbon; red, oxygen; dark teal, tin. 

 



 
 

Fig. 9  Ball and stick representation (Mercury 3.9) of the three-dimensional network with adamantanoid 

topology formed by bis(tri-n-butyltin)-1,2,2-trimethylcyclopentane-1,3-dicarboxylate (DIYFIB).  Three atoms 

of the butyl residues bound to tin and methyl pendants on cyclopentyl rings have been deleted for sake of 

simplicity.  Color code: Grey, carbon; red, oxygen; dark teal, tin. 

 

Various other oxygen functionalities can work as donors of electron density to organotin and germanium 

derivatives, e.g. water [63–65], sulfoxides and sulfones [66–69], phosphineoxides, 

hexamethylphosphortriamide and their analogues [70–76] (Fig. 10).  

 



Fig. 10  Ball and stick representation (Mercury 3.9) of the trimer formed by 1,3-bis(bromo-

dimethylstannyl)propane and water (XINROB, top left), of the dimer formed by bromo-tris(p-ethylphenyl)-tin 

and hexamethylphosphoramide (HEVQIJ, top right), of the dimer formed by chloro-trimethyl-tin and 

triphenylphosphine oxide (HIGRUK01, bottom left), and of the dimer formed by chloro-triphenyl-tin and 

dimethyl sulfoxide (RUGYOI, bottom right).  Hydrogen atoms and 2,2'-bipyridine in XINROB have been 

deleted for sake of simplicity.  TBs are black dotted lines.  Color code: Grey, carbon; red, oxygen; blue, 

nitrogen; orange; phosphorus; green, chlorine, brown, bromine; yellow, sulphur; dark teal, tin. 

 

 

Nitrogen atoms as TB acceptors  

Several structures are available in the CSD where the nitrogen atom of amine, pyridine, and cyano 

moieties forms a short contact with tin or germanium atoms (Fig. 11) thus showing that, similar to 

oxygen atoms, nitrogen atoms can act as TB acceptors and this can be the case when adopting both 

the sp3, and sp2 or sp hybridization. 

 

 

 

Fig. 11  Ball and stick representation (Mercury 3.9) of the dimer formed by chloro-(trimethyl)-tin and pyridine 

(CMEPSN, top left), of the trimer formed by chloro-tribenzyl-tin and 4,4'-bipyridyl (FEJFUW, top right), and 

of the 1D chain formed by chloro-tris(4-cyanobenzyl)-tin (BIBQIN, bottom).  Hydrogen atoms have been 

deleted for sake of simplicity.  TBs are black dotted lines.  Color code: Grey, carbon; blue, nitrogen; green, 

chlorine, dark teal, tin. 

 

The ability of nitrogen atoms of tertiary amines to form short contacts with organogermanium 

and -tin derivatives is particularly well-documented.  For instance, two symmetrically non-equivalent 

molecules are present in crystals of tris(2-((dimethylamino)methyl)phenyl)-germane (Refcode 



GAGYIW) [77] and the conformation of both molecules is influenced by three intramolecular C–

Ge∙∙∙N TBs (Fig. 12, left) (Nc values span the range 0.82 - 0.84 and C–Ge∙∙∙N angles vary between 

172.45° and 176.79°).  C–N–C Angles vary between 109.70° and 113.25° indicating that nitrogen 

atoms of the tertiary amine moieties adopt a nicely tetrahedral conformation and the lone pairs point 

to the elongation of C–Ge covalent bonds as expected for a -hole interaction (C–N∙∙∙Ge angles span 

the range 82,34° - 120.39°).   

Imine nitrogen atoms behave similar to amine nitrogens.  A short and linear C–Ge∙∙∙N interaction 

affects the conformation adopted by 1-(trimethylsilylimino(diphenyl)phosphoranyl)-2-

(triphenylgermyl)benzene (Nc for Ge∙∙∙N separation is 0.85, C–Ge∙∙∙N angle is 173.79°) (Refcode 

VIQXIC) [78] (Fig. 12, right).  In the crystal of this compound the P=N∙∙∙Ge angle is 96.80° and the 

germanium atom is approximately in the iminophosphoranyl plane (the distance between the tetrel 

bonded germanium atom and the mean square plane through phosphorous, nitrogen, and silicon atoms 

is 263 pm) suggesting that the lone pair at nitrogen points to the elongation of C–Ge covalent bond. 

 

 

 

Fig. 12  Ball and stick representation (Mercury 3.9) of tris(2-((dimethylamino)methyl)phenyl)-germane 

(GAGYIW, left) and 1-(trimethylsilylimino(diphenyl)phosphoranyl)-2-(triphenylgermyl)benzene 

(VIQXIC, right) derivatives.  TBs are black dotted lines, hydrogen atoms have been omitted for clarity.  Nc 

values are reported close to the respective interactions.  Color code: Grey, carbon; light blue, nitrogen; 

yellow, sulphur; pearl white; silicon; orange; phosphorus; light teal, germanium. 

 

Short and intramolecular Ge∙∙∙N contacts affect the conformation of a family of 4,6,11-trioxa-1-aza-

5-germa-bicyclo[3.3.3]undecanes (germatrane derivatives).  5-(t-Butyl)-germatrane (Refcode 

BUWBUQ) [79] adopts in the solid an endo-conformation (Fig. 13, left) where the C–Ge∙∙∙N 

separation is as short as 223.6 pm (Nc = 0.61).  5-Bromo-germatrane (Refcode BUWCUR) [80] 

behaves similarly (Fig. 13, mid) and the Br–Ge∙∙∙N separation is even shorter (208.4 pm, Nc = 0.57) 

than in BUWBUQ, consistent with the fact that bromine is more electronegative than carbon and the 

-hole opposite to the Br–Ge covalent bond is probably more positive than opposite to the C–Ge 



bond.  Analogous endo conformations and Ge∙∙∙N distances much shorter than the sum of van der 

Waals radii of germanium and nitrogen atoms are observed in other germatrane derivatives [81–83] 

and related systems [84, 85] (Fig. 13, right).  A similar behaviour is encountered in the crystals of tin 

analogues.  5-Methyl-1-aza-5-stanna-bicyclo[3.3.3]undecane (Refcode FEWXOU) [74], and 5-fluoro 

[86], 5-chloro [87], 5-bromo [86], and 5-iodo [86] analogues (Refcodes ZANKEE, DAYMUL, 

ZANKOO, ZANKUU, respectively) all show short Sn∙∙∙N contacts (Fig. 14). 

 

Fig. 13  Ball and stick representation (Mercury 3.9) of 5-(t-butyl)-germatrane (BUWBUQ, left), 5-

Bromo-germatrane (BUWCUR, mid) and phenyl-(tris(2-(trimethylsilylamido)ethyl)amine-N,N',N'')-

germanium (XUSLOM , right).  TBs are black dotted lines, hydrogen atoms and methyl substituents on silyl 

moieties of XUSLOM have been omitted for clarity.  Nc values are reported close to the respective 

interactions.  Color code: Grey, carbon; red, oxygen; light blue, nitrogen; bronze; bromine; pearl white, 

silicon; light teal, germanium. 

   

Fig. 14  Ball and stick representation (Mercury 3.9) of 5-methyl-1-aza-5-stanna-bicyclo(3.3.3)undecane 

(FEWXOU, left) and 5-fluoro-1-aza-5-stannatricyclo(3.3.3.01,5)undecane (ZANKEE, right).  TBs are black 

dotted lines, hydrogen atoms have been omitted for clarity.  Nc values are reported close to the respective 

interactions.  Color code: Grey, carbon; light blue, nitrogen; yellowish green, fluorine; dark teal, tin. 

 

As in organogermanium derivatives, the nitrogen atom of the 2-(dimethylaminomethyl)phenyl-

stannyl moiety forms, in the solid, an intramolecular TB which affects the conformation of the 

respective compound.  This is the case for (cyclopenta-2,4-dien-1-yl)-(2-

(dimethylaminomethyl)phenyl)-diphenyl-tin (Refcode IHOZAH) [88] (Fig. 15, left) where the 

intramolecular C–Sn∙∙∙N distance corresponds to an Nc value of 0.74 and the C–Sn∙∙∙N angle is 

171.08°, congruent with an attractive interaction between the lone pair of the tertiary amine nitrogen 



and the σ-hole on the elongation of C–Sn covalent bond.  Analogous Sn∙∙∙N interactions are present 

in structurally related derivatives [89–91].  A five membered and tetrel bonded ring similar to that of 

IHOZAH is afforded by (3-aminopropyl)-triphenyl-tin (Refcode COKVUV) [92] (Fig. 15, right) 

which shows an Sn∙∙∙N interaction where Nc is 0.74 and C–Sn∙∙∙N angle is 175.81°.   

 

 

 

 

Fig. 15  Ball and stick representation (Mercury 3.9) of (cyclopenta-2,4-dien-1-yl)-(2-

(dimethylaminomethyl)phenyl)-diphenyl-tin (left) and of (3-aminopropyl)-triphenyl-tin (IHOZAH, right). 

TBs are black dotted lines, hydrogen atoms have been omitted for clarity.  Nc values are reported close to the 

respective interactions.  Color code: Grey, carbon; light blue, nitrogen; dark teal, tin. 

 

The tin atom of R3Sn–OC(O)R’ derivatives is a good TB donor and frequently forms interactions 

with the oxygen atom of carbonyl groups (Figs. 7-9) or to the nitrogen atom of pyridine moieties.  

The intermolecular Sn∙∙∙N interaction is formed opposite to the Sn–O covalent bond and discrete 

trimers [93] (Fig. 16, top), one-dimensional [94–97] (Fig. 16, bottom) or two-dimensional [98] 

networks (Fig. 17) are formed depending on the ability of the tin derivative to function as a mono-, 

bi-, or polydentate tecton.  



 
 

Fig. 16  Ball and stick representation (Mercury 3.9) of the trimer formed by (ferrocene-1-carboxylato)-

triphenyl-tin and 4,4'-bipyridine (IVUVUR, top) and of the infinite chain formed by (pyridine-4-carboxylato)-

tricyclohexyl-tin (UZAVUN, bottom).  TBs are black dotted lines and hydrogen atoms have been deleted for 

sake of simplicity. Nc values are reported close to the respective interactions.  Color code: Grey, carbon; red, 

oxygen; orange, iron; light blue, nitrogen; dark teal, tin. 

 

 

 

Fig. 17  Ball and stick (Mercury 3.9) of the network generated by di(tri-n-butyl)-stannyl 5-((pyridin-4-

ylmethylene)amino)isophthalate with 4,4'-bipyridine (TISVEY).  TBs are black dotted lines; three atoms of 

the butyl residues at tin and hydrogen atoms have been deleted for sake of simplicity.  Nc values are reported 

close to the respective interactions.  Color code: Grey, carbon; red, oxygen; light blue, nitrogen; dark teal, tin. 

 



The nitrogen atom of pyridine derivatives forms short contacts with tin on the elongation not only of 

O–Sn covalent bonds, but also of C–Sn, Cl–Sn, Br–Sn, I–Sn, and S–Sn bonds [94, 96, 99, 100].  In 

all cases the geometric features of the adducts indicate that the nitrogen lone pair points to the 

elongation of one of the tin covalent bonds.  For instance, in the infinite chain formed by the 

dithiocarbamate reported in Fig. 18 (Refcode UGEFIX), the S–Sn∙∙∙N angle is 174.50°, the geometry 

around nitrogen is strictly trigonal planar, and tin is nearly in the pyridine plane (the two C(sp2)N∙∙∙Sn 

angles are 121.18° and 122.40° and the distance of tin from the mean square plane through the 

pyridine ring is 85 pm).   

 

Fig. 18  Ball and stick representation (Mercury 3.9) of the one-dimensional network formed by (bis(pyridin-

3-ylmethyl)carbamodithioato)-triphenyl-tin (UGEFIX).  TBs are black dotted lines and hydrogen atoms have 

been deleted for sake of simplicity.  Nc values are reported close to the respective interactions.  Color code: 

Grey, carbon; yellow, sulphur; light blue, nitrogen; dark teal, tin. 

 

The cyano group seems a profitable TB acceptor group via the lone pair at nitrogen.  Moreover, thanks 

to its high electron withdrawing ability, it is expected that when the cyano group is directly bound to 

a tin or germanium atoms, the -hole opposite to the NC–Sn/Ge covalent bond is particularly positive.  

Indeed, trimethyltin cyanide (Refcode TIMSNC01) and dimethyltin dicyanide (Refcode DMCYSN) 

both work as self-complementary modules and form infinite chains [101] and square 2D networks 

[102], respectively (Fig. 19) by pairing TB donor and TB acceptor sites.  Dimethylgermanium 

dicyanide (Refcode DMCYGE) show a somewhat similar behavior.  

 



 

 

Fig. 19  Ball and stick representation (Mercury 3.9) of the 1D infinite chain formed by trimethyltin cyanide 

(TIMSNC01, top) and the 2D network generated by dimethyltin dicyanide (DMCYSN, bottom).  TBs are black 

dotted lines and hydrogen atoms have been deleted for sake of simplicity.  Nc values are reported close to the 

respective interactions.  Color code: Grey, carbon; light blue, nitrogen; dark teal, tin. 

 

Tetrakis(2-cyanobenzyl)-tin (Refcode JIWROX) [103] (Fig. 20) functions as a self-complementary 

tecton as the cyano group of one molecule enters the elongation of one of the C–Sn covalent bonds 

of an adjacent molecule and infinite tetrel bonded ribbons are formed (Nc = 0.96, the C–Sn∙∙∙N angle 

is 178.46°).  

 

 

Fig. 20  Ball and stick representation (Mercury 3.9) of the network formed by tetrakis(2-cyanobenzyl)-tin 

(JIWROX).  TBs are black dotted lines and hydrogen atoms have been deleted for sake of simplicity.  Nc 

values are reported close to the respective interactions.  Color code: Grey, carbon; light blue, nitrogen; dark 

teal, tin. 

 



In 2-(dimethylaminomethyl)phenyl)-cyano-diphenyl-tin and bis(2-(dimethylaminomethyl)phenyl)-

dicyano-tin (Refcodes WUVKOP and WUVLOQ, respectively) [104], one and two NC–Sn∙∙∙N short 

contacts are present, respectively, and the amine nitrogen works as TB acceptor site in all cases (Fig. 

21).  This may suggest that, an N(sp3) atom is a better TB acceptor than an N(sp) atom.  The same 

relative ability to work as donors of electron density is observed in XB formation. 

 

 

 

Fig. 21  Ball and stick representation (Mercury 3.9) of conformation adopted by cyano-2-

(dimethylaminomethyl)phenyl)-diphenyl-tin (WUVKOP, left) and bis(2-

(dimethylaminomethyl)phenyl)-dicyano-tin (WUVLOQ, right).  TBs are black dotted lines and 

hydrogen atoms have been deleted for sake of simplicity.  Nc values are reported close to the respective 

interactions.  Color code: Grey, carbon; light blue, nitrogen; dark teal, tin. 

 

 

Halogen atoms as tetrel bond acceptors  

Structures in the CSD reveal that the four halogens can all form short contacts with tetravalent 

germanium and tin atoms comprised in organic derivatives.  These interactions can be rationalized as 

TB due to the fact that the halogen atoms are approximately on the elongation of one of the covalent 

bonds formed by the germanium and tin, the bond with the most electron withdrawing group being 

involved preferentially in the formation of these short contacts.   

For instance, crystals of bis(2,5-bis(trifluoromethyl)phenyl)(dichloro)germane (Refcode ZAVCUW) 

have two symmetrically non-equivalent molecules in the unit cell [105].  Both these molecules show 

two fairly short and linear TBs on the elongation of the Cl–Ge bonds (Nc values span the range 0.78 

– 0.79; the C–Ge∙∙∙F angles are between 176.15° and 174.93) (Fig. 22, left).  Analogously, an 

intramolecular C–Ge∙∙∙F short contact locks the conformation of (1,2,3,3,3-pentafluoroprop-1-en-1-



yl)-triphenyl-germanium (Refcode ADUKUH) [106] in the solid and allows for the formation of a 

tetrel bonded five member ring (the Nc value of the Ge∙∙∙F separation is 0.86, the C–Ge∙∙∙F angle 

166.80°). The tin analogue of ADUKUH (Refcode ADUKOB) behaves similarly as, in both 

independent molecules present in the unit cell of the crystal, an intramolecular C–Sn∙∙∙F TB is present 

and enables for a tetrel bonded ring (Fig. 22, right).  

 

 

Fig. 22  Ball and stick representation (Mercury 3.9) of the conformation adopted by bis(2,5-

bis(trifluoromethyl)phenyl)(dichloro)germane (ZAVCUW, left) and (1,2,3,3,3-pentafluoroprop-1-

en-1-yl)-triphenyl-tin (ADUKOB, right).  TBs are black dotted lines and hydrogen atoms have been deleted 

for sake of simplicity.  Nc values are reported close to the respective interactions.  Color code: Grey, carbon; 

yellowish green, fluorine; light teal, germanium; dark teal, tin. 

 

Interestingly, tricyclohexyl-tin fluoride (Refcode BAJWOY) [107] works as a self-complementary 

module as the fluorine atom of one molecule forms a short and remarkably linear TB on the 

elongation of the F–Sn covalent bond of an adjacent molecule and infinite chains are formed (Fig. 

23, top) (Nc value for the Sn∙∙∙F separation is 0.91, the F–Sn∙∙∙F angle is 178.85°).  A similar 

behaviour is shown by several other organotin derivatives bearing one, two, or three halogen atoms 

at the heavy tetrel [108–111] (Fig. 23).  



 

Fig. 23  Ball and stick representation (Mercury 3.9) of 1D chain generated by fluoro-tricyclohexyl-tin 

(BAJWOY, top), dichloro-dimethyl-tin (DMSNCL, mid) and dibromo-diethyl-tin (DESNBR, bottom).  TBs 

are black dotted lines, hydrogen atoms have been omitted for clarity.  Nc values are reported close to the 

respective interactions.  Color code: Grey, carbon; brown, bromine; green, chlorine; yellowish green, 

fluorine; dark teal, tin. 

 

Crystals of tetrakis(2-chlorobenzyl)-tin (Refcode CEWGEQ) [112] are a nice example of 

intramolecular C–Sn∙∙∙Cl interactions as three such contacts (Nc spans from 0.94 to 0.97) lock the 

molecular conformation (Fig. 24, left).  Interestingly, tetrakis(2-methoxybenzyl)-tin (Refcode 

HEVFOD) [113] and tetrakis(2-fluorobenzyl)-tin (Refcode VULSOM) [114] show in their respective 

crystals four intramolecular C–Sn∙∙∙O and C–Sn∙∙∙F TBs, respectively.  Tetrakis(chloromethyl)-tin 

(Refcode UGATEB) [115] is a nice case of intermolecular C–Sn∙∙∙Cl contacts.  The molecule works 

as a self-complementary bidentate TB donor (at tin) and acceptor (at chlorine) (Fig. 24, right) and a 

tetrel bonded (4,4) network is formed wherein UGATEB sits at the nodes.  

 



 

 

Fig. 24  Ball and stick representation (Mercury 3.9) of the conformation adopted by tetrakis(2-chlorobenzyl)-

tin (CEWGEQ01, left) and the network generated by tetrakis(chloromethyl)-tin (UGATEB, right).  TBs are 

black dotted lines, hydrogen atoms have been omitted for clarity.  Nc values are reported close to the respective 

interactions.  Color code: Grey, carbon; green, chlorine; dark teal, tin. 

 

 The conformation of diphenyl-(6-bromo-1,2-dihydroacenaphthylen-5-yl)-chloro-tin (Refcode 

VEKKUT) [116] is influenced by an intramolecular TB wherein the bromine atom enters the 

elongation of the Cl–Sn bond (Nc = 0.78, the Cl–Sn∙∙∙Br angle is 172.06) (Fig. 25, bottom) [116].  

Similar Cl–Sn∙∙∙Br contacts are present in various other (6-bromo-1,2-dihydroacenaphthylen-5-yl)-

tin derivatives.  Bromine atoms can be involved also in intermolecular TBs.  This is the case in steroid 

derivative 3β-(bromodimethylstannyl)-24-nor-5β-cholane (Refcode MISYAO) [117] (Fig. 25, top) 

which shows, in the crystals, 1D infinite chains assembled via Br-Sn∙∙∙Br. 



 

 

Fig. 25 - Ball and stick representation (Mercury 3.9) of the conformation adopted by chloro-(6-bromo-1,2-

dihydroacenaphthylen-5-yl)-diphenyl-tin (VEKKUT, bottom) and the 1D chain generated by 3β-

(bromodimethylstannyl)-24-nor-5β-cholane (MISYAO, rtop).  TBs are black dotted lines, hydrogen 

atoms have been omitted for clarity.  Nc values are reported close to the respective interactions.  Color code: 

Grey, carbon; brown, bromine; dark teal, tin. 

 The covalent bonds pathway connecting iodine and tin in (8-iodo-1-naphthyl)-trimethyl-tin 

(Refcode AQIVUS) [118] recalls that connecting bromine and tin in VEKKUT and this translates 

into the supramolecular similarity between the C–Sn∙∙∙I TB in the former compound and the Cl–

Sn∙∙∙Br TB in the latter.  In the crystal structure of bromo-(4-iodo-1,2,3,4-tetraphenyl-1,3-

butadienyl)-diphenyl-tin (Refcode SICSOM) (Fig. 26, bottom) [119] the iodine atom works as the 

TB acceptor and gets close to tin, the TB donor, on the elongation of the Br–Sn bond (Nc = 0.94 and 

the Br–Sn∙∙∙I angle is 168.95°).  This pattern is consistent with the fact that the more positive -hole 

on tin is expected in this position as bromine is more electron withdrawing than other atoms bound 

to tin.  Finally, the Sn∙∙∙I interactions present in crystals of tris(trimethylstannyl)ammonium iodide 

(Refcode RONDAZ) [120] give a nice example of charge assisted TB.  The existence of this type of 



TBs further confirms the analogy among the different subsets of -hole interactions, as charge 

assisted XBs [121] and charge assisted PBs [31] have already been observed.  Specifically, two 

crystallographically independent salt units are present in the crystal of RONDAZ, in both of them the 

tris(trimethylstannyl)ammonium cations work as tridentate TB donors, the iodide anion as tridentate 

TB acceptors, and 3D networks are formed (one 3D net is reported in Fig. 26, top). 

 
 

Fig. 26  Ball and stick representation (Mercury 3.9) of the conformation adopted by bromo-(4-iodo-1,2,3,4-

tetraphenyl-1,3-butadienyl)-diphenyl-tin (SICSOM, bottom) and the network formed by 

tris(trimethylstannyl)ammonium iodide (RONDAZ, top).  One layer of RONDAZ is reported and hydrogen 

atoms have been omitted for clarity.  TBs are black dotted lines and Nc values are reported close to the 

respective interactions.  Color code: Grey, carbon; purple, iodine; brown, bromine; light blue, nitrogen; dark 

teal, tin. 

 

 

 

 

 



Conclusion 

In this paper we report the results of an analyses of the CSD aimed at identifying crystal structures of 

organic derivatives of germanium and tin wherein these two elements form short contacts with lone 

pair possessing atoms.   

Attention has been focused on short contacts where oxygen, nitrogen, and halogens are the lone 

pair possessing atoms as a wider set of examples was found in the CSD for these atoms.  However, it 

may be worth mentioning that other heteroatoms (e.g., sulfur [122–124] and phosphorous [125–127]) 

also form similar interactions.  Ether and carbonyl oxygens as well as amine, pyridine, and cyano 

nitrogens can all be involved in these interactions and the observed geometry indicates that the lone 

pair of these heteroatoms is directed towards the germanium/tin atom independent of the 

hybridization of the oxygen/nitrogen atom (which can be sp3, sp2, or sp).  Short contacts are formed 

by derivatives where germanium and tin atoms bear four carbon residues or where halogen, oxygen, 

sulfur, or nitrogen substituents replace one, two, or three such carbon residues.  Independent of the 

nature and hybridization state of the lone pair possessing atom and independent of the nature of the 

residues covalently bound to germanium and tin, the short contacts are preferentially formed on the 

elongation of the covalent bonds that germanium and tin form with strong electron withdrawing 

residues.  Moreover, the more electron withdrawing the residue bound to germanium/tin is, the shorter 

the interaction on its elongation is. 

All these features are typical for -hole interactions and we are thus proposing to rationalize the 

short contacts described in this review as tetrel bonds.  Tetravalent germanium and tin atoms have a 

tetrahedral geometry.  When these atoms form one or two short contacts with lone pair possessing 

atoms, the geometry around them tends to change into trigonal bipyramidal or octahedral, 

respectively.  These changes have been explained through an sp3 → dsp3 or sp3 → d2sp3 

rehybridization at the tetrels.  It seem possible to explain these changes also resorting to the tetrel 

bond [128], namely via an attractive interaction between lone pairs and the positive σ-holes on the 

extensions of the covalent bonds formed by these tetrels.  The presence of -holes on all the four 

tetrels has been widely indicated by modelling [34–37] and the geometric features of the interactions 

discussed in this review offer experimental evidences consistent with this presence.  The tetrel bond 

rationalization is congruent with other alternative explanations mentioned above.  It may offer the 

profit that these interactions given by Group 14 elements are understood after the same mindset 

enabling for the rationalization of interactions formed when elements of Groups 15–18 function as 

electrophilic sites.   

The examined dataset is too limited to draw general conclusions but it seems to suggest that 

deviations of the interaction from the elongation of one of the covalent bonds is usually smaller for 



the TBs formed by germanium and tin than for most PBs and CBs [31],  This is consistent with 

theoretical calculations which show that the region of most positive electrostatic potential opposite to 

a covalent bond deviates from the extension of the bond more in pnictogen derivatives and less in 

tetrel derivatives [129, 130].  The greater linearity of TB may be related to the fact that the electronic 

dissymmetry generated around germanium and tin atoms by the four bonded residues is usually 

smaller than the dissymmetry generated around pnictogen and chalcogen atoms by the residues 

bonded to the pnictogen/chalcogen and the lone pair(s).   

It also seems that steric congestion around the tetrel atoms studied in this paper plays a quite 

influential role in tetrel bonds formation to the point that interaction formation may be prevented.  

For instance, tetrakis(2-fluorobenzyl)-tin (Refcode VULSOM) forms four intramolecular TBs and 

the tetrakis(2-chlorobenzyl) analogue (Refcode CEWGEQ) forms three intramolecular TBs; methyl-

tris((2-methoxymethyl)phenyl)germane (Refcode IMUTEP) forms one TB and the phenyl-tris((2-

methoxymethyl)phenyl) analogue (IMUTIT) forms no TB. 

In conclusion, the crystal structures discussed in this paper afford reliable experimental evidences 

that the electrophilic character of germanium and tin in some organic derivatives can be high enough 

that the tetrel bonds formed with a lone pair possessing atom can become a structural determining 

factor in crystalline solids.  Intra- and intermolecular tetrel bonds can be present in crystals and the 

interactions can affect the preferred conformation of a molecule and/or the network of intermolecular 

interactions in the crystal lattice.  These interactions seem reliable enough to become useful tools in 

crystal engineering. 
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