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Abstract: This paper reviews the most recent achievements obtained in the modelling of oil-film bearings and of labyrinth seals at 
Politecnico di Milano. These two topics are receiving increasing interest in nowadays rotor dynamics, in particular by OEM, owing to 
the increasing demand of high-performances/efficiencies and to the remarkable effect that they have on the stability of rotating 
machinery. The precise evaluation of dynamic coefficients, for both oil-film tilting-pad journal bearings and labyrinth seals, allows 
reliable evaluation of machine stability in the design phase. At this aim, several models are available in the literature. On the contrary, 
there are not so many cases, in which the models are validated by means of experimental tests. The bearing and labyrinth seal models 
presented here are supported by experimental validation. 
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1. Introduction  

The current trend in the turbomachinery market is to increase 
the “flexibility ratio”, which is defined by API standards as the 
ratio between the steady-state speed and the first critical speed. 
Because both journal bearings and internal sealing play a pivotal 
role in the rotordynamic stability, the reliable numerical 
modelling (i.e. verified with experimental tests) of the dynamic 
phenomena associated with them deserves much attention. 

Tilting pad journal bearings (TPJBs) are widely used in high 
rotating speed machines mainly due to their high stability 
compared with plain or fixed-arc journal bearings. Because the 
dynamic behavior of a rotating machine is strongly influenced 
by the dynamic characteristics of the bearings, TPJBs have been 
studied extensively by many authors using numerical 
simulations and experimental tests. In 1964, Lund [1] introduced 
his “Lund’s pad assembly method” consisting of calculating the 
stiffness and damping coefficients for a single fixed non-
rotational pad and then summing the contributions from each 
pad to find the combined effect of the pad assembly. 

Over the years, many effective methods have been applied, 
such as the Newton-Raphson method, numerical analyses, finite 
elements methods, and genetic algorithms, to calculate the static 
and dynamic characteristics of journal bearings [2]-[5]. 

Most of the studies of TPJB in the literature consider load-on-
pad (LOP) or load-between-pad (LBP) configurations [6]-[11]. 
Conversely, studies on the effects of loading direction on the 

TPJBs are still rare, and most of the papers are limited to 
theoretical analyses. 

Actually, high bearing loads not in the vertical direction may 
occur in industrial rotating machines, such as in turbo-generators, 
due to misalignment conditions of the shaft line [12], or in 
gearboxes. Jones et al. in [13] studied the theoretical effects of 
load direction on the steady-state and dynamic behavior of tilting 
pad journal bearings. These authors concluded that a non-
symmetrical direction of the load with respect to the pivot 
positions can produce significant cross-coupling dynamic terms. 
Additionally, it was found that changing the direction from LOP 
to LBP tends to reduce the maximum temperature in the bearing, 
especially when subject to high loads, with negligible effect on 
power loss. 

Moreover, most of the papers in the literature evaluate the 
static and dynamic characteristics of TPJBs by means of thermo-
hydrodynamic (THD) models but assume nominal (i.e. design) 
dimensions for all bearing pads; that is, the pads have the same 
nominal geometry, which corresponds to a circular periodicity 
of the bearing geometry. In practice, the manufacturing 
tolerances for the pads can be of the same order of magnitude as 
the oil-film thickness. 

This phenomenon is critical for high-speed shafts with a small 
diameter, where the necessity for large dynamic coefficients is 
obtained by using small bearing clearances. In the industrial 
field, the final geometry of the pads is generally tuned by using 
calibrated shims under the pivots that are able to compensate for 
the manufacturing tolerances. This solution is not applicable to 
rocker-backed TPJBs. 
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Seals are widely used in turbomachinery to reduce the leakage 
flow through the rotor-stator clearances from the high-pressure 
to the low-pressure region [14]. The clearance around the rotor 
is required to avoid rotor-to-stator rub, excessive wear and 
friction heating. In the case of labyrinth seals, the blades, both 
for teeth-on-rotor (TOR), teeth-on-stator (TOS) and interlocking 
configurations, impose a “tortuous passage” to the fluid [15]. 
The unsteady pressure field produces lateral forces on the shaft 
that can affect the rotordynamic stability of the machine [16]. 

The main destabilizing effects are caused by the non-
symmetrical unsteady circumferential pressure distribution and 
by the unbalanced circumferential forces due to the orbit motion 
of the rotor within the seal. 

Regarding the state-of-the-art seal dynamic coefficients 
estimation, Childs and Scharrer [17] developed a bulk-flow 
model with a one-control volume (1CV) based on that of 
Iwatsubo [18] to evaluate the dynamic coefficients of the 
labyrinth seals composed of a smooth rotor and labyrinth shaped 
stator (or reverse). Currently, this model is the most used 
approach in the industrial field to predict seal coefficients. 
Scharrer [19] has also developed a model with two-control 
volumes to account for the vortex velocity within the chamber 
based on the theoretical model of Wyssmann [20].  

Nordmann and Weiser [21] developed a bulk-flow model 
based on three control-volumes for half labyrinth seals. This 
model considers the continuity, the circumferential momentum 
and the energy equation in each control-volume; no turbulence 
model was used because the turbulence effects are taken into 
account using the wall shear stress correlation reported by 
Wyssmann [20].  

Childs and Scharrer [22] presented the results of the first 
experimental tests, and Picardo and Childs [23] compared the 
experimental results of the labyrinth seal coefficients with those 
estimated using the 1CV bulk-flow model. 

The manufacturers of rotating machinery have played a 
fundamental role in the research on seal effects on the 
rotordynamic behaviour. A sophisticated test rig equipped with 
active magnetic bearings was used by Vannini et al. [24]. Some 
experimental tests were performed for the TOS labyrinth seals 
with high positive and negative pre-swirl ratios. The test with 
the negative pre-swirl was performed to investigate the potential 
impact of swirl reversal devices, such as counter rotating shunt-
holes or swirl brakes. 

In this paper, the authors introduce an accurate model for 
TPJB and an improvement in the 1CV bulk-flow model for 
labyrinth seals, by considering the influence of the energy 
equation in the zeroth-order solution with real gas properties. 
The results of both the models developed by the authors are 
compared to experimental results. 

2. Tilting pad journal bearings 

The main advantage of a TPJB consists of the pads’ capability 
to follow the displacements of the rotor. During operation, each 
pad rotates such that the resultant of the fluid-film forces and the 
inertial forces due to the mass of the pad passes through the pivot 
or the contact point between the pad and the bearing ring. 
Therefore, the pivot location influences the pad rotation and the 

magnitude of the hydrodynamic pressure distribution. 

2.1. TPJB modelling 

The bearing model includes the effect of the pad inertia and 
the pivot stiffness [25], the hydrodynamic lubrication model for 
the pressure distribution and a simple thermal model for the 
effect of the temperature distribution on the oil viscosity. 

Figure 1 shows in detail the geometry of a single pad from the 
five shoe rocker-backed TPJB, where bO  and jO  denote the 
center of the bearing and the journal, respectively. 

The pad tilts about the line contact, whose trace is the pivot P. 
Point P is also able to moves along the radial direction η  due 
to the flexibility of the pivot. The tangential displacement of the 
point P is neglected. For a given static load, the static 
equilibrium configuration of the pads ( )0 0,θ η  and the 
corresponding position of the journal center 0 0( , )x y  are 
calculated by using the Newton–Raphson method. 

 

Figure 1  Geometry and coordinate for a single pad. 

The first step of modeling the hydrodynamic bearings is the 
definition of the equation of the oil-film thickness h  as a 
function of the eccentricity and attitude angle, the pad tilt angle 
and the pad pivoting position. 

The pressure distributions of the oil film on each pad are 
obtained by integrating the Reynolds equation: 

( ) ( ) ( ) ( )

3 3

1 2 1 2 2 16 2

h p h p
x x z z

U U h h U U V V
x x

ρ ρ
µ µ

ρ ρ ρ

   ∂ ∂ ∂ ∂
+ =   ∂ ∂ ∂ ∂   
∂ ∂ = − + + + − ∂ ∂ 

 (9) 

where h  is the oil-film thickness, p  is the pressure in the 
fluid film, µ  is the lubricant dynamic viscosity, z  is the 
axial direction, x  is the tangential direction, and ρ  is the 
density of the oil. The velocity vector components of the shaft 
and the pads are described by 1 1,U V  and 2 2,U V , respectively 
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[26]. 
In particular, the viscosity µ  and the density ρ  of the 

lubricating oil are assumed to be functions of only the 
temperature T : 

( ){ }40 40( ) expC CT T Tµ µ κ° °= −
 (10) 

( ){ }40 40( ) 1C v CT T Tρ ρ α° °= + −  (11) 

where κ  and vα  are the viscosity index and the coefficient 
of thermal expansion of the oil, respectively. In this research, 
ISO-VG 46 oil was used for bearing lubrication. 

The oil film forces in the rotor bearing system can be obtained 
by: 

,

,

0
0

x oil x

y oil y

f W
f W

+ =

+ =
 (12) 

where ,x oilf  and ,y oilf  are the horizontal and vertical 
hydrodynamic oil-film forces acting on the shaft. xW  and yW   
are the resultant forces on the shaft due to the shaft inertia and 
external load along the horizontal and the vertical direction. 

By considering a perturbation oilf∆  in the oil-film forces 
with respect to the static value ,0oilf  at equilibrium: 

, , ,0 , , ,0 ,

, , ,0 , , ,0 ,

 

 

k k
x oil x oil x oil x oil x oil

k k
k k

y oil y oil y oil y oil y oil
k k

f f f f f

f f f f f

= + ∆ = + ∆

= + ∆ = + ∆

∑ ∑

∑ ∑
 (13) 

the oil-film forces on the shaft are obtained by the sum of the 
oil-film forces k

oilf∆  of each k-th pad. The forces 
( ), , , , , , ,k k

oil oilf f x y x yθ η θ η∆ = ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆    on each pad can be 
linearized about the equilibrium position by means of the full 
dynamic coefficients: 
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 
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 (14) 

where θ  and η  are the angular rotation and the radial 
displacement of the k-th pad respectively, ,

k
oilfθ∆  and ,

k
oilfη∆  

the moment of the oil-film forces with respect to the pivot and 
the resultant of the oil-film forces along the radial direction of 
the pivot position. 

By considering a harmonic excitation with a forcing 
frequency ω , the motion of the system will be: 

i

i

i

i

( ) ( ) ( ) i ( )
( ) ( ) ( ) i ( )
( ) ( ) ( ) i ( )
( ) ( ) ( ) i ( )

t

t

t

t

x t X e X X
y t Y e Y Y

t e
t e

ω

ω

ω

ω

ω ω ω ω

ω ω ω ω

θ ω ω ω ω

η ω ω ω ω

∆ = ∆ ∆ = ∆

∆ = ∆ ∆ = ∆

∆ = ∆Θ ∆Θ = ∆Θ

∆ = ∆Ν ∆Ν = ∆Ν









 (15) 

For each pad, the amplitude of oil-film forces in frequency 
domain can be expressed by: 

,

,

,

,

k
k

x oil xx xy x x

y oil yx yy y y

x y koil

x y koil

F Z Z Z Z X
F Z Z Z Z Y
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Z Z Z ZF
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η

 ∆ ∆        ∆  ∆   = −     ∆Θ∆       ∆Ν     ∆  

 (16) 

where the matrix of the full dynamic coefficients is given by: 

i
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 
 
  = 
 
  

   
   
   = +   
   
      

 (17) 

The dynamic coefficients for each pad are obtained using a 
numerical differentiation approach: 
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where [ ]kK  and [ ]kC  are the linear stiffness and damping 
coefficient matrices; 0 0 0 0( , , , ,0,0,0,0)x y θ η  represents the 
static equilibrium position of the system (shaft and pads). 

Equation (16) can be rewritten as: 
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 (20) 

From the equation of motion of each pad, amplitudes of 
vibration along θ  and η  are given by: 

( ) 1
,2

,
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 (21) 

where 
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padM   , 
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padC    and 
k

padK    are the mass, the 
damping and the stiffness matrices of the pad, representing the 
inertia, the damping and stiffness of the pivot respectively: 
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 (22) 

where PJ  is the mass moment of inertia of the pad with respect 
to pivot point P, m  the mass and Gb  the position of the 
barycenter with respect to the pivot. The parameters cθ , cη  
and kθ  have been neglected and only the pivot stiffness kη  
has been considered in the evaluation of the dynamic 
coefficients. 

The stiffness of the pivot along the direction η  is obtained 
by the contact Hertz theory as [28]: 

( ) ( )2
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=
 −

− + 
  

 (23) 

where E  and ν  are the Young’s modulus and the Poisson 
coefficient respectively, Hr  and per  are the radii of the 
bearing housing and pivot and 0PF  is the load along the radial 
direction of the pivot. Therefore from Eqs. (20) and (21): 
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 (24) 

From Eq. (13) in the frequency domain, it is possible to obtain 
the reduced set of dynamic coefficients [ ] [ ] [ ]iω= +Z K C : 
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In the literature, the dynamic coefficients are evaluated by 
considering the load acting in the opposite direction of the Y axis 
(Figure 2 (a)). If the direction of the load changes, it is still 
possible to evaluate the dynamic coefficients in the reference 
system of the load where the Y '  axis is aligned in the opposite 
direction of the load (Figure 2 (b)) by means of the following 
transformations: 

[ ] [ ] [ ][ ]T′ =K R K R  (26) 

[ ] [ ] [ ][ ]T′ =C R C R  (27) 

where [ ]R  is a rotation matrix 

[ ] cos sin
sin cos

β β
β β

− 
=  
 

R  (28) 

 

 (a) (b) 

Figure 2  Direction of the load with respect to the reference 
system. 

A finite-difference code has been developed for the 
integration of the Reynolds equation. For instance, the pressure 

,i jp  at node ( , )i j  of the mesh grid is given by a combination 
of pressures of the nearest nodes: 

, 0 1 1, 2 -1, 3 , 1 4 , -1          i j i j i j i j i jp a a p a p a p a p+ += + + + +  (29) 

A simple two-dimensional control-volume thermal model [27] 
is considered for the evaluation of the bearing fluid temperatures 
and viscosities. A constant average temperature of the oil in the 
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radial direction ( y ) and adiabatic conditions at the pad and shaft 
surfaces are considered. A more realistic isothermal condition 
for the shaft can be obtained using a more sophisticated but time-
consuming three-dimensional model. For instance, the 
temperature PT  of the center (Pole) of each control volume 
(which is a quadrilateral with dimensions X∆   and Z∆ ) is 
given by a combination of the temperatures , , ,N E S WT T T T  of 
the four edges (North, East, South, West) of the control volume 
and the temperature of the preceding iteration cycle 0PT : 

0            E E W W S S N N C P
P

E W S N P

a T a T a T a T S X Z TT
a a a a S X Z

λ
λ

+ + + + ∆ ∆ +
=

+ + + − ∆ ∆ +

 (30) 

The parameter λ  is used to enforce the flow directionality 
(convention) in Eq. (30) depending on the difference between 
the lubricant flow in and out of the control volume: 

1

1 1

1

if 0
0 if 0

E W S N Pa a a a aλ
λ λ λ
λ λ

= + + + −

= >
= ≤

 (31) 

where 

( )

( )

( )

( )

2

2

2

     
2

W
W W W W P P P

E
E E E E P P P

N
N N N N P P P

S
S S S S P P P

h Xa W cp W cp

h Xa W cp W cp

h Za U cp U cp

h Za U cp U cp

ρ ρ

ρ ρ

ρ ρ

ρ ρ

∆
= +

∆
= − +

∆
= − +

∆
= +

 (32) 

In the Eq. (30), the terms CS  and PS  are obtained from the 
intensity of the viscous heating S  by assuming a linear 
dependence of the heat source term on the temperature: 

0

2 2

0

0

0

1    ;

P

P

c p P

P
C

S

S dS
dT

T dS S

u w h
y y

d

S T

T

Sµ

µ
µ

µ
µ

    ∂ ∂
 + = +   ∂ ∂  

=

=

 
= − 







 

 (33) 

where the terms 0µ  and 0PT  refer to the previous sweep of 
the iteration for temperature. 

In this paper, the temperature of the inlet oil used for the 
numerical model was maintained at 40°C, which corresponds to 
the actual operating condition of the bearing. 

In conclusion, for a given static load, the following conditions 
must be satisfied: 

- convergence of the pressure distribution in each pad; 
- convergence of the temperature distribution in each pad; 
- equilibrium of the forces on each pad; 
- equilibrium of the forces on the shaft for the given static 

load. 

2.2. TPJB experimental tests and results 

The test rig of the Dept. of Mechanical Engineering of 
Politecnico di Milano, is described in detail in [29] and shown 
in Figure 3.  

 

Figure 3  Test rig for journal bearings. 

In the test rig, the rotor axis describes orbits similar to the real 
configuration of a rotating machine thanks to the hydraulic 
actuators. Moreover, the hydraulic actuators can also apply the 
static load in any direction of the vertical plane. The static 
behavior and the dynamic coefficients are evaluated on the 
bearing #1 in Figure 4, while bearing #2 has the same loads and 
nominal dimensions. 

 

Figure 4  Sketch of the test rig. 

Before starting the experimental tests, the actual geometry of 
the TPJB #1, and the actual preloads of all the pads has been 
determined by means of the procedure described in [29]. Instead 
of the standard least square method used in the literature (see for 
instance [30]) foe estimating the dynamic coefficients, a more 
robust M-estimator based method has been used, as described in 
[29] and [31]. 

2.2.1. Shaft center locus 

For the nominal bearing, the numerical journal locus obtained 
by changing the direction of the static load is a “smoothed 
pentagon”, which can be approximated by a circle with a radius 
of approximately 30 µm, as shown in Figure 5 (solid black line 
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with dot markers).  
Figure 5 shows the nominal (black dashed-dotted line) and 

measured (green solid line) pentagonal clearance profile of the 
nominal and actual TPJBs, respectively. The calculated and 
measured shaft center locus for the bearing under test and the 
nominal bearing are plotted inside the measured clearance 
profile. Twenty positions of the shaft center have been measured, 
corresponding to twenty directions of the static load (from ‒90° 
to 252°, with steps of 18°). For the test bearing, the journal center 
loci (the calculated one and the measured one) have irregular 
shapes. 

It should be noted that, although there is a difference between 
prediction and measurement of the journal center locus, their 
irregular shapes are similar. This fact is probably due to the 
flexibility of the system and the thermal expansion of the bearing 
housing during the experiments. During the experimental tests, 
while the temperature of the oil input is maintained at 
approximately 40±1°C using a heat exchanger and a temperature 
controller, the temperature of the housing is greater and is 
approximately equal to 48°C. This causes an expansion of the 
mechanical components of the bearing. 

 

Figure 5  Shaft center locus of the bearing vs. static load direction. 

The overall system flexibility include backlashes and stiffness 
of the system from the pivot to the proximity probe position. 
These two factors have not been modelled in the mathematical 
model. The simple thermal model for the oil-film temperature 
distribution affects the oil-film thickness and pressure 
distribution. The pivot stiffness considers only the deformation 
due to the contact between the pad and the bearing housing. The 
effect of the thermal expansion and system flexibility is a static 
radial offset in the measurement of the static position of the shaft. 
Improvement in the model can be obtained by including the 
additional flexibility of the system in the pivot stiffness given in 
Eq. (23). 

It is interesting to observe that the clearance profile of the test 
bearing, shown in Figure 5, is greater in the case of pad #4. This 
effect is likely a consequence of the fact that pad #4 has the 
smallest thickness (15.981 mm vs. the nominal 16.000 mm), so 

the displacement of the shaft will be greater in the case of pad 
#4. 

2.2.2. Dynamic coefficients 

In the absolute reference system, the vertical load direction is 
considered varying and the static load is rotated in a full 
revolution (360°) in steps of 18°. This means that all five pads 
will be loaded under a LOP and LBP configuration during the 
tests.  

Figure 6 shows the influence of the load direction on the 
experimental and calculated stiffness and damping coefficients 
of the test bearing. Obviously, the load direction has a strong 
effect on both of them. 

The stiffness coefficients of the test bearing show a general 
good agreement between the experimental and the calculated 
values. The differences can be explained, as previously 
mentioned, by the fact that the measured displacements of the 
shaft are greater than the calculated ones due to the thermal 
expansion and flexibility of the housing-pivot system. 
Consequently, the calculated direct stiffness coefficients are 
greater than the experimental coefficients. However, this 
difference is not noteworthy except for the direct stiffness in the 
horizontal direction ( xxk ).  

The damping coefficients obtained from the experimental 
tests are rather different from the calculated coefficients; in 
particular, the calculated direct coefficients ( xxc  and yyc ) are 
greater than the experimental coefficients. It is also possible to 
observe in Figure 6 that the calculated stiffness and damping 
coefficients of the nominal bearing maintain a certain symmetry 
as a function of the direction of the load. This is less evident for 
the test bearing due to the asymmetric geometry. 

 

 

Figure 6  Dynamic coefficients vs. load directions in the absolute 
reference system. 

-90° -18° 54° 126° 198° 270°
1

2

3

4 x 108

k xx
 [N

/m
]

-90° -18° 54° 126° 198° 270°
-1

0

1

2 x 108

k xy
 [N

/m
]

-90° -18° 54° 126° 198° 270°
-1

0

1

2 x 108

Load direction [°]

k yx
 [N

/m
]

-90° -18° 54° 126° 198° 270°
0

1

2

3 x 108

Load direction [°]

k yy
 [N

/m
]

 

 

Predicted  - Test bearing
Measured - Test bearing
Predicted  - Nominal bearing



 

7 

3. Labyrinth seals 

The influence of the seals on the system stability can be 
predicted using the dynamic coefficients. The prediction of the 
seal coefficients is challenging because errors in the prediction 
of the dynamic behaviour may result in dangerous and costly 
consequences. The effective damping [14] due to sealing 
components is defined as: 

xy
eff xx

k
c c

ω
= −  (34) 

and is a key characteristic that should be predicted accurately to 
investigate the stability of the machine. The effective stiffness is 
defined as: 

eff xx xyk k c ω= −  (35) 

and is relevant to the rotor natural frequency. This is usually not 
relevant for rotordynamic design when labyrinth seals are 
considered because it is at least one order of magnitude lower 
than the journal bearing effective stiffness. 

3.1. Model for the calculation of seal dynamic coefficients 

The proposed model is based on the 1CV bulk-flow model 
introduced by Childs and Scharrer [17]. One control volume for 
each cavity is considered (see Figure 7 and Figure 8).  

 

Figure 7  Seal cavity: indices of control variables. 

 

Figure 8  Seal cavity: domain geometry parameters. 

The model includes real gas properties evaluated using the 
NIST code [32] since the ideal gas law could be not verified for 
severe operating conditions and for several working fluids. The 
perturbation analysis is used to solve the partial differential 
equations that govern the phenomena. The rotor position is 
perturbed with respect to the centred position (see Figure 9), and 
a circular orbit is assumed, which was suggested by Thorat and 
Childs [33], to avoid possible inaccuracies due to the frequency-
dependent coefficients. 

 

Figure 9  Circular orbit of the centre of the rotor due to the 
perturbation. 

Whilst the models introduced in [17] and [33] considers an 
isenthalpic process for the fluid within the seal, the model 
developed by the authors considers the energy balance within 
each cavity of the seal. Moreover, the authors assume that the 
perturbed motion of the rotor does not affect the enthalpy in the 
cavity; hence, the energy equation is evaluated only in the 
zeroth-order solution (centred rotor).  

For an ideal labyrinth seal with no rotating shaft, the enthalpy 
of the fluid within the seal should be conserved assuming there 
is no heat exchange between the fluid and the wall boundaries. 
However, an enthalpy variation along the seal is expected and is 
caused by the residual kinetic energy of the fluid within each 
cavity of the seal. The leakage correlation takes into account the 
variation in the kinetic energy, which is related to the axial 
velocity, using the kinetic carry-over coefficient. The authors 
assumed that the main variation in the kinetic energy along the 
seal, in steady-state condition, is due to the circumferential 
velocity component; in fact, the energy equations do not 
consider the axial velocity terms in the zeroth-order solution. 

Actually, an isenthalpic process does not represent a correct 
physic assumption for the description of the fluid-structure 
interaction within the seal, at least when the rotor is running at a 
high rotational speed (work performed by the fluid is introduced 
in the energy equation). 

The thermodynamic and kinematic variables of the model are 
separated in the steady-state terms (index 0i) and in the perturbed 
terms (index 1i). 

0 1 ( , )i i iP P P tε ϑ= +  (36) 
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0 1 ( , )i i i tρ ρ ερ ϑ= +  (37) 

0i ih h=  (38) 

0 1 ( , )i i iV V V tε ϑ= +  (39) 

1( , )i riH C H tε ϑ= +  (40) 

The zeroth-order solution of the partially derivative equations, 
introduced thereafter, addresses the steady-state problem, which 
is critical for the solutions of the first-order equations that rule 
the stability of the system. 

The physics of the problem is governed by the continuity, 
circumferential momentum and energy equation (adiabatic 
process), which are, respectively: 

• Continuity equation [17]: 

1( ) 0i i i
i i i i

S

AVA m m
t R

ρρ
ϑ +

 ∂ ∂
+ + − = 

∂ ∂  
   (41) 

• Circumferential momentum equation [17]: 

2

1 1 1( ) i i i
i i i i i i

S

i i
ri ri i si si i

AVAV m V mV
t R

A P a L a L
R

ρρ
ϑ

τ τ
ϑ

+ −

 ∂ ∂
+ + − = 

∂ ∂  
∂

= − + −
∂

 

 (42) 

• Energy equation [34]: 

2 2

2 2
1

1 1

2 2

2 2

i i i i i
i i i i

s

i i
i i i i ri ri i s

V V AVu A h
t R

V Vm h m h a L R

ρρ
ϑ

τ−
+ −

      ∂ ∂
+ + + +         ∂ ∂      

   
+ + − + = Ω   

   
 

 (43) 

The leakage correlation employed in the model is the 
generalized Neumann equation for real gases: 

1 2 1 1i i i i i i i im H P Pµ µ ρ ρ− −= −  (44) 

The term 1iµ  is the flow coefficient for the ideal gas defined 
by Chaplygin [35], despite the fact that the real gas is considered 
in the model. The prediction error introduced by considering the 
real gas instead of the ideal gas in the thermodynamic process 
between the cavity and the orifice can be neglected, as reported 
in [36]. The term 2iµ  is the energy carry-over coefficient 
introduced by Neumann [37]. This term considers the clearance 
perturbation, as suggested by Thorat and Childs [33]. The energy 
carry-over coefficient is equal to unity for the first cavity. The 
terms for the following cavities are obtained using: 

1 22 5 2i
i is s

πµ
π

=
+ − +

 (45) 

1

1 1i
i

i

Ps
P

γ
γ
−

− 
= − 
 

 (46) 

2 (1 )i
i i

NT
J NT J

µ =
− +

 (47) 

2

1 1 16.6 i
i

i

HJ
L

−
 

= − + 
 

 (48) 

When the flow sonic condition is reached under the last tooth 
(choked flow), the leakage mass flow-rate becomes independent 
by the downstream pressure [38]. To check if the flow is 
subsonic or choked, the axial velocity is compared with the 
speed of sound ( ς ) of the fluid. The speed of sound is evaluated 
using the NIST code [32] and it is function of the pressure and 
of the density of the previous cavity ( 1 1( , )i i if Pς ρ− −= ), whereas, 
the axial velocity is estimated using the definition of the leakage 
mass flow-rate, which is: 

1 1

i
i

i i i

mU
Hµ ρ −

=


 (49) 

If the axial velocity is equal (M=1) or larger (M>1) than the 
speed of sound, the leakage mass-flow rate equation becomes: 

1 1i i i i im Hµ ρ ς−=  (50) 

For the calculations of the shear stresses ( siτ  for the seal and 
riτ  for the rotor), it is necessary to use the correlation explicit 

formula to estimate the Fanning friction factor ( sif  and rif ). 
The shear stresses are evaluated using: 

2 sgn( )
2

i
si si i if V Vρτ =  (51) 

2( ) sgn( )
2

i
ri ri i if R V R Vρτ = Ω − Ω −  (52) 

Several available models in the literature consider the Blasius 
correlation [14] on both the rotor and the stator wall for the 
friction factor. The Darcy friction factor correlation used by the 
authors is the one developed by Swamee and Jain [39], and the 
explicit formula is also valid for rough pipes, which is different 
from the Blasius correlation [40].  

2

10 0.9

5.740.25 log
3.7

i
i

e Dhf
Re

−
  = +  

  
 (52) 

The continuity, circumferential momentum and energy 
zeroth-order equations were iteratively solved using the multi-
variate Newton Raphson algorithm to find the solutions for the 
pressure, density, enthalpy and circumferential velocity for each 
cavity. The full details are reported in [41]. 

3.2. Labyrinth seal experimental tests and results 

The experimental tests have been performed on the high-
pressure seal test rig as it is described in [24]. 

The numerical results of the model described in the section 
3.1 are now compared with the experimental results. The 
dynamic coefficients are calculated by using the energy equation 
or not (isenthalpic process). 

The effects of the energy equation in the 1CV bulk-flow 
model for both positive and negative pre-swirl values are shown 
in Figure 10 - Figure 15. Figure 10 and Figure 11 show the 
numerical and experimental results for the direct stiffness 
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coefficients versus the whirling speeds.  

 

Figure 10  Direct stiffness coefficients: positive pre-swirl. 

 

Figure 11  Direct stiffness coefficients: negative pre-swirl. 

Figure 12 and Figure 13 show the numerical and experimental 
results for the cross-coupled stiffness coefficients. In the case of 
the negative pre-swirl ratio, the coefficients are negative, which 
implies that the effective damping (see Eq.(34)) is positive and 
justifies the wide system stability margin in the case of the 
negative pre-swirl (due to both the negative cross-coupled 
stiffness shown in Figure 13 and the positive direct damping 
shown in Figure 15). The direct damping coefficients versus 
whirling speeds are shown in Figure 14 and Figure 15. Figure 10 
- Figure 15 show that the energy equation model is effective only 
on the cross coupled terms with the negative pre-swirl.  

 

 

Figure 12  Cross-coupled stiffness coefficients: positive pre-swirl. 

 

Figure 13  Cross-coupled stiffness coefficients: negative pre-swirl. 

In the case of positive pre-swirl, the effect of the energy 
equation is negligible with respect to the results obtained using 
the isenthalpic model (see Figure 10, Figure 12 and Figure 14). 
On the contrary, in the case of negative pre-swirl, due to the 
higher fluid-rotor shear stress, the coupling between the 
continuity equation and the circumferential momentum equation 
can be observed. The effect of the energy equation can be 
noticed in the prediction of the cross-coupled stiffness 
coefficients (see Figure 13). The root cause is addressed to the 
changing of the steady pressure in the seal cavities ( 0iP ), see 
Figure 16, which influence the dynamic coefficients.  
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Figure 14  Direct damping coefficients: positive pre-swirl. 

 

Figure 15  Direct damping coefficients: negative pre-swirl. 

The effect of the enthalpy appears also in the first-order 
system of equations in the estimation of the i-th term 

0 0,i i
i i P h

Pρ∂ ∂  that depends on the steady pressure and steady 
enthalpy. 

6. Conclusions 

The paper presented the models developed at the Dept. of 
Mechanical Engineering of Politecnico di Milano for the 
calculation of the dynamic effects of TPJB and labyrinth seals. 

The results of the models have been validated by means of 
experimental tests performed on test-rig made on purpose.  

In general, the results obtained present good fitting between 
the calculated parameters and the measured ones, therefore the 
proposed models can be profitably used in the design phase of 

rotating machines, allowing high performances/efficiencies to 
be reached. 

 

Figure 16  Steady pressure: negative pre-swirl. 
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