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UPGRADED METHODS FOR THE EFFECTIVE COMPUTATION OF MARKED

SCHEMES ON A STRONGLY STABLE IDEAL

CRISTINA BERTONE, FRANCESCA CIOFFI, PAOLO LELLA, AND MARGHERITA ROGGERO

Abstract. Let J ⊂ S = K[x0, . . . , xn] be a monomial strongly stable ideal. The collection Mf(J)
of the homogeneous polynomial ideals I , such that the monomials outside J form a K-vector basis
of S/I , is called a J-marked family. It can be endowed with a structure of affine scheme, called
a J-marked scheme. For special ideals J , J-marked schemes provide an open cover of the Hilbert
scheme Hilbn

p(t), where p(t) is the Hilbert polynomial of S/J . Those ideals more suitable to this
aim are the m-truncation ideals J≥m generated by the monomials of degree ≥ m in a saturated

strongly stable monomial ideal J . Exploiting a characterization of the ideals in Mf(J≥m) in terms
of a Buchberger-like criterion, we compute the equations defining the J≥m-marked scheme by a new

reduction relation, called superminimal reduction, and obtain an embedding of Mf(J≥m) in an affine
space of low dimension. In this setting, explicit computations are achievable in many non-trivial cases.
Moreover, for every m, we give a closed embedding φm : Mf(J≥m) →֒ Mf(J≥m+1), characterize those
φm that are isomorphisms in terms of the monomial basis of J , especially we characterize the minimum
integer m0 such that φm is an isomorphism for every m ≥ m0.

Introduction

Let J be a monomial ideal of the polynomial ring S = K[x0, . . . , xn] in n+1 variables over a field K.
In this paper, we refine and develop the study begun in [7] to characterize the homogeneous polynomial
ideals I ⊂ S such that the monomials outside J form a K-vector basis of the K-vector space S/I. If
J is strongly stable, such homogeneous ideals constitute a family Mf(J), that is called a J-marked
family and that can be endowed in a very natural way with a structure of affine scheme, called a
J-marked scheme, which turns out to be homogeneous with respect to a non-standard grading and
flat at J (see [7]). Moreover, J-marked schemes generalize the notion of Gröbner strata [15] because
Mf(J) contains all the ideals having J as initial ideal with respect to some term order; however in
generalMf(J) contains also ideals which do not belong to a Gröbner stratum.

In this paper we focus on a particular class of strongly stable ideals: letting J be a saturated
strongly stable ideal, we will consider the truncations J≥m, for every positive integer m, because in
this setting marked schemes give a theoretical and effective alternative to the study of Hilbert schemes
as subvarieties of a Grassmannian. Theorem 3.3 and Example 3.4 show the reason for the choice of
this special setting. Let Hilbnp(t) be the Hilbert scheme that parameterizes all subschemes of Pn with

Hilbert polynomial p(t), r be the Gotzmann number of p(t) and q(t) = |St| − p(t) =
(
n+t
n

)
− p(t) be

the volume polynomial. By theoretical results in [4, 7, 6] we are able to compute first the set Bp(t) of
all saturated strongly stable ideals J in S, such that p(t) is the Hilbert polynomial of S/J ; then, for
every ideal J ∈ Bp(t), we compute explicit equations of degree ≤ deg(p(t))+ 2 definingMf(J≥r) as an

affine subscheme of Ap(r)q(r). In particular, every Mf(J≥r) can be embedded in Hilbnp(t) as an open

subscheme and moreover, as J varies in Bp(t), the J≥r-marked schemesMf(J≥r) form an open cover
of Hilbnp(t), up to changes of coordinates in Pn. Observe that this is not true for Mf(J), because in
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general Mf(J) is not isomorphic to an open subset of Hilbnp(t) (see Example 6.1 and [24, Section 5]).

Such computational method is effective because the dimension p(r)q(r) of the affine space in which the

J≥r-marked schemesMf(J≥r) are embedded is significantly lower than the number
(|Sr|
q(r)

)
of Plücker

coordinates. However there is room for further significant improvements.
The present paper is inspired by two questions raised, on the one hand, by similarities of marked

schemes with Gröbner strata and, on the other hand, by experimental observations on examples.
First, we observed that we could eliminate a significant number of variables from the equations

definingMf(J≥m) as an affine subscheme of Ap(m)q(m), computed using the method developed in [7];
in this way we obtain equations of higher degree than the starting ones, but often more convenient to
use (for example, see [7, Appendix]). This feature has already been observed and studied for Gröbner
strata in [15]. The bottleneck is that elimination of variables is too time-consuming. From this we
wondered how to obtain this new set of equations using in the computations only necessary variables,
avoiding the elimination process.

Our second observation is that, for a fixed J ∈ Bp(t), as the integer m grows, the families parameter-
ized by marked schemesMf(J≥m) become larger, up to a certain value of m bounded by r. The study
of relations among marked schemesMf(J≥m) as m varies can improve the efficiency of the computa-
tional methods in [7]: indeed, if Mf(J≥m) andMf(J≥m′) are isomorphic for some integers m′ < m,
then we can choose to compute defining equations that involve a lower number of variables, that is
equations forMf(J≥m′) ⊆ Ap(m′)q(m′). In particular, for applications to the study of Hilbert schemes,
we would like to determine a priori the minimum integer m0 for whichMf(J≥m0

) is isomorphic to an
open subset of Hilbnp(t), that isMf(J≥m0

) ≃Mf(J≥r).

In this paper, considering truncated ideals J≥m, we answer to both questions by a new reduction
algorithm, called superminimal reduction, that uses, for every I ∈ Mf(J≥m), its J≥m-superminimal
basis (see Definition 3.9), a special subset of the J≥m-marked basis of I.

For every strongly stable monomial ideal J , the notion of J-marked basis (Definition 1.8) is the
main tool for the study of marked schemes in [7] and also the starting point of the present paper.
Indeed a homogeneous ideal I belongs toMf(J) if and only if I is generated by a J-marked basis G
(Proposition 1.11). This basis resembles a reduced Gröbner basis for I, where J plays the role of the
initial ideal and the strongly stable property plays the role of the term order.

Indeed, similarly to a reduced Gröbner basis, G is a system of generators of I that contains a
polynomial fα for every term xα in the monomial basis of J : fα = xα − T (fα) where no monomial
appearing in T (fα) belongs to J . Moreover, G is characterized by a Buchberger-like criterion (Theorem
2.11) and allows to compute the J-reduced form modulo I of every polynomial in S, by a Noetherian
reduction process (Proposition 2.3).

The J-superminimal basis of I introduced in the present paper is a special subset sG of G containing
a polynomial for every term in the monomial basis of the saturated ideal J (for the details, see
Definitions 3.5 and 3.9): the two sets G and sG are equal if and only if J = J . Using only polynomials

in sG and the strongly stable property of J , we define a special process of reduction
sG∗
−−−→ called

superminimal reduction.

In the special case when J is a truncation J≥m of a saturated strongly stable ideal J , the J≥m-
superminimal basis sG has very interesting properties. First of all in this case (but not in general) the

superminimal reduction
sG∗
−−−→ turns out to be Noetherian (see Theorem 3.14, (i) and Example 3.13).

Moreover, although in general sG is not a system of generators of I, it completely determines the ideal

I because we can solve the ideal-membership problem by the superminimal reduction process
sG∗
−−−→

(Theorem 3.14, (iv)). This allows to compute equations for Mf(J≥m) as a subscheme of an affine
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space of dimension far lower than p(m)q(m), without any variable elimination process (Theorem 5.4),
answering the first question above.

In this new setting, in Theorem 5.7 we compare the J≥m-marked schemes Mf(J≥m) for a fixed
saturated J as m varies, using superminimal bases. We prove that for every m there is a closed
scheme-theoretical embedding φm :Mf(J≥m−1) →֒ Mf(J≥m). Moreover, we provide an easy criterion
on the monomial basis of J to characterize the integers m for which φm is an isomorphism. Especially,
this criterion allows to determine the minimum integer m0 such that φm is an isomorphism for every
m ≥ m0, and in particularMf(J≥m0

) is isomorphic to an open subset of Hilbnp(t) (see [4]).

Our investigation on marked schemes lies in the framework of the methods and results obtained in
the last years by several authors [5, 10, 15, 20, 23, 24] about families of ideals with a fixed monomial
basis for the quotient. Another close framework is the one in [2, 19], where the authors study the
collection of all monomial ideals J that are initial ideals of a fixed homogeneous ideal I w.r.t. some
term order.

In [4], the results of [7] and the ones of the present paper are applied to study relations among
marked schemes and Hilbert schemes; in particular, in [4] the authors study how marked schemes can
be used to obtain a computable open cover of Hilbnp(t) that has also interesting theoretical features.

We are confident that these results, both theoretical and computational ones, may be helpful in the
solution of some open problems about Hilbert schemes; indeed, they have been already applied in
order to investigate the locus of points of the Hilbert scheme with bounded regularity (see [1]); the
ideas and strategies used by [11] to study deformations of ACM curves are inspired by the ones in the
present paper; in [16] the authors apply the computational strategy to the Hilbert scheme of locally
CM curves. Other investigations led by these tools are in progress. In the future, we are interested in
deeply comparing marked bases with other kinds of Gröbner-like bases, referring to [18].

In Section 1, we introduce notations and basic results and, in Section 2, we recall the Buchber-ger-
like criterion described in [7], with some development that involves the Eliahou and Kervaire syzygies
of a strongly stable ideal (Theorem 2.11, (iii) and Corollary 2.13). Moreover, we compute sets of
generators of the ideal AJ that defines the structure of affine scheme ofMf(J) (see Corollary 2.17 and
Remark 2.18).

In Section 3, we define the superminimal reduction (Definition 3.11) and investigate its properties.
In Section 4 we describe a new Buchberger-like criterion for J≥m-marked bases (Theorem 4.5) and
some variants of it (Corollary 4.6 and Theorem 4.7). In particular, the second variant leads to a
remarkable improvement of the efficiency of explicit computational procedures.

In Section 5, we focus on the ideal that defines the structure of affine scheme of Mf(J≥m) and
we characterize the integers m,m′, m > m′, such that the schemes Mf(J≥m) and Mf(J≥m′) are
isomorphic (Theorem 5.7).

Finally, in Section 6 we provide examples in which we apply the proved results and we compute the
equations defining the affine structure of a J≥m-marked scheme in a “small” affine space, using the
Algorithm that we describe in the Appendix.

1. Notations and generalities

Let K be an algebraically closed field and S := K[x0, . . . , xn] (K[x] for short) the polynomial ring
in n+1 variables with x0 < · · · < xn. We will denote by xα = xα0

0 · · · x
αn
n every monomial in S, where

α = (α0, . . . , αn) is its multi-index and |α| is its degree.
We say that a monomial xγ is divisible by xα (xα | xγ for short) if there exists a monomial xβ such

that xα ·xβ = xγ . If such monomial does not exist, we will write xα ∤ xγ . For every monomial xα 6= 1,
we set min(xα) := min{xi : xi | x

α} and max(xα) := max{xi : xi | x
α}.
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We will denote by >Lex the usual lexicographic order on the monomials of S: in our setting xα >Lex

xβ if the last non-null element of α− β is positive.
We consider the standard grading on S =

⊕
m∈Z Sm, where Sm is the additive group of homogeneous

polynomials of degree m; we let S>m =
⊕

m′≥m Sm′ and in the same way, for every subset A ⊆ S,
we let Am = A ∩ Sm and A>m = A ∩ S>m. Elements and ideals in S are always supposed to be
homogeneous.

We will say that a monomial xβ can be obtained by a monomial xα through an elementary move
if xαxj = xβxi for some variables xi 6= xj . In particular, if i < j, we say that xβ can be obtained

by xα through an increasing elementary move and we write xβ = e+i,j(x
α), whereas if i > j the move

is said to be decreasing and we write xβ = e−i,j(x
α). The transitive closure of the relation xβ > xα if

xβ = e+i,j(x
α) gives a partial order on the set of monomials of a fixed degree, that we will denote by

>B and that is often called Borel partial order :

xβ >B xα ⇐⇒ ∃ xγ1 , . . . , xγt such that xγ1 = e+i0,j0(x
α), . . . , xβ = e+it,jt(x

γt)

for suitable indexes ik, jk. In analogous way, we can define the same relation using decreasing moves:

xβ >B xα ⇐⇒ ∃ xδ1 , . . . , xδs such that xδ1 = e−h0,l0
(xβ), . . . , xα = e−hs,ls

(xδs)

for suitable indexes ik, jk. Note that every term order ≻ is a refinement of the Borel partial order >B ,
that is xβ >B xα implies that xβ ≻ xα.

Definition 1.1. An ideal J ⊂ K[x] is said to be strongly stable if every monomial xβ such that
xβ >B xα, with xα ∈ J , belongs to J .

A strongly stable ideal is always Borel fixed, that is fixed by the action of the Borel subgroup of
upper triangular matrices of GL(n + 1). If ch(K) = 0, also the vice versa holds (e.g. [8]) and [13]
guarantees that in generic coordinates the initial ideal of an ideal I, w.r.t. a fixed term order, is a
constant Borel fixed monomial ideal called the generic initial ideal of I.

If J is a monomial ideal in S, BJ will denote its monomial basis and N (J) its sous-escalier, that is
the set of monomials not belonging to J .

An homogeneous ideal I is m-regular if the i-th syzygy module of I is generated in degree ≤ m+ i,
for all i ≥ 0. The regularity of I is the smallest integer m for which I is m-regular; we denote it by
reg(I). The saturation of a homogeneous ideal I is Isat = {f ∈ S | ∀ j = 0, . . . , n,∃ r ∈ N : xrjf ∈ I}.

The ideal I is saturated if Isat = I and is m-saturated if (Isat)t = It for each t ≥ m. The satiety of I
is the smallest integer m for which I is m-saturated; we denote it by sat(I).

We recall that if J is strongly stable then reg(J) = max{deg xα : xα ∈ BJ} [3, Proposition 2.9]
and sat(J) = max{deg xα : xα ∈ BJ and x0 | x

α} (for example, see [14, Corollary 2.10]).

Lemma 1.2. Let J be a strongly stable ideal in K[x0, . . . , xn]. Then:

(i) xα ∈ J \BJ ⇒
xα

min(xα)
∈ J ;

(ii) xβ ∈ N (J) and xix
β ∈ J ⇒ either xix

β ∈ BJ or xi > min(xβ).

Proof. Both properties follow from Definition 1.1. �

Definition 1.3. For every monomial xα in S we denote by xα the monomial obtained putting x0 = 1.
Analogously, if J is a monomial ideal in K[x], we denote by J the ideal in K[x] generated by {xα :
xα ∈ BJ}.

If J is strongly stable, then J sat = J (this follows straightforwardly from [14, Corollary 2.10]); in
particular, the set {xα : xα ∈ BJ} of the monomials xα, such that xα = xα · xt0 belongs to BJ for a
suitable t ≥ 0, contains the monomial basis BJ .
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Many tools we are going to use were introduced in [22] and developed in [7]. For this reason, we
now resume some notations and definitions given in those papers.

Definition 1.4. For any non-zero homogeneous polynomial f ∈ S, the support of f is the set Supp(f)
of monomials that appear in f with a non-zero coefficient.

Definition 1.5 ([22]). A marked polynomial is a polynomial f ∈ S together with a specified monomial
of Supp(f) that will be called head term of f and denoted by Ht(f).

Remark 1.6. Although in this paper we use the word “monomial”, we say “head term” for coherency
with the notation introduced by [22]. Anyway, in this paper there will be no possible ambiguity on
the meaning of “head term of f”, because we will always consider marked polynomials f such that
the coefficient of Ht(f) in f is 1.

Definition 1.7 ([7]). Given a monomial ideal J and an ideal I, a polynomial is J-reduced if its support
is contained in N (J) and a J-reduced form modulo I of a polynomial h is a polynomial h0 such that
h − h0 ∈ I and Supp(h0) ⊆ N (J). If there is a unique J-reduced form modulo I of h, we call it
J-normal form modulo I and denote it by Nf(h).

Note that every polynomial h has a unique J-reduced form modulo an ideal I if and only if N (J)
is a K-basis for the quotient S/I or, equivalently, S = I ⊕ 〈N (J)〉 as a K-vector space. If moreover
I is homogeneous, the J-reduced form modulo I of a homogeneous polynomial is supposed to be
homogeneous too. These facts motivate the following definitions.

Definition 1.8. A finite set G of homogeneous marked polynomials fα = xα−
∑

cαγx
γ , with Ht(fα) =

xα, is called a J-marked set if the head terms Ht(fα) form the monomial basis BJ of a monomial ideal
J , are pairwise different and every xγ belongs to N (J), i.e. |Supp(fα) ∩ J | = 1. We call tail of fα
the polynomial T (fα) := Ht(fα)− fα, so that Supp(T (fα)) ⊆ N (J). A J-marked set G is a J-marked
basis if N (J) is a basis of S/(G) as a K-vector space.

Definition 1.9. The collection of all the homogeneous ideals I such that N (J) is a basis of the
quotient S/I as a K-vector space will be denoted byMf(J) and called a J-marked family. If J is a
strongly stable ideal, thenMf(J) can be endowed with a natural structure of scheme (see [7, Section
4]) that we call J-marked scheme.

Remark 1.10.

(i) The ideal (G) generated by a J-marked basis G has the same Hilbert function of J , hence
dimK Jm = dimK(G)m, by the definition of J-marked basis itself. Moreover, note that a J-
marked basis is unique for the ideal that it generates, by the uniqueness of the J-normal forms
modulo I of the monomials in BJ .

(ii) Mf(J) contains every homogeneous ideal having J as initial ideal w.r.t. some term order, but it
might also contain other ideals: see [7, Example 3.18].

(iii) When J is a strongly stable ideal, all homogeneous polynomials have J-reduced forms modulo
every ideal generated by a J-marked set G (see [7, Theorem 2.2]).

Proposition 1.11. Let J be a strongly stable ideal, I be a homogeneous ideal generated by a J-marked
set G. The following facts are equivalent:

(i) I ∈ Mf(J)
(ii) G is a J-marked basis;
(iii) dimk It = dimK Jt, for every integer t;
(iv) if h ∈ I and h is J-reduced, then h = 0.
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Proof. For the equivalence among the first three statements, see [7, Corollaries 2.3, 2.4, 2.5]. For
the equivalence among (i) and (iv), observe that if I ∈ Mf(J), then every polynomial has a unique
J-reduced form modulo I; so, the J-reduced form modulo I of a polynomial of I must be null. Vice
versa, it is enough to show that every polynomial f has a unique J-reduced form modulo I. Let f̄

and ¯̄f be two J-reduced forms modulo I of f . Then, f̄ − ¯̄f is a J-reduced polynomial of I because

f − f̄ and f − ¯̄f belong to I by definition. We are done, because f̄ − ¯̄f is null by the hypothesis. �

2. Background on Buchberger-like criterion for J-marked bases and some

developments

In this section we recall and develop some results of [7]. Throughout this section, J is a strongly
stable ideal and G is a J-marked set.

Definition 2.1. Let mJ := min{t : Jt 6= (0)} be the initial degree of J . For every ℓ ≥ mJ we define
the set

Wℓ := {x
δfα | fα ∈ G and | δ + α| = ℓ}

that becomes a set of marked polynomials by letting Ht(xδfα) = xδ+α. We set W = ∪ℓWℓ. For every
ℓ ≥ mJ we also define a special subset of Wℓ:

Vℓ := {x
δfα ∈Wℓ | x

δ = 1 or max(xδ) ≤ min(xα)}.

We let V = ∪ℓVℓ. Moreover, 〈V 〉 denotes the vector space generated by the polynomials in V and
Vℓ−→ is the reduction relation on homogeneous polynomials of degree ℓ defined in the usual sense of
Gröbner basis theory (see also [7, Proposition 3.6]).

The above Definition is equivalent to the Definition 3.2 in [7] due to Remark 3.3 of the same paper.
Note that (G)ℓ is generated by Wℓ as a K-vector space.

Lemma 2.2. Let J be a strongly stable ideal. An ideal I generated by a J-marked set G belongs to
Mf(J) if and only if 〈W 〉 = 〈V 〉 as K-vector spaces.

Proof. It is sufficient to observe that for every ℓ ≥ mJ , the number of elements in Vℓ is equal to the
number of monomials in Jℓ, so dim〈Vℓ〉 ≤ dim Jℓ. On the other hand, dim〈Wℓ〉 = dim Iℓ ≥ dimJℓ by
[7, Corollary 2.3]. By Proposition 1.11 we get the equivalence of the statements. �

We have already recalled that, when J is a strongly stable ideal, every homogeneous polynomial
has a J-reduced form modulo an ideal generated by a J-marked set G (Remark 1.10 (iii)). Further, a

J-reduced form of a homogeneous polynomial can be constructed by the reduction relation
Vℓ−→, as it

is recalled by next Proposition.

Proposition 2.3. [7, Proposition 3.6] With the above notation, every monomial xβ ∈ Jℓ can be
reduced to a J-reduced form modulo (G) in a finite number of reduction steps, using only polynomials

of Vℓ. Hence, the reduction relation
Vℓ−→ is Noetherian.

The Noetherianity of the reduction relation
Vℓ−→ provides an algorithm that reduces every homoge-

neous polynomial of degree ℓ to a J-reduced form modulo (G) in a finite number of steps. We note
that on the one hand it is convenient to substitute the polynomials in Vℓ by their J-reduced normal
forms for an efficient implementation of a reduction algorithm, but, on the other hand, in the proofs
it is convenient to use the polynomials of Vℓ as constructed in Definition 2.1.
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2.1. Order on Wℓ. Using the Noetherianity of the reduction relation
Vℓ−→, we can recognize when a

J-marked set is a J-marked basis by a Buchberger-like criterion (see [7, Theorem 3.12]). To this aim
we need to set an order on the set Wℓ.

The order that we are going to define on Wℓ in Definition 2.7 is based on the following Definition
and Lemma that are inspired by [9] and [17, Lemma 2.11].

Definition 2.4. Given a strongly stable monomial ideal J in S, with monomial basis BJ , and a
monomial xγ ∈ J , we define

xγ = xα ∗J xη, with γ = α+ η, xα ∈ BJ and min(xα) ≥ max(xη).

This decomposition exists and is unique (see [9, Lemma 1.1]).

Lemma 2.5. Let J be a strongly stable ideal. If xǫ belongs to N (J) and xǫ · xδ = xǫ+δ belongs to J
for some xδ, then xǫ+δ = xα ∗J xη with xη <Lex x

δ. Furthermore:

(i) if |δ| = |η|, then xη <B xδ; and
(ii) xη <Lex x

δ.

Proof. We can assume that xδ and xη are coprime; indeed, if this is not the case, we can divide
the involved equalities of monomials by gcd(xδ, xη). If xη = 1, all the statements are obvious. If
xη 6= 1, then min(xδ)|xα because xδ and xη are coprime, hence min(xδ) ≥ min(xα) ≥ max(xη) and
so min(xδ) > max(xη) because they cannot coincide. This inequality implies both xη <Lex xδ and
xη <Lex x

δ. Moreover, if |δ| = |η|, this is also sufficient to conclude that xη <B xδ. �

Remark 2.6. Observe that if gβ = xδfα belongs to Vℓ, then xβ = xα ∗J xδ.

Definition 2.7. Let ≥ be any order on G and xδfα, x
δ′fα′ be two elements of Wℓ. We set

xδfα �ℓ x
δ′fα′ ⇔ xδ >Lex x

δ′ or xδ = xδ
′

and fα ≥ fα′ .

Lemma 2.8.

(i) For every two elements xδfα, x
δ′fα′ of Wℓ we get

xδfα �ℓ x
δ′fα′ ⇒ ∀xη : xδ+ηfα �ℓ′ x

δ′+ηfα′ ,

where ℓ′ = |δ + η + α|.
(ii) Every polynomial gβ ∈ Vℓ is the minimum w.r.t. �ℓ of the subset Wβ of Wℓ containing all

polynomials of Wℓ with xβ as head term.
(iii) If xδfα belongs to Wℓ \Gℓ and xβ belongs to Supp(xδT (fα)) with gβ ∈ Vℓ, then xδfα ≻ℓ gβ.

Proof.

(i) This follows by the analogous property of the term order >Lex.

(ii) Let gβ = xδ
′
fα′ be the polynomial of V such that xβ = xα

′
∗J x

δ′ and xδfα be another polynomial

of Wβ. We can assume that xδ and xδ
′
are coprime; otherwise, we can divide the involved

inequalities of monomials by gcd(xδ, xδ
′

). By Remark 2.6 and Definition 2.4, we have that

max(xδ
′

) ≤ min(xα
′

) and max(xδ) > min(xα). Then, we get max(xδ) > max(xδ
′

) because

xα
′

∤ xα and xα ∤ xα
′

. Thus, xδ >Lex x
δ′ .

(iii) If xβ belongs to BJ we are done. Otherwise, let xβ = xα
′
∗J xδ

′
and note that every monomial

of Supp(xδfα) is a multiple of xδ, in particular xβ = xδ+γ for some xγ ∈ N (J). By Lemma 2.5,

we get xδ
′
<Lex x

δ. �

Remark 2.9. We point out that the order defined in [7, Definition 3.9] does not satisfy the conditions
listed in Lemma 2.8 and in [7, Lemma 3.10]. These conditions have a crucial role in the proof of
[7, Theorem 3.12] and for this reason it has been a mistake to use the order of [7, Definition 3.9] in
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that Theorem. So, here we replace such order by that defined in new Definition 2.7. Aside the order,
the original reduction and Buchberger criterion are the same, as we will state in Theorem 2.11, (i)
and (ii). Also, we give an improvement by Theorem 2.11, (iii) and by Corollary 2.13. Moreover, we
observe that for the same reason the results about syzygies of the ideal I generated by a J-marked
basis proposed in [7, Section 3] hold by using the order on Wℓ of Definition 2.7 and do not hold by
using the order of [7, Definition 3.9].

2.2. Improved Buchberger-like criterion for J-marked bases.

Definition 2.10. The S-polynomial of two elements fα, fα′ of a J-marked set G is the polynomial
S(fα, fα′) := xγfα − xγ

′

fα′ , where xγ+α = xγ
′+α′

= lcm(xα, xα
′

).

Theorem 2.11. (Buchberger-like criterion) Let J be a strongly stable ideal and I the homogeneous
ideal generated by a J-marked set G. With the above notation, TFAE:

(i) I ∈ Mf(J);

(ii) ∀fα, fα′ ∈ G, S(fα, fα′)
Vℓ−→ 0;

(iii) ∀fα, fα′ ∈ G, S(fα, fα′) = xγfα − xγ
′

fα′ =
∑

ajx
ηjfαj

, with xηj <Lex maxLex{x
γ , xγ

′

} and
xηjfαj

∈ Vℓ.

Proof. For the equivalence between (i) and (ii), we refer to the proof of [7, Theorem 3.12] by using
Definition 2.7 instead of [7, Definition 3.9].

Statement (ii) implies (iii) by the definition of the reduction relation
Vℓ−→ and by Lemma 2.8 (iii).

It remains to prove that statement (iii) implies (i).
We want to prove that I = 〈V 〉 or, equivalently by Lemma 2.2, that 〈V 〉 = 〈W 〉. It is sufficient

to prove that xη · V ⊆ 〈V 〉, for every monomial xη. We proceed by induction on the monomials xη,
ordered according to Lex. The thesis is obviously true for xη = 1. We then assume that the thesis
holds for any monomial xη

′
such that xη

′
<Lex x

η.
If |η| > 1, we can consider any product xη = xη1 · xη2 , xη1 and xη2 non-constant. Since xηi <Lex

xη, i = 1, 2, we immediately obtain by induction

xη · V = xη1 · (xη2 · V ) ⊆ xη1〈V 〉 ⊆ 〈V 〉.

If |η| = 1, then we need to prove that xi ·V ⊆ 〈V 〉. Since x0V ⊆ V , it is then sufficient to prove the

thesis for xη = xi, assuming that the thesis holds for every xη
′

<Lex xi. We consider gβ = xδfα ∈ V ,

where max(xδ) ≤ min(xα). If xigβ does not belong to V , then max(xi ·x
δ) > min(xα), so xi > min(xα).

In particular, xi > min(xα) ≥ max(xδ), so xi >Lex xδ: by induction, it is now sufficient to prove the
thesis for xifα.

We consider an S-polynomial S(fα, fα′) = xifα − xγfα′ such that xγ <Lex xi. Such S-polynomial

always exists: for instance, we can consider xix
α = xα

′

∗J xη
′

. By the hypothesis xifα − xη
′

fα′ =∑
ajx

η′jfαj
where xη

′
fα′ , xη

′
jfαj

∈ Vℓ and then xifα belongs to 〈V 〉. �

For any strongly stable ideal J , with monomial basis BJ = {xα1 , . . . , xαr}, we can consider the set
of syzygies of the following kind

xjeαi
− xηeαk

, with xj > min(xαi) and xjx
αi = xαk ∗J xη.

This set of syzygies is actually a minimal set of generators for the first module of syzygies of J ; this
is due to Eliahou and Kervaire (see [9] and [14, Theorem 1.31]).

Definition 2.12. We call Eliahou-Kervaire couple of the J-marked set G any couple of polynomials
fα, fβ, Ht(fα) = xα, Ht(fβ) = xβ, such that

xjx
α = xβ ∗J xη for some xj > min(xα).
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We call Eliahou-Kervaire S-polynomial (EK-polynomial, for short) of G an S-polynomial among an
Eliahou-Kervaire couple of polynomials fα and fβ. We denote such S-polynomial by SEK(fα, fβ).
Observe that, thanks to the definition, an EK-polynomial is of kind

SEK(fα, fβ) = xjfα − xηfβ, for some xj > min(xα), with xjx
α = xβ ∗J xη.

In the proof of Theorem 2.11, it is sufficient to assume that (iii) holds only for EK-polynomials, as
stated in the following result.

Corollary 2.13. With the same notation of Theorem 2.11,

I ∈ Mf(J)⇔ for every EK-polynomial between elements of G, SEK(fα, fβ)
Vℓ−−→ 0.

Proof. In the proof of Theorem 2.11 the crucial point is the existence of an S-polynomial of kind
xifα − xηfβ with xη <Lex xi, and we used exactly an EK-polynomial. �

2.3. The scheme structure of Mf(J). Now, we recall and develop some features of the affine
scheme structure ofMf(J). Let p(t) the Hilbert polynomial of S/J and r its Gotzmann number. In
the following we will denote by G the J-marked set:

(1) G =
{
Fα = xα −

∑
Cαγx

γ : Ht(Fα) = xα ∈ BJ , xγ ∈ N (J)|α|

}

and by IJ the ideal generated by G in the ring K[C, x], where C is a compact notation for the set of
new variables Cαγ .

For every polynomial H ∈ K[C, x], we denote by Suppx(H) the set of monomials in the variables
xi that appear in H with non-null coefficients and by Coeffx(H) ⊂ K[C] the set of such coefficients,
that we call x-coefficients.

Let Vℓ and Wℓ be the analogous for G of Vℓ and of Wℓ, respectively, for any J-marked set G. We
will denote by AJ the ideal of K[C] generated by the x-coefficients of the J-reduced forms, obtained

by
Vℓ−−→ , of the S-polynomials S(Fα, Fα′) among elements of G. This ideal does not depend on

Vℓ−−→
and defines the subscheme structure ofMf(J) in the affine space A|C| (see [7, Theorem 4.1]). Let AEK

J

be the ideal of K[C] generated by the x-coefficients of the J-reduced forms of the EK-polynomials of

G obtained by
Vℓ−−→ .

It is clear that AEK
J ⊆ AJ . Anyway, we will prove that AEK

J and AJ are the same ideal, although
AJ is defined by a set of generators bigger than the set of generators of AEK

J . More precisely, we prove

that the ideal AEK
J contains the x-coefficients of every J-reduced polynomial in IJ .

Lemma 2.14.

(i) For every monomial xβ = xα ∗J xδ ∈ J , there is a formula of type

xβ =
∑

aix
γiFαi

+Hβ,

with ai ∈ K[C], xγiFαi
∈ V, xγi ≤Lex xβ and Suppx(Hβ) ⊂ N (J).

(ii) For every polynomial xiFα ∈ W \ V, there is a formula of type

xiFα =
∑

ajx
ηjFαj

+Hi,α,

with aj ∈ K[C], xηjFαj
∈ V, xηj <Lex xi, Suppx(Hi,α) ⊂ N (J) and Coeffx(Hi,α) ⊂ AEK

J .

Proof. Statement (i) follows from the existence of J-reduced forms obtained by
Vℓ−−→ and by Lemma

2.8, (iii). Statement (ii) follows also from the definition of AEK
J . �
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Proposition 2.15. For every polynomial xδFα ∈ W \ V, we have

(2) xδFα =
∑

bjx
ηjFαj

+Hδ,α,

with bj ∈ K[C], xηjFαj
∈ V, xηj <Lex x

δ, Suppx(Hδ,α) ⊂ N (J) and Coeffx(Hδ,α) ⊂ AEK
J .

Proof. For |δ| = 1 it is enough to use Lemma 2.14 (ii). Assume that |δ| > 1 and that the thesis holds

for every xδ
′

<Lex x
δ. Let xi = min(xδ) and xδ

′

= xδ

xi
, so that xδ

′

Fα belongs to W \ V.

By the inductive hypothesis, we have xδ
′

Fα =
∑

b′jx
η′jFαj

+Hδ′,α, with xη
′
j <Lex x

δ′ . So, multiplying

by xi, we obtain xδFα =
∑

b′jxix
η′jFαj

+ xiHδ′,α and the thesis holds for every polynomial xix
η′jFαj

that belongs to W \ V because xix
η′j <Lex xix

δ′ = xδ. Then, we replace such polynomials by formulas
of type (2) and obtain

xδFα =
∑

bsx
ηsFαs +H ′ + xiHδ′,α

where the first sum satisfies the conditions of (2) and H ′ is J-reduced with Suppx(H
′) ⊂ N (J) and

Coeffx(H
′) ⊂ AEK

J .

Note that Coeffx(xiHδ′,α) = Coeffx(Hδ′,α) ⊂ AEK
J , but we do not know if Suppx(xiHδ′,α) ⊂ N (J).

If xβ
′
∈ Suppx(Hδ′,α) has x-coefficient b in Hδ′,α and xβ = xix

β′
belongs to J , then we can use Lemma

2.14 (i) obtaining bxβ =
∑

bakx
γiFαk

+ bHβ. Moreover, if xβ = xα
′

∗J xǫ, then xγi ≤Lex xǫ <Lex

xi <Lex x
δ, where the second inequality is due to the fact that xβ

′
∈ N (J) and to Lemma 2.5, and all

the x-coefficients of Hβ belong to AEK
J because they are divisible by b. Replacing all such monomials

xβ, we obtain the thesis and Hδ,α is J-reduced with x-coefficients in AEK
J , because it is the sum of

J-reduced polynomials with x-coefficients in AEK
J . �

Corollary 2.16. Every polynomial of IJ can be written in a unique way as
∑

bjx
ηjFαj

+ H, with

bj ∈ K[C], xηjFαj
∈ V and H J-reduced. Moreover, we obtain also that Coeffx(H) ⊂ AEK

J .

Proof. By definition, every polynomial of IJ is a linear combination of polynomials of V∪(W\V) with
x-coefficients in K[C] and, by Proposition 2.15, every such polynomial can be written has described
in the statement. Hence, we have only to prove the uniqueness of this writing.

Let
∑

bjx
ηjFαj

+H = 0 be the difference between two writings of the same polynomial of IJ , with
bj 6= 0, xηjFαj

∈ V pairwise different and H J-reduced. Let xη1xα1 the maximum of the monomials
w.r.t. the order for which xηixαi is lower than xηjxαj if xηi <Lex x

ηj or xηi = xηj and xαi < xαj , where
< is any order fixed on BJ . By definition of V, the unique polynomial of V with head term xη1xα1 is
xη1Fα1 . Moreover, the monomial xη1xα1 does not appear with a non-null coefficient in any polynomial
of the sum because every other monomial belongs to N (J) or is lower than it, by construction. Further,
xη1xα1 does not belong to Suppx(H) because Suppx(H) ⊂ N (J) and xη1xα1 ∈ J . Thus, we obtain a
contradiction to the fact that bj 6= 0. �

Corollary 2.17. The ideal AEK
J contains the x-coefficients of every J-reduced polynomial of IJ . In

particular, AEK
J = AJ .

Proof. Let F be a J-reduced polynomial of IJ and let F =
∑

bjx
ηjFαj

+H as in Corollary 2.16. Since
F itself is J-reduced, also F = 0 + F is a formula as described in Corollary 2.16 and we obtain that
F = H, by the uniqueness of this formula. Hence, we have Coeffx(F ) = Coeffx(H) ⊂ AEK

J . The last
assertion is due to the definition of AJ . �

Remark 2.18. Actually, for every ideal ÂJ ⊆ AJ ⊆ K[C] such that condition (ii) of Lemma 2.14 holds,
also Corollary 2.17 holds. We are then allowed to choose different sets of S-polynomials of G in order
to obtain generators of the ideal AJ .
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3. Superminimal generators and reduction

In this section we introduce the notion of m-truncation ideal and a new polynomial reduction
process, that we call superminimal reduction, useful to find a new set of equations to define a marked
scheme. From the next section on, we will focus on J-marked schemes with J a strongly stable m-
truncation. The reason is twofold: on the one hand, strongly stable m-truncation ideals have a good
behavior also from the geometric point of view (Theorem 3.3 and Example 3.4); on the other hand, the
superminimal reduction is Noetherian when we take a strongly stable m-truncation ideal (Theorem
3.14), but it is not if we just consider a strongly stable ideal (Example 3.13).

3.1. Truncation strongly stable ideals.

Definition 3.1. Let J ⊆ S be a monomial ideal. We will say that J is an m-truncation if J is the
truncation of J sat in degree m, that is J = (J sat)≥m.

We observe that an m-truncation ideal J is strongly stable if and only if J sat is and that if J is
strongly stable, then J sat = J .

The following Lemma highlights some simple features of m-truncation strongly stable ideals, which
will turn out to be crucial in the proofs of our main results.

Lemma 3.2. Let J be a strongly stable m-truncation. Then:

(i) BJ ∩BJ = (BJ)≥m.

(ii) ∀xβ ∈ BJ \BJ : xβx
m−|β|
0 ∈ BJ .

(iii) ∀xγ ∈ S≥m, ∀t ∈ N : xγxt0 ∈ J ⇔ xγ ∈ J .
(iv) N (J)≥m = N (J)≥m.
(v) ∀ h ∈ S≥m: h is J-reduced ⇔ h is J-reduced.
(vi) If I belongs toMf(J), then for every homogeneous polynomial h of degree ≥ m, J-normal forms

modulo I satisfy: Nf(xt0 · h) = xt0 · Nf(h).

Proof. Facts (i) and (ii) are straightforward consequences of the definition of m-truncations.
For (iii), we only prove the non trivial part “⇒”. If xγxt0 ∈ J , then xγ belongs to J . Since J is an

m-truncation and xγ ∈ S≥m, then xγ ∈ J too.
Statements (iv) and (v) are obviously equivalent to (iii).
For (vi), we recall that the J-reduced form modulo I of any polynomial is unique since I belongs to

Mf(J). By (iii), both Nf(xt0 ·h) and xt0 ·Nf(h) are J-reduced forms of xt0h and then they coincide. �

Theorem 3.3. Let J be a strongly stable m-truncation ideal. Two different ideals a and b of Mf(J)
give rise to different subschemes of Pn, thus they correspond to different points of the Hilbert scheme
Hilbnp(t) with p(t) the Hilbert polynomial of S/J .

Proof. By the uniqueness of the reduced form, there is a monomial xα ∈ BJ such that the correspond-
ing polynomials f a

α and f b
α of the J-marked bases of a and b, respectively, are different and moreover

such that f a
α 6∈ b and f b

α 6∈ a. If a and b defined the same projective scheme, we would have ar = br

for some r ≫ 0. Hence xr−m
0 f a

α − xr−m
0 f b

β = xr−m
0 (−T (f a

α) + T (f b

β)) is a non-zero polynomial that

belongs (for instance) to a. Moreover, due to Lemma 3.2, (iii), xr−m
0 (−T (f a

α) + T (f b

β)) is J-reduced

modulo a: this is impossible because of Proposition 1.11, (iv). �

The following example shows that, if J is a strongly stable ideal but not an m-truncation, different
ideals in Mf(J) may define the same subscheme in Pn. This is the first reason why we will focus
mainly on strongly stable m-truncations.

Example 3.4. In the ring S = K[x0, x1, x2], let us consider the strongly stable ideal J = (x2, x
2
1,

x1x0) and for every c ∈ K the ideal ac = (x2 + cx1, x
2
1, x1x0). An easy computation shows that the
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ideals ac belong to Mf(J) and are pairwise different. However, x22, x2x1, x2x0 belong to ac: indeed
x22 = (x2 + cx1)(x2 − cx1) + c2x21, x2x1 = (x2 + cx1)x1 − cx21, x2x0 = (x2 + cx1)x0 − cx1x0; hence
the saturation of ac is J . Then, the subschemes Proj (S/ac) of P2 coincide. We can observe that
the difference between the ideals ac disappears if we only consider their homogeneous components of
degree ≥ 2.

3.2. Superminimals. In the following we will use the notation stated in Definition 1.3.

Definition 3.5. Let J be a strongly stable ideal. The set of superminimal generators of J is

sBJ = {xβ ∈ BJ | x
β ∈ BJ}.

Remark 3.6. Another special set of monomials for a strongly stable ideal J is the so-called set of Borel
generators (see [12]), namely the smallest subset of BJ such that J is the minimum strongly stable
ideal containing them. Although there is a clear analogy between the ideas underlying the definition
of superminimal generators and that of Borel generators, however they do not coincide in general.

Example 3.7. Consider J := (x32, x
2
2x1, x2x

2
1, x

6
1) ⊆ K[x0, x1, x2] and its 5-truncation ideal J := J>5.

The set of superminimal generators of J is sBJ = {x32x
2
0, x

2
2x1x

2
0, x2x

2
1x

2
0, x

6
1}, while the set of Borel

generators of J is {x2x
2
1x

2
0, x

6
1}, because x2x

2
1x

2
0 ∈ J imposes x22x1x

2
0 = e+1,2(x2x

2
1x

2
0) ∈ J and x32x

2
0 =

e+1,2 ◦ e
+
1,2(x2x

2
1x

2
0) ∈ J .

Example 3.8. Consider J := (x22, x2x
2
1, x2x1x0, x2x

2
0) ⊆ K[x0, x1, x2] whose saturation is J = (x2).

The set of superminimal generators of J is sBJ = {x2x
2
0}, while the set of Borel generators of J is

{x22, x2x
2
0}.

Definition 3.9. Let J be a strongly stable ideal. A finite set of marked polynomials fβ = xβ−
∑

cβγx
γ ,

with Ht(fβ) = xβ, is a J-marked superminimal set if the head terms form the set of superminimal
generators sBJ of J , they are pairwise different, and xγ ∈ N (J). We call tail of fβ the homogeneous

polynomial T (fβ) := xβ − fβ.
Every J-marked set G contains a (unique) subset sG of this type, that is called the set of super-

minimals of G; if G is a J-marked basis, sG is called J-superminimal basis.

Remark 3.10. If Γ is a J-marked superminimal set, it can always be completed to a (non-unique)
J-marked set G. For instance G = Γ ∪ (BJ \ sBJ).

On the other hand, if I ∈ Mf(J), then its J-superminimal basis is the only J-marked superminimal
set contained in I. In fact, for every xβ ∈ sBJ , if fβ belongs to both I and a J-marked superminimal

set, then xβ − fβ has to be a J-reduced form of xβ modulo I, which is the unique normal form Nf(xβ)
modulo I.

Definition 3.11. Consider a strongly stable ideal J , a J-marked set G and two polynomials h and
h1. We say that h is in sG∗-relation with h1 if there is a monomial xγ ∈ Supp(h) ∩ J , c = Coeff(xγ),
such that xγ is divisible by a superminimal generator xα of J , with xγ = xα ∗J xη = xα · xǫ and
h1 = h − c · xǫfα, that is h1 is obtained by replacing the monomial xγ in h by xǫ · T (fα). We call

superminimal reduction the transitive closure of the above relation and denote it by
sG∗
−−−→. Moreover,

we say that:

- h can be reduced to h1 by
sG∗
−−−→ if h

sG∗
−−−→ h1 ;

- h is non-reducible w.r.t.
sG∗
−−−−→ if no step of reduction on h by

sG∗
−−−→ can be performed;

- h is strongly reduced if for every t, xt0 · h is non-reducible w.r.t.
sG∗
−−−→.

Remark 3.12.
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(i) We use the notation
sG∗
−−−→ to underline that this reduction also involves the decomposition ∗J

of Definition 2.4 and it is not the usual polynomial reduction w.r.t. a set of marked polynomials

sG. Indeed even if a polynomial h is non-reducible w.r.t.
sG∗
−−−→, its support can contain some

monomial which is multiple of a monomial in sBJ (see Example 3.15); hence h would be reducible

w.r.t. the usual reduction
sG
−−−→.

(ii) A homogeneous polynomial h is strongly reduced if and only if no monomial in Supp(h) is divisible
by a monomial of BJ , that is h is J-reduced. In fact, if xγ ∈ Supp(h)∩J then xγ = xα ∗J x

η and

there is t such that xα = xt0x
α ∈ BJ . Thus xt0h can be reduced by

sG∗
−−−→ using the polynomial

fα.

(iii) The polynomials xǫfα that we use for the reduction procedure
sG∗
−−−→ have head terms pairwise

different. Moreover, if xδfα′ is used in the
sG∗
−−−→ reduction of xǫT (fα) then xδ <Lex xǫ.

If we consider a strongly stable ideal J with no further hypothesis, we cannot generalize the prop-

erties of the reduction
Vℓ−−→ to

sG∗
−−−→, as shown in the following example.

Example 3.13. In the ring S = K[x0, x1, x2] (with x2 > x1 > x0) let us consider the strongly stable
ideal J = (x32, x

2
2x1, x2x

2
1, x

2
2x0, x2x1x0, x

4
1, x

3
1x0, x

2
1x

2
0) and its saturation J = (x22, x2x1, x

2
1). The set

of superminimals of J is sBJ = {x22x0, x2x1x0, x
2
1x

2
0}. Let us consider the J-marked superminimal set

sG = {fx2
2x0

= x22x0, fx2x1x0 = x2x1x0−x31, fx2
1x

2
0
= x21x

2
0−x2x

3
0}. The superminimal reduction w.r.t.

sG is not Noetherian. For instance:

x31x
2
0

sG∗
−−−→T (fx2

1x
2
0
) · x1 = x2x

3
0x1

sG∗
−−−→T (fx2x1x0) · x

2
0 = x31x

2
0.

However, if we assume that the strongly stable ideal J is also an m-truncation ideal, then the

reduction
sG∗
−−−→ turns out to be Noetherian and satisfies several good properties, similar to the ones

of
Vℓ−−→.

Theorem 3.14. Let J be a strongly stable m-truncation ideal and sG be a J-marked superminimal
set. Then:

(i)
sG∗
−−−−→ is Noetherian.

(ii) For every homogeneous polynomial h there exist t and a unique polynomial h(t) strongly reduced

such that xt0 ·h
sG∗
−−−−→ h(t). If t is the minimum one and h̄ := h(t), then h(t) = xt−t̄

0 · h̄ for every
t ≥ t̄. There is an effective procedure that computes t̄ and h̄.

If moreover sG is the superminimal basis of an ideal I of Mf(J), then:

(iii)
sG∗
−−−−→ computes the J-normal forms modulo I. More precisely, for every homogeneous polynomial
h:

Nf(h) =

{
h, if deg(h) < m

h̄/xt̄0, if deg(h) ≥ m and xt0 · h
sG∗
−−−−→ h̄

(iv)
sG∗
−−−−→ solves the ideal-membership problem for I: for every homogeneous polynomial h:

h ∈ I ⇔ deg(h) ≥ m and xt0 · h
sG∗
−−−−→ 0

(v) There is a one-to-one correspondence between ideals inMf(J) and J-superminimal bases.

Proof.

(i) Since J is a strongly stable and m-truncation ideal, then N (J)≥m = N (J)≥m (Lemma 3.2, (iv)).

If
sG∗
−−−→ was not Noetherian, by Lemma 2.5 applied to J , we would be able to find infinite

descending chains of monomials w.r.t. <Lex.
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(ii) It is sufficient to prove the thesis for monomials xγ in J . Let xγ = xα ∗J xη. If xη = 1, then

xα = xtα0 · x
α is in sBJ , fα belongs to sG and xtα0 · x

α sG∗
−−−→ T (fα), where Supp(T (fα)) ⊆ N (J).

In this case h = T (fα) and t = tα. If xη 6= 1, we can assume that the thesis holds for any

monomial xγ
′
= xβ ∗J xη

′
, such that xη

′
<Lex x

η.

We perform a first reduction xtα0 · x
γ sG∗
−−−→ xη · T (fα). If xη · T (fα) is strongly reduced, we

are done. Otherwise, we have xη 6= x
|η|
0 . For every monomial xγ

′

∈ Supp(xη · T (fα))∩ J we have

xγ
′

= xβ
′

∗J xη
′

, with xη
′

<Lex xη by Lemma 2.5. So, we have also xt0 · x
η′ <Lex xη, for every t.

By the inductive hypothesis we can find a suitable power t of x0 such that every monomial in

xt0 · x
η · T (fα) can be reduced by

sG∗
−−−→ to a strongly reduced polynomial.

It remains to prove the uniqueness of the strongly reduced polynomial h(t). Let us consider

two different strongly reduced
sG∗
−−−→ reductions of xt0h: their difference is again strongly reduced

and can be written as Σaix
ηifαi

with ai ∈ K, ai 6= 0 and xηifαi
pairwise different. Let xη1fα1

be such that for every i ≥ 2, either xη1 >Lex xηi or xη1 = xηi and xα1 >Lex xαi . Then xη1xα1

should cancel with a monomial in Supp(xηiT (fαi
)) for some i, but this is impossible as observed

in Remark 3.12, (iii).

Observe that, though for a fixed xγ = xα ∗J xη, there are infinitely many monomials xγ
′

=
xβ ∗J xη

′

such that xη
′

<Lex xη, we use the inductive hypothesis only with respect to the finite
number of them that appear on the support of ·xη · T (fα). For this reason our procedure is
effective.

From now on we consider I ∈ Mf(J); therefore if h is a homogeneous polynomial and h
sG∗
−−−→ h1

with h1 strongly reduced, then by uniqueness of J-normal forms modulo I we have h1 = Nf(h).

(iii) If degh < m we are done. Otherwise from (ii) we have that xt0 · h
sG∗
−−−→ h and h̄ is a J-reduced

form modulo I. Thus xt0 · Nf(h) is J-reduced too (Lemma 3.2, (iii)) and we get the desired
equality by uniqueness of J-normal forms modulo I.

(iv) This is a consequence of (iii) and of Proposition 1.11 (iv).
(v) This is the straightforward consequence of (iv). �

Whenever J is a strongly stable m-truncation ideal and sG is the superminimal basis of an ideal
I ∈Mf(J), then sG is a subset of the set V of Definition 2.1. Nevertheless, it is interesting to notice

that not every step of reduction by
sG∗
−−−→ is also a step of reduction by

Vℓ−−→, as shown in the following
example.

Example 3.15. Consider J = (x21, x0x2, x1x2, x
2
2) which is a strongly stable ideal and a 2-truncation of

J = (x2, x
2
1) in K[x0, x1, x2]. Let G be a J-marked set.

• The monomial x2 · x
2
1 is non-reducible w.r.t. sG, because the only monomial of sBJ dividing

it is x21, but x2x
2
1 = x2 ∗J x21. On the other hand, x2x

2
1 = x2x1 ∗J x1, so x2x

2
1

V3−−→ x1T (f)
where f ∈ V2, Ht(f) = x2x1.

• The only way to reduce x0 · x
2
2 via

V3−−→ leads to x0 · T (f
′), where f ′ is the unique polynomial

of V2 such that Ht(f ′) = x22. Moreover, x0 · T (f
′) is not further reducible, because all the

monomials of its support belong to N (J). On the other hand, according to Definition 3.11, a

first step of reduction of the monomial x0 · x
2
2 via

sG∗
−−−→ is x0x

2
2

sG∗
−−−→ x2 · T (f

′′), where f ′′ is
the polynomial in sG with Ht(f ′′) = x0 · x2. Since x2 is a monomial of BJ , every monomial
appearing in Supp(x2 · T (f

′′)) belongs to J , and so we will need further steps of reduction via
sG∗
−−−→ to compute a polynomial non-reducible w.r.t. sG.
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4. Buchberger-like criterion by superminimal reduction

In the present and following sections, we assume that J ⊆ S is a strongly stable m-truncation ideal,
in order to apply the main results of Section 3, mainly those concerning the new reduction process
sG∗
−−−→ (Theorem 3.14). We will also use the sets of polynomials V and W which are defined from a

J-marked set G (see Definition 2.1), and the reduction relation
Vℓ−−→.

In Section 2, we proved that J-marked bases are characterized by a Buchberger-like criterion on the

reduction of S-polynomials between elements of G by
Vℓ−−→ (Theorem 2.11). Afterwards, in Section 3 we

showed that every homogeneous ideal I inMf(J) is completely determined by its superminimal basis

sG and that J-normal forms modulo I can be computed using
sG∗
−−−→, that is again using polynomials

in the subset sG of G (Theorem 3.14).
Therefore, it is natural to ask whether one can obtain a Buchberger-like criterion only considering

S-polynomials among elements in sG. Unfortunately, the answer is negative, as clearly shown by
Example 4.1. However, we can prove a few variants of the Buchberger-like criterion of Theorem 2.11,

in which the set of superminimals sG and the superminimal reduction process
sG∗
−−−→ replace G and

Vℓ−−→. Using these new criteria in the next section we will be able to obtain sets of equations defining
Mf(J) in a smaller set of variables than those of Subsection 2.3.

Example 4.1. We consider the strongly stable 2-truncation ideal

J = (x23, x3x2, x3x1, x3x0, x
2
2) ⊆ K[x0, x1, x2, x3]

whose saturation is J = (x3, x
2
2). In this case, sBJ contains only two monomials, x3x0 and x22. If G is

any J-marked set, then sG = {fx3x0 , fx2
2
}. The unique S-polynomial among superminimal elements is

S(fx3x0 , fx2
2
) = x22fx3x0 − x3x0fx2

2
= x3x0 · T (fx2

2
)− x22 · T (fx3x0).

Any monomial appearing in Supp(T (fx3x0)) is in N (J)2 = K[x0, x1, x2]2 \ {x
2
2}. Then any monomial

appearing in Supp(x22 · T (fx3x0)) is further reduced by fx2
2
, obtaining by

V4−−→ or
sG∗
−−−→

S(fx3x0 , fx2
2
) = x3x0 · T (fx2

2
)− T (fx2

2
) · T (fx3x0) = T (fx2

2
) · fx3x0 → 0.

Nevertheless, even if the only S-polynomial among superminimal generators reduces to 0, if we consider
sG = {fx3x0 , fx2

2
} with fx3x0 = x3x0 + x21 and fx2

2
= x22, then for any choice of fx2

3
, fx3x2 , fx3x1 , the

S-polynomial among fx3x1 and fx3x0 does not reduce to 0:

S(fx3x1 , fx3x0) = x0fx3x1 − x1fx3x0 =
∑

xαi∈N (J)2

aix
αix0 − x31.

The monomials xαix0 are in N (J)3 and are strongly reduced. Furthermore, x31 does not appear among
monomials xαix0, so it is not canceled, and it is strongly reduced too. Therefore, for any choice of
coefficients in the tail of fx3x1 , we have an S-polynomial which is not reducible to 0, and any J-marked
set containing fx3x0 = x3x0 + x21 is not a J-marked basis.

4.1. Buchberger-like criteria via
sG∗
−−−−→: first variant. In this subsection we prove that the

Buchberger-like criterion of Theorem 2.11 and Corollary 2.13 can be rephrased in terms of the reduction

process
sG∗
−−−→ . The involved S-polynomials will be all those between elements in G (Theorem 4.5),

or only EK-polynomials between elements of G (Corollary 4.6). We will need a few lemmas.

Lemma 4.2. Let J be a strongly stable m-truncation ideal, G be a J-marked set and h be a homoge-
neous polynomial of degree ℓ ≥ m. Then:

h ∈ 〈Vℓ〉 ⇔ x0 · h ∈ 〈Vℓ+1〉.
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Proof. If h ∈ 〈Vℓ〉, then x0 · h ∈ 〈Vℓ+1〉 by definition of V .

Vice versa, assume that x0 · h ∈ 〈Vℓ+1〉. This is equivalent to x0 · h
Vℓ+1
−−−−→ 0. Every monomial in

Supp(x0 · h) can be written as x0 · x
ǫ; observe that x0 · x

ǫ /∈ BJ , because deg(x0 · x
ǫ) > m, by Lemma

3.2, (i). Then, if x0 · x
ǫ belongs to J , we can decompose it as x0 · x

ǫ = xα ∗J xη, xα ∈ BJ and xη 6= 1.

Since min(xα) ≥ max(xη), we have that xη is divisible by x0. So xη = x0 · x
η′ .

Summing up, in order to reduce the monomial x0 ·x
ǫ of Supp(x0 ·h) using V , we use the polynomial

x0 · x
η′ · fα ∈ V , Ht(fα) = xα. If the coefficient of x0 · x

ǫ in x0 · h is a, we obtain

x0 · h
Vℓ+1
−−−→ x0 · (h− a · xη

′

fα).

At every step of reduction, we obtain a polynomial which is divisible by x0. In particular,

x0 · h ∈ 〈Vℓ+1〉 ⇒ x0 · h = x0 ·
∑

aix
ηifαi

, where x0 · x
ηifαi

∈ Vℓ+1.

Then we have that h =
∑

aix
ηifαi

and xηifαi
∈ Vℓ, that is h ∈ 〈Vℓ〉. �

Consider fα, fα′ ∈ G, the S-polynomial S(fα, fα′) = xγfα−xγ
′

fα′ and assume that xγ
′

<Lex x
γ . By

Lemma 2.8, (iii), if S(fα, f
′
α)

Vℓ−−→ h, then S(fα, f
′
α) − h =

∑
ajx

δjfβj
with xδjfβj

∈ Vℓ, x
δj <Lex xγ .

Now we show that a similar result holds for the superminimal reduction
sG∗
−−−→.

Lemma 4.3. Let J be a strongly stable m-truncation ideal, G be a J-marked set and fα, fα′ be two
polynomials belonging to G. Consider the S-polynomial S(fα, fα′) = xγfα − xγ

′

fα′ , with xγ
′

<Lex xγ.

If xt0 · S(fα, f
′
α)

sG∗
−−−−→ h, then xt0 · S(fα, f

′
α) − h =

∑
ajx

ηjfβj
with fβj

∈ sG, xηj <Lex xγ and

xηj <Lex x
γ .

Proof. Every monomial xt0 · x
γ · xǫ in Supp(xt0 · x

γ · T (fα)) ∩ J decomposes as xt0 · x
γ · xǫ = xβ ∗J xη,

xη <Lex xt0x
γ and xη <Lex xγ by Lemma 3.2, (iv) and Lemma 2.5. The same holds for any further

reduction and the same argument applies to monomials appearing in Supp(xt0 · x
γ′
· T (fα′)). �

We point out that Lemma 4.3 does not hold without the hypothesis that J is an m-truncation ideal,
as shown by the following example.

Example 4.4. In S = K[x0, x1, x2, x3], consider the strongly stable ideal

J = (x23, x3x2, x3x1)≥4 + (x22)≥6,

whose saturation is J = (x23, x2x3, x1x3, x
2
2). J is not an m-truncation for any m. Consider a J-marked

set G and fα, fβ ∈ G such that Ht(fα) = x20x2x3 and Ht(fβ) = x20x1x3 and consider x42 ∈ Supp(T (fβ)).

Then S(fα, fβ) = x1fα−x2fβ. If we apply Definition 3.11, we reduce x42 ∈ Supp(S(fα, fβ)) by
sG∗
−−−→,

pre-multiplying by x40. We get that x40x
4
2 belongs to Supp(x40S(fα, fβ)) and x40x

4
2 = x22 ∗J x40x

2
2. But

x22 >Lex x2.

Theorem 4.5. Let J be a strongly stable m-truncation ideal, G be a J-marked set and I be the
homogeneous ideal generated by G. The followings are equivalent:

(i) I ∈ Mf(J);

(ii) ∀fα, fα′ ∈ G, ∃ t such that xt0 · S(fα, fα′)
sG∗
−−−−→ 0;

(iii) ∀fα, fα′ ∈ G, ∃ t such that xt0 · S(fα, fα′) = xt0(x
γfα − xγ

′

fα′) =
∑

ajx
ηjfαj

, with xηj <Lex

maxLex{x
γ , xγ

′

} and fαj
∈ sG.

Proof. If I ∈ Mf(J), we can apply Theorem 3.14, (iv) because any S-polynomial among elements in
G belongs to I.

If statement (ii) holds, then we get (iii) by Lemma 4.3.
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We now assume that statement (iii) holds and by Lemma 2.2 it is sufficient to prove that 〈V 〉 = 〈W 〉
using an argument analogous to that applied in the proof of Theorem 2.11. It is sufficient to prove
that xη · V ⊆ 〈V 〉, for every monomial xη. We proceed by induction on the monomials xη, ordered
according to >Lex. The thesis is obviously true for xη = 1. We then assume that the thesis holds for
any monomial xη

′
such that xη

′
<Lex x

η.
If |η| > 1, we can consider any product xη = xη1 · xη2 , xη1 and xη2 non-constant. Since xηi <Lex

xη, i = 1, 2, we immediately obtain by induction

xη · V = xη1 · (xη2 · V ) ⊆ xη1〈V 〉 ⊆ 〈V 〉.

If |η| = 1, then we need to prove that xi · V ⊆ 〈V 〉. Since x0V ⊆ V , it is then sufficient to prove

the thesis for xη = xi, i ≥ 1, assuming that the thesis holds for every xη
′
<Lex xi. We consider

gβ = xδfα ∈ V , where max(xδ) ≤ min(xα). If xigβ does not belong to V , then max(xi ·x
δ) > min(xα),

so xi > min(xα) because max(xδ) ≤ min(xα) by construction. In particular, xi > min(xα) ≥ max(xδ),
so xi >Lex x

δ and it is sufficient to prove the thesis for xifα.
We consider an S-polynomial S(fα, fα′) = xifα − xγfα′ such that xγ <Lex xi. Such S-polynomial

always exists: for instance, we can consider xix
α = xα

′
∗J xη

′
.

By hypothesis there is t such that xt0S(fα, fα′) = xt0(xifα− xη
′
fα′) =

∑
ajx

η′jfαj
where xt0x

η′ , xη
′
j

are lower than xi w.r.t. Lex. Then xt0x
η′fα′ , xη

′
jfαj

belong to 〈V 〉 by induction and we conclude that
xifα ∈ 〈V 〉, by Lemma 4.2. �

The previous theorem is the analogous of Theorem 2.11 for the reduction process
sG∗
−−−→. As stated

in Corollary 2.13 concerning the Buchberger-like criterion for the reduction
Vℓ−−→, also in Theorem 4.5

it would be sufficient to assume statement (iii) only for EK-polynomials.

Corollary 4.6. With the same notations of Theorem 4.5, the followings are equivalent:

(i) I ∈ Mf(J)

(ii) for every EK-polynomial between elements of G, ∃ t : xt0S
EK(fα, fα′)

sG∗
−−−−→ 0.

(iii) for every EK-polynomial between elements of G, ∃ t such that xt0 · S
EK(fα, fα′) = xt0(xifα −

xγ
′

fα′) =
∑

ajx
ηjfαj

, with xηj <Lex xi and fαj
∈ sG.

4.2. Buchberger-like criteria via
sG∗
−−−−→: second variant. As before, let J be a strongly stable m-

truncation ideal. By Example 4.1, we have already shown that reductions of S-polynomials between
elements of sG are not sufficient to characterize ideals of Mf(J); hence some more conditions are
necessary. To this aim, we add some further S-polynomials.

Indeed, Theorem 4.7 uses the set L1 of some couples of polynomials of sG and the set L2 of some
particular couples of elements of G of minimal degree m to obtain a new characterization of Mf(J).
Actually the elements of L1 are not all the possible couples of elements in sG, but a subset of them,
corresponding to a minimal set of generators for the first module of syzygies of the Eliahou-Kervaire
resolution of J .

Theorem 4.7. Consider a strongly stable m-truncation ideal J and G a J-marked set. Let us define
the following sets:

L1 :=
{
(fα, fα′) | fα, fα′ ∈ sG and xix

α = xα
′

∗J xη
}
,

L2 :=

{
(fα, fα′) | fα, fα′ ∈ Gm and xix

α′

= x0x
α, xi = min

j>0
{xj : xj | x

α}

}
.

Then:

I ∈Mf(J)⇔ ∀ (fα, fα′) ∈ L1 ∪ L2, ∃ t such that xt0 · S(fα, fα′)
sG∗
−−−−→ 0.
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Proof. If I belongs toMf(J), then it is enough to apply Theorem 4.5, (ii).
Vice versa, by Lemma 2.2 it is sufficient to prove that 〈V 〉 = 〈W 〉, that is xi · V ⊆ 〈V 〉 for every

i = 0, . . . , n. We proceed by induction on the variables. By construction we have x0 · V ⊆ 〈V 〉. We
now assume that (x0, . . . , xi−1)V ⊆ 〈V 〉 and we prove that xi · V ⊆ 〈V 〉. Consider xδfβ ∈ V . The

thesis is that xi ·x
δfβ is contained in 〈V 〉. If xix

δfβ does not belong to V , then max(xi ·x
δ) > min(xβ),

so xi > min(xβ) because max(xδ) ≤ min(xβ) by construction. In particular, xi > min(xβ) ≥ max(xδ),
so that it is sufficient to prove the thesis for xifβ, because by induction then we have xδxifβ ∈ 〈V 〉.
Consider xβ = xα ∗J xη.

We have a first case when xη = 1. Then xβ = xα and fβ belongs to sG. We consider xαxi =

xα
′
∗J xη

′
. Observe that since xi > min(xα) then xi does not divide xη

′
and max(xη

′
) < xi. Consider

xα
′

= xα
′

· x
tα′

0 , so that we can take the polynomial fα′ ∈ sG. The pair (fβ, fα′) belongs to L1, hence,
by the hypothesis and by Lemma 4.3, there is t such that

xt0S(fβ, fα′) = xt0(x
tα′

0 xifβ − xη
′

fα′) =
∑

ajx
ηjfαj

,

with xηj <Lex xi and fαj
∈ sG. Hence we obtain that both xηjfαj

and xη
′
fα′ belong to 〈V 〉 by

induction on the variables, and so xifβ belongs to 〈V 〉 (by Lemma 4.2).

We have a second case when xη = xt0, t > 0. Then, |β| = m and fβ belongs to sG. Let xix
β =

xα
′

∗J xη
′

. If xi > min(xα
′

), then xη
′

is not divisible by xi and we repeat the argument above.

Otherwise, xi ≤ min(xα
′
) and xi does not divide x

η′ , so that xi = min(xα
′
) and xη

′
<Lex xi. Then, we

take xβ
′

= xβ

x0
· xi that belongs to BJ because it has degree m. The pair (fβ, fβ′) belongs to L2 and

we repeat the same reasoning above.
We now assume the thesis holds for every fβ′ such that xβ

′
= xα

′
∗J xη

′
with xη

′
<Lex xη. By the

base of the induction, we can suppose that xη ≥Lex x1; so, fβ does not belong to sG and it has degree

m. Let xj := minl>0{xl : xl | x
β}.

Observe that if x0 does not divide xβ, then xj = min(xβ); in this case, we have xi > xj because

xi > min(xβ). Anyway, first we suppose that xi ≤ xj ; xj > min(xβ) and x0 divides xβ. We consider

xβ
′

= xβ

x0
· xi, the pair (fβ, fβ′) that belongs to L2 and we repeat the argument of the previous case.

We now assume that xi > xj and consider xβ
′
= xβ

xj
· x0 = xα

′
∗J xη

′
. Observe that xη

′
<Lex xη as

xη
′

= xη

xj
· x0. Therefore the pair (fβ′ , fβ) belongs to L2; by the hypothesis and by Lemma 4.3, there

is an integer t such that

(3) xt0S(fβ′ , fβ) = xt0(xjfβ′ − x0fβ) =
∑

alx
ηlfαl

with xηl <Lex xj , fαl
∈ sG. We now multiply (3) by xi. We observe that xifαl

belongs to 〈V 〉, because

fαl
∈ sG and by the first two cases. Also xifβ′ belongs to 〈V 〉 because xη

′
<Lex x

η <Lex xi. Moreover,
xjxifβ′ belongs to 〈V 〉 by induction on the variables. Finally xifβ belongs to 〈V 〉 thanks to Lemma
4.2. �

5. Embedding of Mf(J) in affine linear spaces of low dimension

In this section we continue to consider a strongly stable m-truncation ideal J = J≥m and, as in
Subsection 2.3, we work again with J-marked sets G where the coefficients of the monomials in the
tails are considered as parameters.

Definition 5.1. If G is the set of marked polynomials given as in (1) for the ideal J , we will call set
of superminimals, and denote it by sG, the subset of G made up of Fα ∈ G with Ht (Fα) ∈ sBJ . We

will denote by C the set of variables appearing in the tails of the polynomials in G and by C̃ the set of
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variables appearing in the tails of the polynomials in sG. AJ is the ideal defining the affine subscheme
Mf(J) in the ring K[C].

Observe that the J-marked basis G of every I ∈ Mf(J) is obtained by specializing in a suitable
way the variables C in G and that the set of superminimals sG of I is obtained in the same way by

sG through the same specialization of the variables C̃.

5.1. The new embedding ofMf(J). In this subsection we answer to the first question raised in the
Introduction. In Theorem 5.4 we prove that the set of equations in K[C] definingMf(J) allows the

elimination of a large number of parameters, more precisely those of C \ C̃ . Furthermore, using results
of previous sections about the superminimal reduction, we are able to determine a set of equations

definingMf(J) in K[C̃] avoiding at all the introduction of parameters in C \ C̃. This fact combined
with the choice of a small set of S-polynomials (according to Corollary 4.6 or Theorem 4.7) will turn
out to be significantly useful in projecting an effective algorithm for the computation of such equations.
Furthermore, this new sets of equations turns out to be more suitable in order to compare marked
schemes of m-truncation ideals of a strongly stable saturated ideal J as m varies.

Definition 5.2. Let xα ∈ BJ and t be an integer such that xt0 · x
α sG∗
−−−→ Hα ∈ K[C̃, x], with Hα

strongly reduced (the integer t exists by Theorem 3.14). We can write Hα = H ′
α + xt0 ·H

′′
α, where no

monomial appearing in H ′
α is divisible by xt0. We will denote by:

• B = {Cαγ − φαγ : xα ∈ BJ \ sBJ , x
γ ∈ N (J)|α|} the set of the x-coefficients of T (Fα)−H ′′

α

for every xα ∈ BJ ;

• D1 ⊂ K[C̃] the set of the x-coefficients of H ′
α for every xα ∈ BJ \ sBJ ;

• D2 the set of the x-coefficients of the strongly reduced polynomials in (sG)K[C̃, x].

Remark 5.3. Observe that not only D2 but also B and D1 are well-defined thanks to the uniqueness
of Hα, by Theorem 3.14, (ii).

Theorem 5.4. The J-marked scheme Mf(J) is defined by the ideal ÃJ := AJ ∩K[C̃] as subscheme

of the affine space A|C̃|, where |C̃| =
∑

xα∈sBJ
|N (J)|α||. Moreover AJ = (B ∪ D1 ∪ D2)K[C] and

ÃJ = (D1 ∪D2)K[C̃].

Proof. For the first part it is sufficient to prove that AJ contains B and so it contains an element of

the type Cαγ − φαγ , for every Cαγ ∈ C \ C̃, where φαγ ∈ K[C̃], that allows the elimination of the

variables Cαγ ∈ C \ C̃.

It is clear by the construction in Definition 5.2 that Hα belongs to K[C̃, x] and that both xt0 ·T (Fα)
and Hα are strongly reduced. Thus their difference xt0 · T (Fα)−Hα is strongly reduced and moreover
it belongs to IJ , because xt0 · T (Fα)−Hα = −xt0 · Fα + (xt0 · x

α −Hα). Hence, by Corollary 2.17, its
x-coefficients belong to AJ and in particular the coefficient of xt0 · x

γ is of the type Cαγ − φαγ , with

φαγ ∈ K[C̃]. Then AJ ⊇ B and AJ is generated by B ∪ ÃJ .

To prove the second part, it is sufficient to show that AJ ∩K[C̃] = (D1 ∪D2)K[C̃].
“⊇” Taking the x-coefficients in xt0 · T (Fα)−Hα of monomials that are not divisible by xt0, we see

that AJ contains the x-coefficients of H ′
α. Then AJ ∩K[C̃] ⊇ D1, because H ′

α ∈ K[C̃, x].
Moreover we recall that AJ is made by all the x-coefficients in the polynomials of IJ that are

strongly reduced. Indeed, AJ is made by all the x-coefficients of the polynomials of IJ that are J-
reduced. Since the degree of the monomials in the variables x of every polynomial in IJ is ≥ m,
then “J-reduced” is equivalent to “J -reduced”, that it is strongly reduced, by Lemma 3.2, (iv). Then

AJ ∩K[C̃] ⊇ D2, because (sG)K[C̃, x] ⊂ IJ .
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“⊆” For every polynomial F ∈ K[C, x], let us denote by Fφ the polynomial in K[C̃, x] obtained

substituting every Cαγ ∈ C \ C̃ by φαγ ; if F is strongly reduced, then Fφ is strongly reduced too.

Observe that for every xα ∈ BJ we have Fφ
α = xα−H ′′

α and moreover xt0(x
α−H ′′

α)−H
′
α ∈ (sG)K[C̃, x].

In particular xt0F
φ
α and xt0(x

α −H ′′
α)−H ′

α are equal modulo D1.

It remains to prove that every element w ∈ AJ ∩K[C̃] can be obtained modulo D1 as a x-coefficient

in some strongly reduced polynomial of the ideal (sG) ⊂ K[C̃]. We know that w is a x-coefficient in
a strongly reduced polynomial D ∈ IJ .

If D =
∑

DαFα ∈ IJ , then for a suitable t,

xt0 ·D
φ =

∑
Dφ

α ·
(
xt0 · (x

α −H ′′
α)−H ′

α

)
mod D1

and the polynomial in the right-hand side of the equality is strongly reduced and it belongs to

(sG)K[C̃, x]. Therefore w is still one of the x-coefficients of Dφ since it does not contain any variable

in C \ C̃ and it remains unchanged. Then w ∈ (D1 ∪D2)K[C̃]. �

Proposition 5.5. Let ÃJ be as in Theorem 5.4 and let U be any ideal in K[C̃]. Assume that U ⊆ ÃJ

and that the following conditions hold:

(i) For every monomial xβ ∈ BJ \sBJ , x
β = xα ∗J x

δ ∈ J , there exists t such that we have a formula
of type

xt0 · x
β =

∑
bix

ηiFαi
+Hβ,

with ai ∈ K[C̃], Fαi
∈ sG, xηi ≤Lex xδ, x

η
j
+αj = xαj ∗J x

η
j and Hβ = H ′

β + xt0 ·H
′′
β , with Hβ

strongly reduced, xt0 does not divide any monomial in Supp(H ′
β) and Coeffx(H

′
β) ⊆ U.

(ii) For every polynomial Fα ∈ sG and for every xi > min(xα) there exists t such that we have a
formula of type

xt0xiFα =
∑

bjx
ηjFαj

+Hi,α

where bj ∈ K[C̃], Fαj
∈ sG, xηj <Lex xi, x

η
j
+αj = xαj ∗J x

η
j , Hi,α strongly reduced and

Coeffx(Hi,α) ⊆ U.

Then U = (D1 ∪D2) = ÃJ .

Proof. Thanks to (i), we immediately have that D1 ⊆ U.
For the inclusion D2 ⊆ U, observe that if (i) and (ii) hold for U, then we can use the same arguments

of Proposition 2.15 and obtain that:
for every Fα ∈ sG, for every xδ, there exists t such that

(4) xt0x
δFα =

∑
bjx

ηjFαj
+H

with bj ∈ K[C̃], Fαj
∈ sG, xηj <Lex x

δ, x
η
j
+αj = xαj∗Jx

η
j Suppx(Hδ,α) ⊆ N (J) and Coeffx(Hδ,α) ⊆ U.

We can also prove the uniqueness of such a rewriting: thanks to the uniqueness of the decomposition
by ∗J , the polynomials xηjFαj

that can appear in (4) have pairwise different head terms. So an
analogous of Corollary 2.16 holds for this setting.

Thanks to this uniqueness, as in Corollary 2.17, we get the non trivial inclusion of the thesis. �

Proposition 5.5 is very important from the computational point of view. Indeed, its condition (i)

allows to explicitely construct the set of polynomials B, namely to write a J-marked set G̃ in K[C̃, x],

whose superminimal set is sG. Using such a J-marked set in K[C̃, x], we can use either Theorem 4.5

or Corollary 4.6 or Theorem 4.7 to obtain a set of generators for ÃJ . For instance, the algorithm
presented in the Appendix is based on Theorem 4.7 and the proof of its correctness on Proposition
5.5. In the future, we will investigate which is the best set of polynomials to start from in order to
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get a performing algorithm for the computation of equations for Mf(J). The correctness of such an
algorithm will be verified by the conditions of Proposition 5.5.

5.2. Relations among Mf(J≥m) as m varies. In this subsection we will compare the marked
schemes constructed from different truncations of a saturated strongly stable ideal J . Let us consider
two integers m′,m, (m′ < m). If I is an ideal in the J≥m′-marked family Mf(J≥m′), then it is not
difficult to show that I≥m belongs to the marked family Mf(J≥m), namely that there is a injective
map of setsMf(J≥m′)→Mf(J≥m). Aim of the present subsection is a scheme theoretical version of
this fact; indeed we will prove that there is a closed embedding of schemes Mf(J≥m′) →֒ Mf(J≥m)
that induces the previous one on the sets of closed points. It is sufficient to prove the existence of such
a closed embedding for m′ = m− 1; in this case we denote the embedding map by φm. Furthermore,
we characterize the cases in which φm is a isomorphism.

To this purpose, the main tool we will use is the set of defining equations for a J-marked scheme

obtained by superminimal reduction, namely the ideal ÃJ ; moreover we will consider at the Zariski
tangent space ofMf(J≥m) at the origin, denoted by T0(Mf(J≥m)).

Remark 5.6. As for any affine variety, if Mf(J) is defined by an ideal U as a subscheme of an affine
space AN , then the Zariski tangent space T0(Mf(J)) is defined by the linear part of a set generators
of U so that it can be identified to a linear subspace of AN . In the special case of marked schemes,
it is quite easy to compute a set of generators for T0(Mf(J)), using the properties and techniques of
[15, Definition 3.4 and Proposition 4.3], [24, Proposition 3.4] and [10, Theorem 3.2].

Theorem 5.7 is inspired by an analogous result proved for Gröbner Strata in [15, Theorem 4.7].
Given a monomial ideal J , the Gröbner Stratum St(J,≺) of J w.r.t. a term order ≺ can be isomor-
phically projected in its Zariski tangent space at the origin T0(St(J,≺)) (see [15, Proposition 4.3]).
Furthermore, if the origin is a smooth point, then St(J,≺) is isomorphic to this tangent space. Un-
luckily, it is not true that for every strongly stable ideal J there exists a term order ≺ such that
Mf(J) ≃ St(J,≺), as shown in [7, Appendix], so in general we cannot project isomorphicallyMf(J)
into T0(Mf(J)).

We introduce some useful notations: once fixed a saturated strongly stable ideal J and a positive
integer m, we denote by

• G[m] a J≥m-marked set as in (1) and with F
[m]
β a marked polynomial belonging to G[m];

• C [m] the set of parameters C
[m]
αγ appearing in the tails of the marked polynomials in G[m];

• sG[m] the set of superminimals of G[m];

• C̃ [m] the subset of C [m] containing only the parameters C̃
[m]
αγ appearing in the tails of marked

polynomials in sG[m];

• Ã[m] is the ideal in K[C̃ [m]] definingMf(J≥m) as a subscheme in A|C̃[m]| (defined in Theorem
5.4).

Theorem 5.7. Let J be a saturated strongly stable ideal and let m be any integer. With the previous
notations, the followings hold:

(i) Mf(J≥m−1) is a closed subscheme ofMf(J≥m) cut out by a suitable linear space. More precisely,

C̃ [m−1] can be identified with a suitable subset of C̃ [m] so that the following diagram of schemes
commutes:
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(5)

Mf(J≥m−1) Mf(J≥m)

A|C̃[m−1]| A|C̃[m]|

φm

(ii) Let Ω be the number of monomials xα ∈ BJ of degree m+1 divisible by x1 and Θ := |BJ∩S≤m−1|;
then,

dimT0(Mf(J≥m)) ≥ dimT0(Mf(J≥m−1)) + Ω ·Θ.

(iii) Mf(J≥m−1) ≃Mf(J≥m) if and only if either J≥m−1 = J≥m or no monomial of degree m+1 in
BJ is divisible by x1.

In particular:

Mf(J≥ρ−1) ≃Mf(J≥m), for every m ≥ ρ

where ρ is the maximal degree of monomials divisible by x1 in BJ .

Proof.

(i) Thanks to Theorem 5.4, a J≥m-marked scheme is defined by an ideal generated by polynomials

of K[C̃ [m]] that are constructed using only the superminimals. So, now it is enough to prove that

the set of superminimals sG[m−1] corresponds to sG[m] modulo a subset of the variables C̃ [m], in
the following sense.

Consider xα ∈ sBJ≥m−1
. If |α| ≥ m, then xα belongs to sBJ≥m

and we can identify F
[m]
α ∈

sG[m] and F
[m−1]
α ∈ sG[m−1] (and in particular the variables in their tails: C̃

[m]
αγ = C̃

[m−1]
αγ ).

If |α| = m − 1, then we can consider the corresponding superminimal element F
[m]
β ∈ sG[m],

with xβ = x0 · x
α. Then we identify the variable C̃

[m]
βδ′ , which is the coefficient of a monomial

in Suppx(F
[m]
β ) of kind xδ

′
= x0 · x

δ, with the variable C̃
[m−1]
αδ which is the coefficient of the

monomial xδ in Suppx(F
[m−1]
α ).

We repeat this identifications for all xα ∈ sBJ≥m−1
and we denote by C

[m]
the subset of C̃ [m]

containing the variables non-identified with variables of C̃ [m−1], that is the variables appearing as
coefficients of monomials not divisible by x0 in the tails of polynomials in sG[m] \ sG[m−1]. Now,

every polynomial in sG[m] mod (C
[m]

) either belongs to sG[m−1] or is a polynomials of sG[m−1]

multiplied by x0. Thanks to Theorem 5.4, we have that

Ã
[m] +

(
C

[m]
)
≃ Ã

[m−1].

This relation among the ideals induces the embeddings of scheme of diagram (5).
(ii) We now consider xγ ∈ BJ , |γ| = m+ 1, xγ divisible by x1. We define xβ := xγ/x1; observe that

xβ ∈ N (J). Furthermore, xβ is not divisible by x0, otherwise xγ would be too.

Then, for every xα ∈ BJ with |α| ≤ m−1, there is F
[m]
α = xαx

m−|α|
0 −T (F

[m]
α ) ∈ sG[m] such that

xβ ∈ Suppx(T (F
[m]
α )). We focus on the coefficient C̃

[m]
αβ of xβ. Since xβ is not divisible by x0, C̃

[m]
αβ

cannot be identified with a coefficient appearing in F
[m−1]
α = xαx

m−|α|−1
0 −T (F

[m−1]
α ) ∈ sG[m−1].

So C̃
[m]
αβ belongs to the subset of variables C

[m]
defined in the proof of (i).

We now use the construction of T0(Mf(J≥m)) recalled in Remark 5.6. If we think about

syzygies of the ideal J≥m, we can see that in a S-polynomial, F
[m]
α is multiplied by a monomial xδ
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divisible by xi, i > 0. In particular, xδ ·xβ belongs to J≥m: if xi = x1 we are done by construction,

otherwise we apply the strongly stable property because x1x
βxδ = xγ

xi
x1x

δ belongs to J≥m. This

means that the coefficient C̃
[m]
αβ does not appear in any equation defining T0(Mf(J≥m)).

Applying this argument to the Ω monomials in BJ of degree m+ 1 which are divisible by x1
and to the Θ monomials in BJ of degree ≤ m− 1, we obtain the result.

(iii) If J≥m = J≥m−1, obviouslyMf(J≥m) =Mf(J≥m−1). We now assume that J≥m 6= J≥m−1 and
no monomial of degree m+ 1 in the monomial basis of J is divisible by x1; we prove that every
polynomial in sG[m] either belongs to sG[m−1] or it is the product of x0 by the “corresponding”
polynomial in sG[m−1].

If xα ∈ sBJ≥m−1
and |α| ≥ m, then F

[m]
α ∈ sG[m] and F

[m−1]
α ∈ sG[m−1] have the same shape

and we can identify them letting C̃
[m]
αγ = C̃

[m−1]
αγ , as done in the proof of (i). If |α| = m− 1, then

xβ = x0 · x
α ∈ sBJ≥m

and all the monomials in the support of x0 · F
[m−1]
α appear in the support

of F
[m]
β (and we identify their coefficients as above). In the support of F

[m]
β there are also some

more monomials that are not divisible by x0. We will prove now that the coefficients of these

last monomials in fact belong to Ã[m].
Consider the monomial x0 · x1 · x

α. If we perform its reduction using sG[m], the first step of
reduction will lead to

x0 · x1 · x
α sG[m]∗
−−−−−→ x1T (F

[m]
β ).

Let xγ be a monomial of Supp(T (F
[m]
β )). If x1 ·x

γ ∈ J≥m, then x1 ·x
γ = xα

′

∗J x
η, with xα

′

∈ BJ

and xη <Lex x1. If xη = 1, then |α′| = m+ 1 and xα
′
is divisible by x1, against the hypothesis.

Then xη = xt0, with t > 0, and so the monomial x1 · x
γ ∈ J≥m is actually divisible by x0. If

x1 · x
γ ∈ N (J≥m), then this monomial is not further reducible, so that its coefficient belongs to

Ã[m].
Vice versa, by contradiction suppose now that J≥m−1 6= J≥m and that there exists xα ∈ BJ

divisible by x1, |α| = m+ 1. Using (ii), we have that T0(Mf(J≥m−1)) 6≃ T0(Mf(J≥m)) because
dimT0(Mf(J≥m−1)) < dimT0(Mf(J≥m)), and soMf(J≥m−1) 6≃ Mf(J≥m).

For the last part of the statement, note that if ρ is the maximal degree of a monomial divisible by
x1 in the monomial basis of J , for every m ≥ ρ, applying iteratively (iii) we obtain

Mf(J≥ρ−1) ≃Mf(J≥m). �

In the above setting, if p(t) is the Hilbert polynomial of S/J and r is its Gotzmann number, it is
worth considering the r-truncation of J . Indeed, in [4] the authors prove that Mf(J≥r) is naturally
isomorphic to an open subset of the Hilbert scheme Hilbnp(t). We recall that r is the maximum among

the regularities of ideals that are closed points of Hilbnp(t); hence, r ≥ reg(J) ≥ ρ− 1. Then Theorem

5.7 allows us to study such an open subset of Hilbnp(t) embedded in an affine space of lower dimension

than the expected one. More precisely:

Corollary 5.8. Let J be a saturated strongly stable ideal, and let ρ be the maximal degree of monomials
divisible by x1 in BJ . For every m ≥ ρ−1,Mf(J≥m) can be embedded in an affine space of dimension

(6) |C̃ [ρ−1]| =
∑

xα∈sBJ≥ρ−1

|N (J)|α|| ≤ |BJ | · p(r
′),

where r′ = reg(J) and p(t) is the Hilbert polynomial of S/J .
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Proof. The equality of (6) directly follows from Theorem 5.7. For the inequality, we simply need to
observe that the regularity r′ of a strongly stable ideal is simply the maximum of the degrees of its
monomial generators; hence every monomial in sBJ≥ρ−1

has degree ≤ r′. Furthermore r′ is greater

than or equal to the regularity of the Hilbert function of S/J , thus |N (J)|α|| ≤ N (J r′) = p(r′).
An equivalent proof follows from the diagram (5) of Theorem 5.7. �

6. Examples

In the hypothesis that the field K has characteristic 0, the methods of computations developed
in the previous sections can be applied to the study of Hilbert schemes: indeed, for m big enough,
Mf(J≥m) corresponds to an open subset of the Hilbert scheme parameterizing the ideals having the
same Hilbert polynomial as S/J (see [4]).

Now we give some examples for applications of the obtained results, mainly Theorem 4.5, Theorem
4.7 and Theorem 5.7. We keep on using the notations introduced before Theorem 5.7.

Example 6.1. Let J be the saturated strongly stable ideal (xn, . . . , x2, x
µ
1 ) ⊆ S = K[x0, . . . , xn].

Observe that J is a Lex-segment, the Hilbert polynomial of S/J is p(t) = µ, the regularity of J is
r′ = µ, and also ρ = µ. By Corollary 5.8, Mf(J) can be embedded into an affine space of dimension
2n− 2+ µ. Using the criterion of Theorem 4.5, we can see that actuallyMf(J) ≃ A2n−2+µ, as shown
also in [24]. By Theorem 5.7, (iii),Mf(J≥m) is isomorphic toMf(J) for every m ≤ µ− 2.

It is well-known that Proj (S/J) is the Lex-point of Hilbnµ and lies on a component of dimension nµ
(see [21]). ThenMf(J≥m) is not isomorphic to an open subset of Hilbnµ for every m ≤ µ− 2.

On the other hand, the same reasonings above leads to Mf(J≥µ) ≃ Anµ so that Mf(J≥µ) is an
open subset of Hilbnµ. This is shown also in [24].

Example 6.2. We consider the strongly stable saturated ideal

J = (x32, x1x
2
2, x

2
1x2, x

5
1) ⊆ K[x0, x1, x2].

It corresponds to a point of Hilb28, with Gotzmann number r = 8, the regularity r′ of J is 5, and
the same value for ρ. By Theorem 5.7 we have that Mf(J≥4) ≃ Mf(J≥r). Observe that J≥4 is not
segment w.r.t. any term order (see [7, Appendix]), hence in this case the results of [15] do not apply.

In [7, Appendix], the authors first considerMf(J≥4) as an affine subscheme of A64 and then show
that 45 of the variables can be eliminated, but using a time-consuming process of elimination of
variables. By Corollary 5.8, we can directly embedMf(J≥r) in an affine space of dimension 32, and
we have to eliminate only 13 of the remaining variables.

Example 6.3. We take p(t) = 4t, n = 3, q(t) =
(3+t

3

)
− p(t) =

(3+t
3

)
− 4t; the Gotzmann number

of p(t) is r = 6. The Hilbert scheme Hilb34t can be considered as a subscheme of the Grassmannian
G = G(q(6),K[x]6) of linear spaces of dimension q(6) = 60 in the vector space K[x]6 of dimension(3+6

3

)
= 84 (see [4, Section 1] for some details about this construction). Therefore equations for Hilb34t

involve E =
(84
60

)
− 1 ∼ 6 · 1020 Plücker coordinates. We can obtain an open cover of Hilb34t by the

non-vanishing of each Plücker coordinate of G: we get E open subsets, each of them isomorphic to a
subscheme of A1440.

In [4] the authors consider a different open cover (up to the action of PGL(4)) of Hilb34t, formed by
4 open subsets only, isomorphic to a marked scheme of a suitable truncation of the saturated strongly
stable monomial ideals J i, i = 1, 2, 3, 4 in K[x]. We can choose for every i the truncation m = r = 6,
nevertheless in order to perform computations with a lower number of variables, it is better to choose
the truncations according to Theorem 5.7.

We denote the cardinality of the monomial basis of J i by σi. In the following table we list the
dimensions of the different affine spaces where we can embed the marked schemes, using Theorem 5.7
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and Corollary 5.8.

Monomial basis of J i reg(J i) σi ρi − 1 σip
(
reg(J i)

) ∣∣∣C̃ [ρi−1]
∣∣∣

J1 x23, x3x2, x
3
2 3 3 −1 36 28

J2 x23, x3x2, x3x
2
1, x

4
2 4 4 2 64 44

J3 x23, x3x2, x3x1, x
5
2, x

4
2x1 5 5 4 100 88

J4 x3, x
5
2, x

4
2x

2
1 6 3 5 72 64

Observe that for J1 and J2, the truncation giving an open subset of Hilb34t is exactly the saturated
ideal.

J4 is the Lex-segment ideal: Mf((J4)≥5) is isomorphic to A23 (see [15, Theorem 7.3]). In this case
we should further eliminate 41 variables. This means that our bounds are not in general “sharp”,
however the computational consequences of Theorem 5.7 are significant and our results allow the
treatment of non-trivial cases that cannot be handled with “classical” techniques.

Appendix. A pseudocode description of the algorithm for computing a J-marked
scheme

We now describe a prototype of the algorithm for computing J-marked families based on Proposition
5.5 and on the analogous of the set L1 defined in Theorem 4.7. The ideal J is always supposed to be
a strongly stable m-truncation ideal.

Let us suppose that the following functions are made available.

• generators(J). It determines the monomial basis of J .
• superminimalGenerators(J). It determines the superminimal generators of J .
• superminimalReduction(H, sG). Given a J-marked superminimal set sG and a polynomial
H, it returns a pair (t, h) where t is the minimal power of x0 such that there is a supermin-
imal reduction of xt0H to a strongly reduced polynomial and h is such polynomial, namely

xt0H
sG∗
−−−→ h (as in Theorem 3.14, (ii)).

• quotientAndRemainder(H, t). Given a polynomial H and a non-negative integer t, it
returns the pair of polynomials (H ′,H ′′) such that H = H ′ +H ′′xt0.
• pairsL1(sG). Given a J-marked superminimal set sG, it computes the pairs of polynomials
belonging to the set L1 (analogous of the set L1 of Theorem 4.7).
• coeff(H,xα). It returns the coefficient of the monomial xα in the polynomial H (obviously
0 if xα /∈ Supp(H)).
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1: markedScheme(J)
Input: J ⊂ K[x0, . . . , xn] strongly stable m-truncation ideal.
Output: an ideal defining the marked schemeMf(J).
2: BJ ← generators(J);
3: sBJ ← superminimalGenerators(J);

4: G̃ ← ∅; sG ← ∅;
5: for all xα ∈ sBJ do

6: Fα ← xα;
7: for all xβ ∈ N (J)|α| do

8: Fα ← Fα + C̃αβx
β ;

9: end for

10: G̃ ← G̃ ∪ {Fα};
11: sG ← sG ∪ {Fα};
12: end for

13: equations← ∅;
14: BJ ← BJ \ sBJ ;
15: for all xα ∈ BJ do

16: (t,H)← superminimalReduction(xα, sG);
17: (H ′,H ′′)← quotientAndRemainder(H, t);
18: for all xη ∈ Supp(H ′) do
19: equations← equations ∪ {Coeff(H ′, xη)};
20: end for

21: G̃ ← G̃ ∪ {xα −H ′′};
22: end for

23: L1 ← pairsL1(sG);
24: for all (Fα, Fα′) ∈ L1 do

25: (t,H)← SuperminimalReduction
(
S(Fα, Fα′), sG

)
;

26: for all xη ∈ Supp(H) do
27: equations← equations ∪ {Coeff(H,xη)};
28: end for

29: end for

30: return (equations);

Theorem A.1. The algorithm markedScheme is correct.

Proof. To prove that the algorithm terminates it is sufficient to recall that the superminimal reduction
is Noetherian (Theorem 3.14 (i)).

Now we show that the algorithm markedScheme returns a set of generators for the ideal defining
Mf(J). The starting point is the J-marked superminimal set sG given in Definition 5.1 , having

parameters in C̃ as coefficients of every monomial in the tails and get a set equations of polynomials

in K[C̃]. We claim that the ideal U generated by equations coincides with the ideal ÃJ of Theorem
5.4, by Proposition 5.5.

Indeed in the first part (lines 15-22), the algorithm computes the superminimal reduction H of each
monomial xα ∈ BJ \ sBJ and it imposes the conditions required by Proposition 5.5 (i), in other words

the algorithm computes the set D1 ⊆ ÃJ of Definition 5.2. At the same time, the algorithm constructs

the J-marked set G̃ ⊂ K[C̃, x].
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In the second part (lines 23-29), the algorithm considers pairs of superminimal generators (Fα, Fα′)

such that xix
α = xα

′
∗J xη. Recall that xη <Lex xi by Lemma 2.5. These couples of polynomials in

sG correspond to the couples of the set L1 in Theorem 4.7.
At line 25 of the algorithm we compute the superminimal reduction of the associated S-polynomial

xt0S(Fα, F
′
α) = xt0

(
xix

t′

0Fα − xηxt
′′

0 Fα′

)
sG∗
−−−→ H xix

t′

0 =
lcm(xα, xα

′

)

xα
, xηxt

′′

0 =
lcm(xα, xα

′

)

xα′

that is applying Lemma 4.3

xt0(x
t′

0 xiFα − xt
′′

0 xηFα′)−
∑

bjx
ηjFβj

= H

with bj ∈ K[C̃], Fβj
∈ sG, xηj <Lex xix

t′

0 and xηj <Lex xi, so that

xt0xiFα = xηFα′ +
∑

bjx
ηjFβj

+H.

The polynomial H is strongly reduced and it belongs to the ideal (sG) ⊆ K[C̃, x], then its x-coefficients

belong to D2 ⊆ ÃJ .

Then by construction (lines 26-28), U is contained in ÃJ and it satisfies the condition required by

Proposition 5.5 (ii), hence U = ÃJ . �

We are convinced that this version can be strongly strengthened drawing inspiration from some of
the improvements studied for the computation of Gröbner bases and border bases. In this direction, we
have already developed a first prototype which is giving good and promising results. In the following
table, we report the results of the computation of the marked schemes considered in Example 6.3.
The algorithm has been run on a MacBook Pro with a 2,4 GHz Intel Core 2 Duo processor.

Parameters Equations Time

Mf(J1) 28 28 0.165568 seconds

Mf(J2) 44 64 0.295802 seconds

Mf
(
(J3)≥4

)
88 228 110050 seconds

The prototype of the algorithm is available at
www.personalweb.unito.it/paolo.lella/ HSC/Documents/MarkedSchemes.m2
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