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Abstract  

We develop a novel prognostic method for estimating the Remaining Useful Life (RUL) of industrial 

equipment and its uncertainty. The novelty of the work is the combined use of a fuzzy similarity method for 

the RUL prediction and of Belief Function Theory for uncertainty treatment. This latter allows estimating the 

uncertainty affecting the RUL predictions even in cases characterized by few available data, in which 

traditional uncertainty estimation methods tend to fail. From the practical point of view, the maintenance 

planner can define the maximum acceptable failure probability for the equipment of interest and is informed 

by the proposed prognostic method of the time at which this probability is exceeded, allowing the adoption of 

a predictive maintenance approach which takes into account RUL uncertainty. The method is applied to 

simulated data of creep growth in ferritic steel and to real data of filter clogging taken from a Boiling Water 

Reactor (BWR) condenser. The obtained results show the effectiveness of the proposed method for uncertainty 

treatment and its superiority to the Kernel Density Estimation (KDE) and the Mean-Variance Estimation 

(MVE) methods in terms of reliability and precision of the RUL prediction intervals. 
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1 Introduction 

Various data-driven methods have been proposed for predicting the Remaining Useful Life (𝑅𝑈𝐿) of degrading 

equipment (Hines & Usynin, 2008; Vachtsevanos, 2006; Zio, 2012), i.e., the time left before the equipment 

will stop fulfilling its functions. Data-driven methods are of interest when an explicit model of the degradation 

process is not known; they are built based on observations of the degradation process of one or more similar 

equipment, and usually perform the regression of the future equipment degradation path until pre-defined 

criteria of failure are met (Niu et al., 2010; Baraldi et al., 2012a-b, Baraldi et al., 2013a-c; Di Maio 2012; Zio 

& Di Maio 2012). Among data-driven methods one can distinguish between (i) degradation-based approaches, 

modeling the future equipment degradation evolution and (ii) 𝑅𝑈𝐿 prediction approaches, directly predicting 

the 𝑅𝑈𝐿 (Wang et al. 2008). 

Degradation-based approaches use statistical models that learn the equipment degradation evolution from time 

series of the observed degradation states (Gorjian et al., 2009; Wang et al., 2011; Zhao et al., 2013); the 

predicted degradation state is, then, compared with the failure criteria, e.g., the threshold of the degradation 

parameter beyond which the equipment fails performing its function (failure threshold). Examples of modeling 

techniques used in degradation-based approaches are Auto-Regressive models (Benkedjouh et al., 2013; 

Gorjian et al., 2009), multivariate adaptive regression splines (Lee et al., 2006), Relevance Vector Machines 

(Nystad, 2009; Di Maio et al., 2012) and Gaussian Processes (Rasmussen, 2006; Baraldi et al., 2013a). 

𝑅𝑈𝐿 prediction approaches, instead, typically resort to artificial intelligence techniques that directly map the 

relation between the observable parameters and the equipment 𝑅𝑈𝐿, without the need of predicting the 

equipment degradation state evolution towards a failure threshold (Peel, 2008; Schwabacher et al., 2007). 

Techniques used in direct 𝑅𝑈𝐿 prediction approaches are most often similarity-based (also known as instance-

based) learning algorithms (Zio et al., 2010a; Zhang et al., 2015). As these methods avoid performing explicit 

generalization, they have proved to be effective also when few training data with no clear patterns of regularity 

are available for training. Others regression methods, such as ANNs, could be used to perform direct 𝑅𝑈𝐿 

prediction, however, due to the large number of parameters to be tuned in these models, they typically require 

large training samples to provide accurate models that do not overfit the data.  

Degradation–based prognostics provides more informative and transparent outcomes than direct 𝑅𝑈𝐿 

prediction prognostics, since it supplies a prediction not only of the current equipment 𝑅𝑈𝐿, but also of the 

entire degradation trajectory that the equipment will follow. However, degradation-based prognostics, 

differently than direct 𝑅𝑈𝐿 prediction prognostics, requires identifying a degradation indicator and fixing a 

failure threshold, which may be difficult in practice, especially in cases where only few and/or irregular 

degradation trajectories are available, and may introduce further uncertainty and sources of errors. In fact, the 

information available for modeling the equipment degradation may be scarce and incomplete, e.g., few 

examples of similar equipment degradation trajectories may be available, the degradation state of the 

equipment may not be directly measured, and the failure criteria may not be known with precision. Therefore, 

the 𝑅𝑈𝐿 estimate should take into account the intrinsic uncertainty due to the variability of the degradation 
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process (caused, for example, by the micro-structural differences between pieces of the same equipment, or by 

unforeseen future loads, operational settings and external conditions) (Baraldi et al. 2012), which implies that 

we cannot be sure that two identical pieces of equipment, having experienced the same degradation path up to 

the present time, will keep following exactly the same path also in the future. 

Thus, given the scarcity of information typically available and the different sources of uncertainty to which 

the 𝑅𝑈𝐿 estimate is subject to (i.e., due to different environmental conditions, measurement noise, process 

noise, etc. (Al-Dahidi et al., 2014)), data-driven models can commit errors in the 𝑅𝑈𝐿 estimate (Yan et al., 

2004), and uncertainty management becomes a fundamental task in prognostics. Indeed, it is necessary to 

provide maintenance planners with an assessment of the expected mismatch between the real and predicted 

equipment failure times, in order to allow them confidently planning maintenance actions, according to the 

maximum acceptable failure probability (Tang et al., 2009). 

However, in spite of the recognized potential of the data-driven approaches, they still face difficulties in 

providing a measure of confidence on the 𝑅𝑈𝐿 predictions, i.e., the uncertainty affecting the predictions. For 

example, fuzzy similarity-based model (Zio & Di Maio, 2010a) and regression methods such as ANNs 

(Vachtsevanos & Wang, 2001) typically do not provide an explicit and direct quantification of the 𝑅𝑈𝐿 

prediction uncertainty, whereas other methods such as Relevance Vector Machine (Nystad, 2009; Di Maio et 

al., 2012) or Gaussian Process Regression (Rasmussen, 2006: Baraldi et al., 2013a) have been shown capable 

of quantifying 𝑅𝑈𝐿 prediction uncertainty in cases in which a training set made by a large number of examples 

of the phenomena that we want to represent is available (Baraldi et al., 2013c), but they may experience 

difficulties in cases of scarce available data. 

In this context, the objective of the present work is to develop a novel method for properly representing the 

uncertainty in the 𝑅𝑈𝐿 prediction. In practice, the maintenance planner defines the maximum acceptable 

failure probability and is informed by the prognostic method of the time at which this probability will be 

exceeded. To this purpose, we consider the direct 𝑅𝑈𝐿 similarity-based prognostic model proposed in (Zio & 

Di Maio, 2010a), which uses a set of degradation trajectories collected in a reference library and performs a 

data-driven similarity analysis for predicting the 𝑅𝑈𝐿 of a newly developing degradation trajectory (hereafter 

called test trajectory). The matching process is based on the evaluation of the distance between the reference 

and test trajectories (Angstenberger, 2001). This method has been selected because of its favorable 

characteristics in terms of capability of dealing with few and/or irregular degradation trajectories in comparison 

with other time-series approaches for direct 𝑅𝑈𝐿 prediction. This prognostic model is here extended in order 

to provide a measure of confidence in the 𝑅𝑈𝐿 prediction. To address this issue, we adopt a solution based on 

belief function theory (BFT) (also called Dempster-Shafer or evidence theory) (Dempster, 1967; Shafer, 1976; 

Su et al. 2011). The BFT allows combining different pieces of (uncertain) evidence, based on the assignment 

of basic belief masses to subsets of the space of all possible events, which are, in this case, the possible values 

that the equipment 𝑅𝑈𝐿 can take. In practice, the proposed method considers each reference trajectory as a 

piece of evidence regarding the value of the 𝑅𝑈𝐿 of the test trajectory. These pieces of evidence are discounted 
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based on their similarity to the test trajectory and pooled using Dempster’s rule of combination (Altinçay, 

2007, Petit-Renaud & Denoeux, 2004). The result is a basic belief assignment (BBA) that quantifies one’s 

belief about the value of the 𝑅𝑈𝐿 for the test trajectory given the reference trajectories. From the BBA, the 

total belief (i.e., the amount of evidence) supporting the hypothesis that the 𝑅𝑈𝐿 will fall in any specific 

interval can be computed. In this context, we propose to define a prediction interval as an interval to which a 

sufficiently large total belief has been assigned. 

The method is applied to two case studies considering simulated data generated by a non-linear model of creep 

growth in ferritic steel and real industrial data concerning the clogging of filters used to clean the sea water 

pumped in a Boiling Water Reactor (BWR). The performance of the proposed method is verified with respect 

to three performance indicators (i.e., Mean Square Error (𝑀𝑆𝐸) for estimating the accuracy of the 𝑅𝑈𝐿 

predictions, Coverage (𝐶𝑜𝑣) for the reliability of the prediction intervals and Mean Amplitude (𝑀𝐴) for their 

precision (Baraldi et al., 2015). For comparison, the Kernel Density Estimation (KDE) (Botev et al., 2010) and 

the Mean-Variance Estimation (MVE) (Nix & Weigend, 1994) methods which have already been successfully 

applied for estimating 𝑅𝑈𝐿 predictions uncertainty in different prognostic applications on industrial 

components such as turbofan engines (Wang, 2010) and turbine blades (Baraldi et al., 2012a), are applied to 

the same case studies and their results are compared to those obtained by the proposed method.  

The remaining part of the paper is organized as follows: in Section 2, the methodology for the direct 𝑅𝑈𝐿 

similarity-based prediction of equipment 𝑅𝑈𝐿 is described and a method for integrating it with belief function 

theory is proposed to provide a measure of confidence in the similarity-based 𝑅𝑈𝐿 prediction; in Section 3, 

two numerical applications concerning the growth of creep damage in ferritic steel and the clogging of sea 

water filters are presented, and the results obtained by the proposed method are discussed and compared with 

those obtained by two alternative methods. Finally, some conclusions are drawn in Section 4. 

2 Methodology 

We assume to have 𝑅 reference trajectories, which contain measurements collected during the degradation of 

𝑅 pieces of equipment similar to the one currently monitored (test equipment). Let 𝒛1:𝑛𝑟
𝑟 = [𝒛1

𝑟, … , 𝒛𝑖
𝑟, … , 𝒛𝑛𝑟

𝑟 ], 

𝑟 = 1,…𝑅, be a reference trajectory, where 𝒛𝑖
𝑟 = [𝑧1

𝑟(𝜏𝑖), … , 𝑧𝑝
𝑟(𝜏𝑖), … , 𝑧𝑃

𝑟(𝜏𝑖)] and 𝑧𝑃
𝑟(𝜏𝑖) is the value of 

parameter 𝑧𝑝
𝑟 measured at time 𝜏𝑖 for trajectory 𝑟, and let 𝜏𝐹

𝑟  be its failure time.  

Let 𝒛1:𝐼
𝑡𝑒𝑠𝑡 = [𝒛1, … , 𝒛𝑖, … , 𝒛𝐼] be the test trajectory, containing 𝐼 observations for the equipment of interest from 

𝜏𝑖 to the present time 𝜏𝐼. 

2.1 Similarity-based RUL prediction 

The idea underpinning the 𝑅𝑈𝐿 estimation method is to evaluate the similarity between the test trajectory and 

the 𝑅 reference trajectories, and to use the 𝑅𝑈𝐿𝑠 corresponding to the latter to estimate the 𝑅𝑈𝐿 corresponding 

to the test trajectory (Guha and Chakraborty, 2010; Liu et al. 2012; Petit-Renaud & Denoeux, 2004; Wang et 

al. 2008; Zio & Di Maio, 2010a). 
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Trajectory similarity is evaluated considering the pointwise difference between 𝑛-long sequences of 

observations. Let 𝒛𝐼−𝑛+1:𝐼
𝑡𝑒𝑠𝑡  be the sequence of the 𝑛 latest observations available for the test trajectory and 

𝒛𝑗−𝑛+1:𝑗
𝑟 , a sequence of the same length extracted from the reference trajectory 𝑟, we take as measure of the 

distance between 𝒛𝐼−𝑛+1:𝐼
𝑡𝑒𝑠𝑡  and 𝒛𝑗−𝑛+1:𝑗

𝑟  the quantity 

 𝛿𝑗
𝑟 = √∑ 𝑑2(𝒛𝐼−𝑛+𝑖

𝑡𝑒𝑠𝑡 , 𝒛𝑗−𝑛+𝑖
𝑟 )𝑛

𝑖=1  (1) 

where 𝑑2(𝐱, 𝐲) is the square Euclidean distance between vectors 𝐱 and 𝐲. Then, the similarity 𝑠𝑗
𝑟 between 

𝒛𝐼−𝑛+1:𝐼
𝑡𝑒𝑠𝑡  and 𝒛𝑗−𝑛+1:𝑗

𝑟  is defined as a function of the distance measure 𝛿𝑗
𝑟 (Zio & Di Maio, 2010b):  

 𝑠𝑗
𝑟 = exp(−

(𝛿𝑗
𝑟)

2

𝜆
) (2) 

The value of the arbitrary parameter 𝜆 is set by the analyst based on an optimization procedure, which will be 

explained in Section 3 directly on the case studies: the smaller is the value of 𝜆, the stronger the definition of 

similarity. A strong definition of similarity implies that the two segments under comparison have to be very 

close in order to receive a similarity value 𝑠𝑗
𝑟 significantly larger than zero. In practice, the parameter 𝜆 is often 

set to the value that minimizes the error of the similarity-based prediction computed on a validation dataset. 

Based on this definition of similarity, for each reference trajectory. we can identify the 𝑛-long sequences of 

observations with highest similarity with the test sequence 𝒛𝐼−𝑛+1:𝐼
𝑡𝑒𝑠𝑡 . Let 𝜏𝑗∗

𝑟 , 𝑟 = 1,… , 𝑅, be the last time instant 

of such most similar sequences. Then, for each reference trajectory, we retain its 𝑅𝑈𝐿 at time 𝜏𝑗∗
𝑟  

 𝑅𝑈𝐿𝑟 = 𝜏𝐹
𝑟 − 𝜏𝑗∗

𝑟  (3) 

as a prediction of the 𝑅𝑈𝐿 of the test trajectory. Finally, the similarity-based prediction 𝑅�̂�𝐿 of the test 

equipment 𝑅𝑈𝐿 at time 𝜏𝐼 is given by the weighted sum of the values𝑅𝑈𝐿𝑟: 

 𝑅�̂�𝐿 =
∑ 𝑠𝑗∗

𝑟 𝑅𝑈𝐿𝑟𝑅
𝑟=1

∑ 𝑠𝑗∗
𝑟𝑅

𝑟=1
  (4) 

The idea behind the weighting of the predictions 𝑅𝑈𝐿𝑟 associated to the individual trajectories is that: i) all 

failure trajectories in the reference library can, in principle, bring useful information for determining the 𝑅𝑈𝐿 

of the trajectory currently developing; ii) those segments of the reference trajectories which are most similar 

to the latest part of the test trajectory should be the most informative for its 𝑅𝑈𝐿 computation. 

2.2 Prediction interval based on belief function theory 

Uncertainty affects the 𝑅𝑈𝐿 estimate and, thus, maintenance plans cannot be based only on the 𝑅𝑈𝐿 prediction 

provided by eq. (4): a reliable indicator of its uncertainty must be also considered. In this Section, we assume 

that the maintenance planner is able to specify a maximum acceptable equipment failure probability, 𝛼, and 

we propose a method, based on the Belief Function (or Dempster-Shafer) Theory (BFT) (Dempster, 1976; 

Shafer, 1976), to identify the latest time at which, according to the available information, we can guarantee 

that the probability of the equipment to be failed is lower than 𝛼. Since in this work we consider situations 
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characterized by degradation processes affected by large variability and we use an empirical model developed 

using few degradation trajectories, we expect 𝑅𝑈𝐿 predictions to be characterized by large uncertainty. In this 

work, we adopt an uncertainty representation method based on BFT because its capability of representing 

limited knowledge on an uncertain quantity (Yager, 1987; Helton, 2004). If we consider, for example, an 

extreme case in which the only information available on the equipment 𝑅𝑈𝐿 is that it will lie in the interval 

[0, 𝜏𝐹
𝑚𝑎𝑥], the classical probabilistic representation of the uncertainty will be, according to the principle of 

indifference, an uniform distribution with range [0, 𝜏𝐹
𝑚𝑎𝑥]. However, as it has been shown in (Yager, 2011), 

this assignment causes the paradox that it assigns a precise probability value to an event such as “𝑅𝑈𝐿 in the 

interval [0, 𝜏𝐹
𝑚𝑎𝑥/2]”, whereas, according to the available knowledge, the probability of this event can have 

any value between 0 and 1. For these reasons, in the presence of large uncertainty on the 𝑅𝑈𝐿 prediction, we 

suggest to use an approach based on the BFT.  

For the ease of clarity and for completeness of the paper, the notions of BFT necessary for understanding the 

proposed method will be recalled in the following. For further details about the mathematical developments 

and the possible interpretations of the theory, the interested reader is referred to Dempster (1976), Shafer 

(1976) and Smets (1998). 

The BFT represents the belief of an agent about the value of an uncertain variable Y assuming values 𝑦 in the 

frame of discernment Ω𝑌. Based on the available information and knowledge, the agent provides a basic belief 

assignment (BBA) made of a set of masses 𝑚𝑌(Y𝑘)assigned to subsets Y𝑘 , 𝑘 = 1,2, … of Ω𝑌, based on the 

available information. The mass 𝑚𝑌(Y𝑘) represents the belief that the value of Y belongs to the subset Y𝑘. Any 

subset Y𝑘 with associated a finite mass 𝑚𝑌(Y𝑘) > 0 is called focal element; the BBA verifies the condition 

that the sum of all its masses is 1.  

Let us assume that two agents, with two different sources of information and knowledge, provide two BBAs 

𝑚𝑌
1  and 𝑚𝑌

2. According to the Dempster’s rule of combination, the two BBAs can be aggregated into the BBA 

𝑚𝑌
1⊕2

: 

 𝑚𝑌
1⊕2(Y𝑘) =

1

𝐾
∑ 𝑚𝑌

1(Y𝑘’)𝑚𝑌
2(Y𝑘’’),Y

𝑘’
∩Y

𝑘’’
=Y𝑘 ∀Y𝑘 ∈ Ω𝑌, 𝑌𝑘 ≠ ∅   (5) 

𝑚𝑌
1⊕2(∅) = 0 

where  

 𝐾 = 1 − ∑ 𝑚𝑌
1(Y𝑘’)𝑚𝑌

2(Y𝑘’’)Y
𝑘’
∩Y

𝑘’’
=∅  (6) 

is a normalization factor introduced to convert a possibly subnormal BBA (i.e., a BBA assigning a finite mass 

to the empty set ∅) into a normal one. 

It may occur that one doubts the reliability of a source of information inducing the BBA 𝑚𝑌. In this case, the 

discounting operation can be used to reduce by some factor 𝜒 ∈ [0,1] the belief assigned by 𝑚𝑌 to the evidence 

conveyed by that information (Petit-Renaud & Denoeux, 2004): 

 �̃�𝑌(Y𝑘) = (1 − 𝜒)𝑚𝑌(Y𝑘), ∀Y𝑘 ∈ Ω𝑌, Y𝑘 ≠ Ω𝑌 (7) 

http://www.sciencedirect.com.proxy2.biblio.supsi.ch/science/article/pii/S0020025511000922
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�̃�𝑌(Ω𝑌) = 𝜒 + (1 − 𝜒)𝑚𝑌(Ω𝑌) 

Notice that the mass assigned to the frame of discernment Ω𝑌 represents the ignorance about the value of 𝑌 

because it indicates the absence of evidence that the value of 𝑌 belongs to any subset 𝑌𝑘 of Ω𝑌.  

The BFT has been applied to treat uncertain information in classical nonparametric regression by associating 

to each training pattern of input/output pairs (𝑥𝑖, 𝑣𝑖) the BBA 𝑚𝑌(Y𝑖 = {𝑦𝑖}) = 1 having as single focal 

element the pattern output 𝑣𝑖 (Petit-Renaud & Denoeux, 2004). In a similarity-based approach each training 

pattern is treated as an expert whose opinion is assumed to be the more relevant the more similar the pattern is 

to the test input 𝑥 (i.e., the larger the similarity, the more useful the information for 𝑅𝑈𝐿 estimation). Such 

belief is well modeled by a discounting operation that reduces the belief 𝑚𝑌(Y𝑖 = {𝑦𝑖}) = 1 of a training 

pattern (𝑥𝑖 , 𝑦𝑖) proportionally to its dissimilarity to the test pattern. In particular, in the application to 

prognostics, we assign to each input/output pair (𝒛1:𝑛𝑟
𝑟 , 𝑅𝑈𝐿𝑟), 𝑟 = 1: 𝑅, of a reference trajectory and 

corresponding 𝑅𝑈𝐿 prediction 𝑅𝑈𝐿𝑟, the BBA 𝑚𝑅𝑈𝐿
𝑟 ({𝑅𝑈𝐿𝑟}) = 1 and the discounting factor 𝜒 defined by 

𝜒 = 1 − 𝛾. 𝑠𝑗∗
𝑟  where 𝛾 ∈ [0,1] represents the degree of trust given to the entire set of reference trajectories 

and the similarity 𝑠𝑗∗
𝑟  is given by eq. (2). Thus, from eq. (7), the discounted BBAs �̃�𝑅𝑈𝐿

𝑟 ({𝑅𝑈𝐿𝑟}), 𝑟 = 1: 𝑅 

are obtained: 

 �̃�𝑅𝑈𝐿
𝑟 ({𝑅𝑈𝐿𝑟}) = 𝛾. 𝑠𝑗∗

𝑟   (8) 

�̃�𝑅𝑈𝐿
𝑟 (Ω𝑅𝑈𝐿) = 1 − 𝛾. 𝑠𝑗∗

𝑟  

The frame of discernment Ω𝑅𝑈𝐿 is the domain of 𝑅𝑈𝐿 defined by the interval [0, 𝜏𝐹
𝑚𝑎𝑥 − 𝜏𝐼], where 𝜏𝐹

𝑚𝑎𝑥 is 

the maximum possible life duration of the equipment provided by an expert. The quantity 𝜏𝐹
𝑚𝑎𝑥 − 𝜏𝐼 =

𝑅𝑈𝐿𝑚𝑎𝑥 is the maximum value that can be assumed by the variable 𝑅𝑈𝐿 at the present time 𝜏𝐼, whereas 0 is, 

obviously, the minimum possible value of the equipment 𝑅𝑈𝐿.  

It is important to notice that 𝛾 < 1 implies that a part of belief is assigned to the ignorance represented by 

Ω𝑅𝑈𝐿, even in the unrealistic case of a reference trajectory exactly identical to the test one. Then, parameter 𝛾 

represents the analyst prior opinion about the maximum information that can be derived from a reference 

trajectory about the test trajectory. In fact, the belief assigned to the event 𝑅�̂�𝐿 = 𝑅𝑈𝐿𝑟 when the two 

trajectories 𝒛1:𝑛𝑟
𝑟  and 𝒛1:𝐼

𝑡𝑒𝑠𝑡are identical, that is when 𝑠𝑗∗
𝑟 = 1, is equal to 𝛾.  

Finally, by combining the discounted BBAs �̃�𝑅𝑈𝐿
𝑟 , 𝑟 = 1: 𝑅 by the Dempster’s rule of combination, we obtain 

the combined BBA 𝑚𝑅𝑈𝐿: 

𝑚𝑅𝑈𝐿({𝑅𝑈𝐿
𝑟}) =

𝛾.𝑠𝑗∗
𝑟

𝐾
∏ (1 − 𝛾. 𝑠𝑗∗

𝑟’) , 𝑟 = 1: 𝑅𝑟’≠𝑟    (9) 

𝑚𝑅𝑈𝐿(Ω𝑅𝑈𝐿) =
1

𝐾
∏(1 − 𝛾. 𝑠𝑗∗

𝑟 )

𝑅

𝑟=1

 

where  

 𝐾 = ∏ (1 − 𝛾. 𝑠𝑗∗
𝑟 ) + 𝛾. ∑ 𝑠𝑗∗

𝑟𝑅
𝑟=1

𝑅
𝑟=1 ∏ (1 − 𝛾. 𝑠𝑗∗

𝑟’)𝑟’≠𝑟  (10) 
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Given the BBA in eq. (9), we can finally calculate the belief associated to any interval [𝑅𝑈𝐿𝑖𝑛𝑓 , 𝑅𝑈𝐿𝑠𝑢𝑝] as 

the sum of the belief masses associated to all subsets included in [𝑅𝑈𝐿𝑖𝑛𝑓 , 𝑅𝑈𝐿𝑠𝑢𝑝]: this represents the amount 

of belief that directly supports the hypothesis 𝑅𝑈𝐿𝑡𝑒𝑠𝑡 ∈ [𝑅𝑈𝐿𝑖𝑛𝑓 , 𝑅𝑈𝐿𝑠𝑢𝑝] where 𝑅𝑈𝐿𝑡𝑒𝑠𝑡 is the true 𝑅𝑈𝐿 of 

the test equipment, and it has been interpreted as a lower bound for the probability that 𝑅𝑈𝐿𝑡𝑒𝑠𝑡 ∈

[𝑅𝑈𝐿𝑖𝑛𝑓 , 𝑅𝑈𝐿𝑠𝑢𝑝], or, analogously, as an upper bound for the probability that 𝑅𝑈𝐿𝑡𝑒𝑠𝑡 ∉ [𝑅𝑈𝐿𝑖𝑛𝑓 , 𝑅𝑈𝐿𝑠𝑢𝑝].  

In conclusion, a left-bounded interval ∆+(𝛼) = [𝑅𝑈𝐿𝑖𝑛𝑓(𝛼), +∞], such that a belief 1 − 𝛼 is assigned to it, 

provides the following information about the probability distribution of the true equipment 𝑅𝑈𝐿: 

𝑃(𝑅𝑈𝐿𝑡𝑒𝑠𝑡 > 𝑅𝑈𝐿𝑖𝑛𝑓(𝛼)) > 1 − 𝛼 or, equivalently, 𝑃(𝑅𝑈𝐿𝑡𝑒𝑠𝑡 < 𝑅𝑈𝐿𝑖𝑛𝑓(𝛼)) < 𝛼. The advantage of this 

latter interpretation of 𝑅𝑈𝐿𝑖𝑛𝑓(𝛼) is that it can be used to plan the maintenance action: performing maintenance 

before 𝑅𝑈𝐿𝑖𝑛𝑓(𝛼) guarantees a probability of failure lower than 𝛼. 

The predictive interval ∆+(𝛼) depends in large measure on the value assigned to parameter   by the analyst, 

based on her/his opinion about the relevance of the information derived from historical trajectories when 

making predictions about a new one. As it may be difficult for the analyst to express a reliable opinion about 

𝛾, we suggest to set its value considering the coverage of the resulting prediction intervals ∆+(𝛼)., i.e., the 

probability that given a trajectory with 𝑅𝑈𝐿 equal to 𝑅𝑈𝐿𝑡𝑟𝑢𝑒 and the corresponding credible interval ∆+(𝛼), 

the condition 𝑅𝑈𝐿𝑡𝑟𝑢𝑒 ∈ ∆+(𝛼) is verified. Indeed, a desirable property for ∆+(𝛼) is that its coverage, which 

can be estimated using training data, is greater than 1 − 𝛼. This procedure will be discussed in more detail in 

the next Section. 

3 Numerical application  

In this Section, we verify the proposed method for the uncertainty quantification of a similarity-based 

prognostic approach and compare its effectiveness with that of two alternative methods, i.e., the Kernel Density 

Estimation (KDE) and Mean-Variance Estimation (MVE) methods, on simulated and real data. In Section 3.1, 

the similarity-based method is applied to simulated data concerning the evolution of creep damage in ferritic 

steel. The influence on the prognostic performance of parameters 𝜆 of Eq. (2) and 𝛾 of Eq. (8) is also 

investigated, and a procedure for setting their values is proposed. On the basis of these results, in Section 3.2, 

the method is applied to real data taken from a case study about the clogging of filters in a BWR condenser.  

3.1 Simulated data: creep growth in ferritic steel 

Ferritic steels are widely used for welded steam pipes in the construction of power plant components that 

operate under high temperature and stress conditions. In such conditions, the creep deformation and rupture 

are important factors in determining the equipment lifetimes.  

3.1.1 Creep growth models 

We have simulated the evolution of the creep strain ε in ferritic steel exposed to a load 𝜎, by using the uni-

axial form of the non-linear creep constitutive equations proposed within the framework of Continuum 

Damage Mechanics by Mustata & Hayhurst (2005): 
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where   is the creep strain, i.e., the percentage of elongation of the turbine blade in the longitudinal direction 

with respect to its original length,   and   are two damage state variables describing, respectively, the 

coarsening of the carbide precipitates, and the inter-granular creep constrained cavitation damage, 𝐻 is the 

hardening state variable used to represent the strain hardening effect attributed to primary creep, and 

𝐴, 𝐵,𝐻∗, ℎ, 𝐾𝑐 and 𝐶 are material inherent characteristics. Each characteristic 𝜑𝑚 = 𝐴,𝐵,𝐻∗, ℎ, 𝐾𝑐 , 𝐶 varies 

with the temperature according to the Arrhenius law, i.e., 𝜑𝑚 = 𝜑𝑚0exp(−𝑄𝑚/𝑇), 𝑚 = 1: 6, where 𝑇 is the 

operating temperature and 𝜑𝑚0 and 𝑄𝑚 are parameters whose values have to be determined experimentally. 

To generate different trajectories, the intrinsic variability of the degradation process is simulated by sampling 

the values of the load 𝜎 and temperature 𝑇 to which the steel is exposed at each time step from a normal 

distribution centered on their mean values, whereas the variability of the degradation process of similar pieces 

of equipment is simulated by sampling the values of parameters 𝜑𝑚0 and 𝑄𝑚, 𝑚 = 1: 6, at the beginning of 

each new simulated degradation trajectory. Finally, in order to generate the sequence of observations 𝒛1:𝑛𝑟
𝑟 =

{휀(𝜏𝑖) + 𝑣𝑖}𝑖=1:𝑛𝑟
𝑟 , with 𝑛𝑟  being the time of the last observation before failure of the 𝑟-th degradation 

trajectory, a white Gaussian noise 𝑣𝑖 is added to the simulated creep strain 휀(𝜏𝑖) at the observation time 𝜏𝑖. We 

assume failure to happen when the limiting creep strain value of 2% is reached. Figure 1 shows an example of 

simulated creep growth trajectory (upper) and the corresponding sequence of observations 𝒛1:𝑛𝑟
𝑟  (bottom). 

 

Figure 1: example of simulated creep growth trajectory (upper) with the corresponding sequence of observations (bottom). 

3.1.2 Results 

All the degradation trajectories used in this Section have been simulated by iteratively applying the simulation 

model of eq. (11). Using the simulated trajectories, we have developed 𝑁𝑡𝑟𝑛 = 50 different prognostic models, 
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each one built using a different training set {𝒛1:𝑛𝑟
𝑟 , 𝑟 = 1: 𝑅}, made by 𝑅 = 7 different training trajectories. 

Each model is, then, verified with respect to 𝑁𝑡𝑠𝑡 = 50 different test trajectories, 𝒛1:𝐼
𝑞
, 𝑞 = 1:𝑁𝑡𝑠𝑡.  

Let us define 𝑅�̂�𝐿𝑙 and 𝑅𝑈𝐿𝑙
𝑖𝑛𝑓(𝛼), 𝑙 = 1:𝑁𝑡𝑟𝑛, as the predictions of the 𝑅𝑈𝐿 and of its left bound with belief 

1 − 𝛼, obtained by the model developed using the trajectories in the 𝑙-th training set, for the 𝑞–th test trajectory, 

𝑞 = 1:𝑁𝑡𝑠𝑡. The three following performance indicators, obtained by simple average of the 𝑁𝑡𝑠𝑡 performances 

of each 𝑙-th model on all the test trajectories, will be considered for quantifying the BTF similarity-based 

method capabilities for 𝑅𝑈𝐿 estimation: 

- The Mean Square Error (𝑀𝑆𝐸), i.e., the mean value of the square error (𝑅�̂�𝐿𝑙 − 𝑅𝑈𝐿𝑡𝑟𝑢𝑒)
2
 made in 

predicting the true 𝑅𝑈𝐿, 𝑅𝑈𝐿𝑡𝑟𝑢𝑒 of the 𝑞-th test equipment, 𝑞 = 1:𝑁𝑡𝑠𝑡. The MSE measures the 

accuracy of the prediction 𝑅�̂�𝐿𝑙 and is desired to be as small as possible. 

- The Coverage (𝐶𝑜𝑣𝛼) of the prediction interval ∆𝑙
+(𝛼) = [𝑅𝑈𝐿𝑙

𝑖𝑛𝑓(𝛼), +∞], i.e., the percentage of 

times the condition 𝑅𝑈𝐿𝑡𝑟𝑢𝑒 > 𝑅𝑈𝐿𝑙
𝑖𝑛𝑓

(𝛼) is verified, where 1 − 𝛼 is the belief associated by the 𝑅𝑈𝐿 

BBA to the interval ∆𝑙
+(𝛼). This indicator measures the reliability of the interval and we expect to 

obtain values of 𝐶𝑜𝑣𝛼 larger than 1 − 𝛼, since the belief 1 − 𝛼 associated to the interval is a lower 

bound for the probability that the test equipment true 𝑅𝑈𝐿 is in the interval, i.e., is greater 

than𝑅𝑈𝐿𝑙
𝑖𝑛𝑓(𝛼).  

- The mean amplitude (𝑀𝐴𝛼) of the interval [𝑅𝑈𝐿𝑙
𝑖𝑛𝑓(𝛼), 𝑅�̂�𝐿𝑙], which gives a measure of the precision 

of the 𝑅𝑈𝐿 prediction. In order to have a high precision, we wish to keep the value of 𝑀𝐴𝛼 as small 

as possible.  

In Figure 2, the variation of the square root of the 𝑀𝑆𝐸 indicator with parameter 𝜆 is shown for the three life 

values of 𝛽 = 25%,50%,and 75% of the equipment life fraction 𝛽 = 𝜏𝐼/𝜏𝐹 . Notice that the 𝑅𝑈𝐿 predictions, 

𝑅�̂�𝐿, are obtained using the similarity-based weighted average in eq. (4), whereas the prediction intervals are 

estimated using the target belief 1 − 𝛼 = 0.8. As expected, the prediction error decreases as the life fraction 𝛽 

increases, i.e., as we get closer to failure. Results in Figure 2 show that the maximum accuracy of 𝑅�̂�𝐿 is 

obtained for values of the parameter 𝜆 around 5105  . 

 

 

Figure 2: square root of the 𝑴𝑺𝑬 of the prediction 𝑹�̂�𝑳 as a function of parameter 𝝀. 
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The precision of the prediction, which is evaluated by the indicator 𝑀𝐴𝛼, is also an important aspect to be 

considered in the optimization procedure. However, the choice of parameters 𝜆 and 𝛾 should be subordinate 

to the verification that the coverage 𝐶𝑜𝑣𝛼 is actually larger than1 − 𝛼. Lower values of the coverage would 

indicate that a too large belief mass has been assigned to the predictions 𝑅𝑈𝐿𝑟 provided by the reference 

trajectories most similar to the test trajectory, so that the belief 1 − 𝛼 assigned to the prediction interval is not 

justified by the experimental evidence. 

Figure 3 shows the coverage 𝐶𝑜𝑣0.2 of the left bounded prediction interval )2.0(  (upper), the square root 

of the 𝑀𝑆𝐸 made by the prediction 𝑅�̂�𝐿 (middle) and the mean amplitude 𝑀𝐴0.2 of the interval 

[𝑅𝑈𝐿𝑖𝑛𝑓(0.2), 𝑅�̂�𝐿] (bottom) in correspondence of three different values of parameter 𝜆 as a function of the 

parameter 𝛾. 

For the value of 𝜆 = 5x10−5 that maximizes the accuracy of the prediction 𝑅�̂�𝐿, the coverage is always larger 

than the minimum accepted value of 1 − 𝛼 = 0.8. However, for such a small value of 𝜆 the precision, 

represented by the indicator 𝑀𝐴0.2, is much lower than for𝜆 = 5x10−4 and 𝜆 = 5x10−3. This is due to the 

fact that if 𝜆 is small, the similarity of a reference trajectory tends to be small, except in the rare case of a 

trajectory very similar to the test trajectory. As a consequence, for very small values of 𝜆, it is often hard to 

support with sufficient evidence the hypothesis that the 𝑅𝑈𝐿 value belongs to any subset of the 𝑅𝑈𝐿 domain 

Ω𝑅𝑈𝐿.  
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Figure 3: value of the three performance indicators as a function of 𝜸 at three fractions 𝜷 of the trajectory life durations and 

for three values of 𝝀. 

These observations have motivated the adoption of the following procedure for setting the parameters 𝛾 and 

𝜆: 

1. We identify some possible values of 𝜆 (e.g., in this case study, 𝜆1 = 0.5.10−5, 𝜆2 = 0.5.10−4, 𝜆2 =

0.5.10−3). 

2. For each value of 𝜆 in 1., we derive a condition for parameter 𝛾 by imposing a coverage, Cov0.8 greater 

than 0.8 (e.g., 𝛾 ≤ 1 if 𝜆 = 5𝑥10−5, 𝛾 ≤ 0.7 if 𝜆 = 5𝑥10−4 and 𝛾 ≤ 0.6 if 𝜆 = 5𝑥10−3). 

Since the precision tends to monotonically increase (amplitude of 𝑀𝐴 tends to decrease) as 𝛾 increases, 

we choose, for each value of 𝜆, the maximum 𝛾 value which satisfies the condition in 2.  (𝛾 = 1.0  if 
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3. Among the identified pairs of values of 𝜆 and 𝛾 in 2., we choose the pair with the most satisfactory 

trade-off between prediction accuracy and precision. 
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0.7, since performances are better for this value of 𝜆 than for 𝜆 = 5𝑥10−3, both in terms of accuracy and 

0 0.5 1
0.7

0.8

0.9

1
C

o
v 0

.2
=25%

 

 

0 0.5 1
0.7

0.8

0.9

1
=50%

0 0.5 1
0.7

0.8

0.9

1
=75%

0 0.5 1

4000

6000

8000

10000

s
q
rt

(M
S

E
)

0 0.5 1

4000

6000

8000

10000

0 0.5 1

4000

6000

8000

10000

0 0.5 1
0

1

2

3
x 10

4



M
A

0
.2

0 0.5 1
0

0.5

1

1.5

2
x 10

4



0 0.5 1
0

5000

10000

15000



=5×10-5

=5×10-4

=5×10-3



13 

 

   
 

precision, whereas, and with respect to 𝜆 = 5𝑥10−5, a large improvement of the precision is obtained at the 

expenses of a small reduction in the accuracy. 

Table 1: performance indicators for three different values of 𝝀 in correspondence of 𝜸𝒎𝒂𝒙. 

𝜆 5105   4105   3105   

𝛾𝑚𝑎𝑥 1.0 0.7 0.6 

𝐶𝑜𝑣0.2 

𝛽 = 25% 0.915 0.868 0.846 

𝛽 = 50% 0.918 0.814 0.870 

𝛽 = 75% 0.955 0.840 0.861 

√𝑀𝑆𝐸 (103) 

𝛽 = 25% 9.065 9.851 10.552 

𝛽 = 50% 6.272 6.807 6.976 

𝛽 = 75% 3.089 3.589 3.793 

𝑀𝐴0.2 (103) 

𝛽 = 25% 17.871 6.217 9.202 

𝛽 = 50% 12.571 4.568 6.233 

𝛽 = 75% 8.646 2.685 3.304 

 

Figure 4 shows the predictions obtained at all measurement time instants 𝜏𝐼 for 4 new test trajectories different 

from those used for parameter settings. More results and a more detailed discussions can be found in Appendix 

A, where it is shown that the large oscillations of the confidence bound that are observed in Figure 4 can be 

attenuated by increasing the value of 𝜆 or reducing the value of 𝛾, at the price of a lower accuracy and precision. 

Also, their amplitude becomes smaller when the density of reference trajectories available is larger (for 

instance because a larger number of degradation trajectories have been observed or because their variability is 

smaller). 
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Figure 4: predictions obtained for 4 different test trajectories using 4105   and 7.0 . 

3.1.3 Comparison with other uncertainty estimation methods 

In this Section, we apply the Kernel Density Estimation (KDE) (Botev et al. 2010) and the Mean-Variance 

Estimation (MVE) (Nix & Weigend, 1994) methods for the quantification of the 𝑅𝑈𝐿 prediction uncertainty 

in the numerical case study. The obtained results are compared with those obtained by the proposed method 

considering the 𝑀𝑆𝐸, 𝐶𝑜𝑣 and 𝑀𝐴 performance indicators. 

KDE is a non-parametric method used for estimating the Probability Density Function (PDF) of a random 

variable (Botev et al. 2010). The basic idea is to assign a kernel function to each observation in a data set, and 

then, to sum all kernels to obtain the PDF (Botev et al. 2010). In this work, the KDE is employed for estimating 

the PDF of the 𝑅𝑈𝐿 prediction provided by the SB model at each time instant 𝜏𝑖. The reader interested in more 

details about the KDE method can refer to (Botev et al. 2010). 

MVE has been originally proposed in Nix & Weigend, (1994) for constructing prediction intervals of an 

uncertain variable using a feedforward ANN properly developed for this purpose. In this work, the MVE is 

employed for constructing the 1 − 𝛼 = 0.8 prediction intervals of the 𝑅𝑈𝐿 predictions provided by an 

ensemble of 𝐻 bootstrapped ANNs models (Carney et al., 1999; Polikar, 2006). The reader interested in more 

details about the MVE method can refer to (Nix & Weigend, 1994). In this application, an ensemble of 𝐻 = 5 

ANNs models has been built considering a training set formed by 𝑁𝑡𝑟𝑛 = 50 training trajectories. Each ANN 

is characterized by an architecture with three layers (input, hidden and output) and 10 hidden neurons. Different 

ANN configurations characterized by 𝑀 inputs taken from a time window of 𝑀 consecutive measurements 

have been considered. The optimum value of 𝑀 = 1 has been identified by trials and errors considering the 
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𝑀𝑆𝐸, 𝐶𝑜𝑣 and 𝑀𝐴 performance indicators on a validation set. The ensemble output (i.e., the predicted 𝑅𝑈𝐿) 

is obtained by averaging the outputs of the 𝐻 = 5 ANNs. A further ANN with 3 layers and 60 hidden neurons 

has been built to estimate the 𝑅𝑈𝐿 prediction uncertainty. 

Table 2 reports the average values of the performance indicators over the 𝑁𝑡𝑠𝑡 = 50 test trajectories obtained 

by the proposed, the KDE and the MVE methods. 

Table 2: Average value of the performance indicators over 𝑵𝒕𝒔𝒕 = 𝟓𝟎 test trajectories obtained by applying the proposed and 

the two alternative methods. 

 Proposed method 

(SB-BFT) 

Alternative method 

(SB-KDE) 

Alternative method 

(ANN-MVE) 

√𝑀𝑆𝐸 (103) 3.597 3.597     3.359 

𝐶𝑜𝑣0.2 0.936 0.962 0.857 

𝑀𝐴0.2 (103) 2.594 6.527 3.882 

 

The results show that the proposed method provides more precise 𝑅𝑈𝐿 predictions (i.e., lower 𝑀𝐴0.2 which 

corresponds to narrower prediction intervals) and more reliable prediction intervals (i.e., larger 𝐶𝑜𝑣0.2) 

satisfying the desired coverage level of 0.8, whereas the KDE and the MVE, even though they assure the 

desired coverage level of 0.8, they provide less precise 𝑅𝑈𝐿 predictions (i.e., larger 𝑀𝐴0.2 values which 

correspond to larger prediction intervals). One can also recognize that the proposed and the KDE methods, 

based on the use of the SB model for the 𝑅𝑈𝐿 point estimator, provide slightly less accurate 𝑅𝑈𝐿 predictions. 

This is due to the fact that the ensemble approach used in this case in combination with the MVE method to 

provide the 𝑅𝑈𝐿 point estimator is more robust and accurate than the individual SB model used by the proposed 

and the SB-KDE methods.  

Figure 5 shows the estimates of the 𝑅𝑈𝐿 and the associated lower confidence bounds provided by the three 

methods for one test trajectory. One can easily recognize that the proposed method provides narrower 

confidence bound (lower 𝑀𝐴0.2) than those of the SB-KDE and the ANN-MVE methods. 
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Figure 5: Comparison of the obtained 𝑹𝑼𝑳 predictions and the corresponding confidence bounds for one test trajectory by 

the proposed method (dots and continuous line, respectively), SB-KDE (dots and dot line, respectively) and ANN-MVE 

(squares and dash line, respectively).” 

This analysis shows the capability of the proposed method of properly quantifying the uncertainty affecting 

the 𝑅𝑈𝐿 predictions with narrower confidence bounds (lower 𝑀𝐴0.2) and larger coverage values (larger 

𝐶𝑜𝑣0.2) compared to the two alternative methods. Notice, however, that the proper setting of the parameters 

of the proposed method for balancing accuracy and precision of the predictions might be time-consuming, as 

discussed in Section 3.1.2. The capability of the proposed method for uncertainty treatment in case of few 

and/or irregular degradation trajectories is verified by its application on the real data regarding the clogging of 

BWR condenser filters of Section 3.2. 

3.2 Real data: clogging of BWR condenser filters 

In this Section, we consider the heat exchanger filters used to clean the sea water entering the condenser of the 

BWR reactor of a Swedish nuclear power plant. During operations, filters undergo clogging and, once clogged, 

can cumulate particles, seaweeds, and mussels from the cooling water in the heat exchanger. For this reason, 

prompt and effective cleaning of the filters is desirable. Predictive maintenance can help achieving this result, 

keeping maintenance costs reasonably low. 

From data collected on field, we have available sequences of observations 𝒛1:𝑛𝑞
𝑞

, 𝑞 = 1: 8 taken during the 

clogging process of 𝑄 = 8 historical filters. Each observation 𝒛𝑖
𝑞
= [∆𝑃𝑖

𝑞
, �̇�𝑖

𝑞
, 𝑇𝑖

𝑞
] contains the measurements 

of the pressure drop ∆𝑃𝑖
𝑞
, the flow across the filter �̇�𝑖

𝑞
 and the sea water temperature 𝑇𝑖

𝑞
 collected at time 𝜏𝑖 

during the clogging process of the 𝑞-th filter.  

For clarification purposes, Figure 6 shows the sequences of observations𝒛𝑖
𝑞
 collected during the clogging 

process of filters, 𝑞 = 1, 2 and 4 from the beginning of their life (𝜏𝑖 = 0) to the failure (𝜏𝑖 = 𝜏𝐹
𝑞
). It is worth 

noticing that:  
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• the typical behavior of filter clogging characterized by an increase of the pressure drop ∆𝑃𝑖
𝑞
 (Figure 6 

(top)) and a decrease of the flow rate across the filter �̇�𝑖
𝑞
 (Figure 6 (middle)) is clearly observable, 

• the larger the sea water temperature, the faster the clogging process, 

• the large variability of the filter lifetimes due to the variability of the sea water temperature. 

 

 

Figure 6: The sequences of observations of the pressure drop (∆𝑷𝒊
𝒒
) (top), the flow rate (�̇�𝒊

𝒒
) (middle) and the temperature 

(𝑻𝒊
𝒒
) (bottom) collected during the life of three filters. 

To further investigate the large variability in the clogging process of the 𝑄=8 filters, we consider the 

degradation indicator 𝐼𝑖
𝑞
 which quantifies the amount of clogging of filter 𝑞 at time 𝜏𝑖 and is defined by 

(Nystad, 2009): 

𝐼𝑖
𝑞
=

∆𝑃𝑖
𝑞

(�̇�𝑖
𝑞
)
2   (12) 

Figure 7 shows the evolution of the degradation indicator 𝐼𝑖
𝑞
 during the lives of the 𝑄=8 filters. It can be 

observed that the clogging process is, indeed, affected by large uncertainties, which, according to the analysis 

of Figure 6 and the opinions of plant experts, is caused by the variability of the sea water conditions such as 

temperature and other factors influencing the life cycle of mussels, algae and other sea organisms; in this 

context, the challenge is to provide sufficiently narrow confidence intervals for the value of the predicted filters 

𝑅𝑈𝐿. 
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Figure 7: Evolution of the filter clogging degradation indicator during the lives of 𝑸 = 𝟖 filters. 

The prognostic method proposed is applied to each trajectory 𝑞 at the three life fractions 𝛽 as in Section 3.1.2, 

using the remaining 𝑅 = 7 trajectories as reference trajectories in a leave-one-out scheme. Figure 8 shows how 

the three performance indicators 𝑀𝑆𝐸, 𝐶𝑜𝑣𝛼 and 𝑀𝐴𝛼 of Section 3.1.2 vary with parameter 𝛾 for three values 

of parameter 𝜆 (0.1, 0.05 and 0.01). These results confirm those obtained for the simulated creep growth data 

of Section 3.2: the 𝑀𝑆𝐸 has a minimum around 𝜆 = 0.05 and the value of the 𝑀𝐴0.2 indicator decreases with 

both 𝜆 and 𝛾. Notice also that, for the values of 𝜆 considered in Figure 8, almost all possible values of 𝛾 are 

acceptable since the coverage 𝐶𝑜𝑣0.2 is always larger than 0.8, except for 𝜆 = 0.1 and 𝛾 = 1. The precision 

obtained for 𝜆 = 0.05 when 𝛾 = 1 is very close to that obtained for 𝜆 = 0.1, whereas the error is lower. Then, 

this optimization leads us to set 𝜆 = 0.05 and 𝛾 = 0.95 for generating the prognostic predictions with 

uncertainty in correspondence of each observation available. We do not set 𝛾 = 1 to account for the fact that 

the information provided by a piece of equipment about another one is uncertain even when their degradation 

paths up to the present time are identical, that is when 𝑠𝑗∗
𝑟 = 1. Appendix B discusses the counterintuitive 

results obtained by setting 𝛾 = 1.  
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Figure 8: value of the three performance indicators as a function of 𝜸 at three fractions 𝜷 of the trajectory life durations and 

for three values of 𝝀. 

Results obtained with 𝜆 = 0.05 and 𝛾 = 0.95 are shown in Figure 9 for all 𝑄 = 8 test trajectories available. 

In trajectory 4, the confidence bound is for most of the time equal to zero. This means that its similarity with 

all reference trajectories is rather low and, thus, the prediction is very uncertain. Also in many other cases, the 

prediction accuracy is rather low and the prediction interval large. However, due to the small number of 

training trajectories available and the large uncertainties affecting the clogging process, we can be satisfied 

with this result.  
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Figure 9: predictions obtained for the 𝑸 = 𝟖 filter clogging trajectories available, using parameters 𝝀 = 𝟎. 𝟎𝟓 and 𝜸 = 𝟎. 𝟗𝟓. 

The obtained results are compared with those obtained by the SB-KDE and the ANN-MVE methods. The 

ANN-MVE method is applied to each 𝑞-th trajectory, using the remaining 𝑅 = 7 trajectories as training and 

validation trajectories (with a time window length of 𝑀 = 5 consecutive measurements optimized by trials 

and errors) in a leave-one-out scheme.  

Table 3 reports the average values of the performance indicators over the 𝑄 = 8 test trajectories. 

Table 3: Average value of the performance indicators for the 𝑸 = 𝟖 test trajectories obtained by the proposed method and 

the two alternative methods. 

 Proposed method 

(SB-BFT) 

Alternative method 

(SB-KDE) 

Alternative method 

(ANN-MVE) 

√𝑀𝑆𝐸 3.743   3.743 5.710 

𝐶𝑜𝑣0.2 0.986 0.815 0.734 

𝑀𝐴0.2 3.742 4.167 3.944 

 

The results show that the proposed and the SB-KDE methods allow obtaining the desired coverage level of 

0.8, although the proposed method provides narrower prediction intervals (smaller 𝑀𝐴0.2) than those provided 

by the SB-KDE method. With respect to the 𝑅𝑈𝐿 accuracy, the SB is more accurate than the ensemble of ANN 

used by the ANN-MVE method. This confirms the ability of the proposed method to deal with few and 

irregular degradation trajectories and provide more accurate 𝑅𝑈𝐿 predictions compared to an ensemble 

method, which typically requires more training data. 

This analysis proves the effectiveness of the proposed method, when few training data are available, in i) 

accurately predicting the 𝑅𝑈𝐿 of the filters and ii) properly quantifying the uncertainty affecting the 𝑅𝑈𝐿 

predictions with narrower confidence bounds (lower 𝑀𝐴0.2) and larger coverage values (larger 𝐶𝑜𝑣0.2). As 
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already mentioned, the limitation of the proposed method lies in the difficulty of properly setting its parameters 

while balancing the accuracy and the precision of the predictions. 

4 Conclusions 

In this work, we have considered the problem of directly predicting the 𝑅𝑈𝐿 of a degrading equipment and 

providing a measure of confidence on the prediction, based on a set of reference degradation trajectories 

experienced by similar equipment failed in the past. To this aim, a similarity-based approach is integrated 

within the framework of belief function theory.  

Two key elements in the application of the method are the parameter 𝜆, which defines how strong is the desired 

interpretation of similarity, and the parameter 𝛾, which defines the degree of trust given to the reference 

trajectories. Using artificial data simulated by a non-linear model for creep growth in ferritic steel, we have 

analyzed how the values of these two parameters influence the performance of the method and given some 

indications on how to set their values. 

Finally, we have applied the method to the problem of predicting the 𝑅𝑈𝐿 of clogging filters used in nuclear 

power plants, obtaining prediction intervals for the values of the 𝑅𝑈𝐿 with satisfactory accuracy, considering 

the large uncertainties affecting the clogging process. 

Furthermore, the Kernel Density Estimation (KDE) and the Mean-Variance Estimation (MVE) methods have 

been applied to the same case studies to quantify the uncertainty affecting the 𝑅𝑈𝐿 predictions. The comparison 

of the obtained results confirms the superiority of the proposed method with respect to the two alternative 

methods in terms of reliability (i.e., 𝐶𝑜𝑣) and precision (i.e., 𝑀𝐴). More specifically, the proposed method has 

been proved to be effective also when few training data are available thanks to the capability of the BFT of 

properly representing and treating the uncertainty when scarce information is available. 

We expect that the use of a method able to associate to a 𝑅𝑈𝐿 point estimation also a reliable and narrower 

prediction interval can help the building the maintenance decision maker confidence towards prognostics and 

allow adopting predictive maintenance approaches in real industrial applications. To this purpose, it would be 

important to quantify the benefits that can be obtained in terms of metrics such as Return on Investment (ROI) 

or Total Lifecycle Costs. Future work will devoted to this aim. 

A limitation of the proposed method is the presence of possibly large oscillations in the confidence bounds, 

which may be confusing for the maintenance planner. It has been shown that such oscillations can be reduced 

by conveniently setting the parameter values; this, however might be time-consuming and could also reduce 

the accuracy and precision of the prediction. Notice also, that the amplitude of the oscillation decreases as the 

density of the reference trajectories increases. 
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In this Appendix, we extend the discussion in Section 3.1.2 about the performance of the similarity-based 

prognostic approach on the simulated data. First, we provide an illustrative example that explains the low 

precision of predictions obtained using small values of parameter 𝜆. Then, we discuss choices of the parameters 

values different than the one proposed in in Section 3.1.2, that is 𝜆 = 5x10−4 and 𝛾 = 0.7.  

Figure A1 shows the 𝑅𝑈𝐿 prediction with the relative prediction interval for a specific trajectory (left) in 

correspondence of two different values of parameter 𝜆: 𝜆 = 5x10−5 (upper) and 𝜆 = 5x10−4 (bottom). Notice 

that for 𝜆 = 5x10−5, the lower bound of the prediction interval is equal to 0 for large part of the trajectory 

(Figure A1, upper, left); this does not mean that the evidence of very early failure is high (as demonstrated by 

the fact that the predicted 𝑅𝑈𝐿 is far from 0), but only that the evidence drawn from the reference trajectories 

is not sufficient to assert with the desired belief 1 − 𝛼 = 0.8 that the 𝑅𝑈𝐿 value is actually larger than 0. In 

other words, the prediction 𝑅𝑈𝐿𝑖𝑛𝑓 = 0 is a statement of ignorance about the value of 𝑅𝑈𝐿. Contrarily, in the 

case of 𝜆 = 5x10−4 (Figure A1, bottom, left) the lower bound of the prediction interval is always higher than 

0. Figure A1, right shows the values of the similarity 𝑠𝑗∗
𝑟  assigned to each reference trajectory 𝑟 = 1: 7 and the 

BBA 𝑚𝑅𝑈𝐿 assigned to the corresponding prediction 𝑅𝑈𝐿𝑟 and to the 𝑅𝑈𝐿 domainΩ𝑅𝑈𝐿 at time 𝜏23 = 21811 

hours, which is characterized by a confidence bound equal to 0 using 𝜆 = 5x10−5. Notice that the similarities 

𝑠𝑗∗
𝑟  obtained using 𝜆 = 5x10−5 are significantly lower than those obtained using 𝜆 = 5x10−4, and, 

consequently, the mass 𝑚𝑅𝑈𝐿(Ω𝑅𝑈𝐿) assigned to the 𝑅𝑈𝐿 domain using 𝜆 = 5x10−5 is larger than 0.2, so that 

the total belief assigned to the trajectories predictions 𝑅𝑈𝐿𝑟 does not reach the required value of 0.8.  
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Figure A1: comparison of the 𝑹𝑼𝑳 prediction with confidence bound (left) and the similarity values and BBAs assigned to the 

different trajectories at 𝝉𝟐𝟑=21811 hours (right) for two values of 𝝀: 𝝀 = 𝟓𝐱𝟏𝟎−𝟓 (upper) and 𝝀 = 𝟓𝐱𝟏𝟎−𝟒 (bottom). 

In Figure 4 in Section 3.1.2, the predictions obtained with 𝜆 = 5x10−4 and 𝛾 = 0.7, are shown and two 

phenomena can be observed: first, some situations of ignorance about the value of 𝑅𝑈𝐿 where 𝑅𝑈𝐿𝑖𝑛𝑓 = 0, 

are still encountered. This is due to the fact that the information provided by the reference trajectories is not 

relevant for a specific test trajectory, e.g., because they are too dissimilar. Another noticeable phenomenon in 

Figure 4 is the presence of large jumps of the confidence bound 𝑅𝑈𝐿𝑖𝑛𝑓. These jumps occur when the reference 

trajectory corresponding to the minimum 𝑅𝑈𝐿 prediction 𝑅𝑈𝐿𝑟 included in the prediction interval in order to 

attain the desired belief 1 − 𝛼 = 0.8 changes.  

Although justified by the method, the oscillations of the confidence bound may be confusing for the 

maintenance planner. A reduction in the oscillations can be obtained by increasing the value of 𝜆 or reducing 

the value of 𝛾, at the price of a lower accuracy and precision.  

Figure A2 shows the 𝑅𝑈𝐿 predictions obtained for the same four trajectories of Figure 4 using the parameters 

values 𝜆 = 5x10−3 and𝛾 = 0.5. Table A1 compares the performance of the prediction computed on 𝑁𝑡𝑠𝑡 =

50 test trajectories different from those used for optimizing the parameters, in this case and in the case of 

Figure 4 where 𝜆 = 5x10−4 and 𝛾 = 0.7. In the Table, the mean value of the 𝑅𝑈𝐿, 𝑅𝑈𝐿̅̅ ̅̅ ̅̅ , for different values 

of the life fraction 𝛽 is also shown, and the performance indicators √𝑀𝑆𝐸 and 𝑀𝐴0.2 are expressed also as a 

percentage of 𝑅𝑈𝐿̅̅ ̅̅ ̅̅ . 
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Figure A2: predictions obtained for 4 different test trajectories of Figure 4 using 𝝀 = 𝟓𝐱𝟏𝟎−𝟑 and 𝜸 = 𝟎. 𝟓. 

Table A1: 𝑹𝑼𝑳 prediction performance. 

 𝛽 = 25% 𝛽 = 50% 𝛽 = 75% 

𝑅𝑈𝐿̅̅ ̅̅ ̅̅  (104) 2.711 1.827 0.975 

𝐶𝑜𝑣0.2 

𝜆 = 5𝑥10−4; 

𝛾 = 0.7 
0.782 0.814 0.849 

𝜆 = 5𝑥10−3;  
𝛾 = 0.5 

0.838 0.850 0.853 

√𝑀𝑆𝐸 (103) 

𝜆 = 5𝑥10−4;  
𝛾 = 0.7 

9.152 33.8% 5.965 32.6% 3.191 32.7% 

𝜆 = 5𝑥10−3;  
𝛾 = 0.5 

9.822 36.2% 6.160 33.7% 3.411 35.0% 

𝑀𝐴0.2 (103) 

𝜆 = 5𝑥10−4;  
𝛾 = 0.7 

8.445 31.2% 5.594 30.6% 3.228 33.1% 

𝜆 = 5𝑥10−3;  
𝛾 = 0.5 

11.300 41.7% 7.167 39.2% 3.960 40.6% 

 

The results of Figure A2 and Table A1 confirm that the oscillation of the confidence bound can be damped 

down by increasing the value of 𝜆 or reducing the value of 𝛾, but this choice increases the prediction error and 

the amplitude 𝑀𝐴0.2. Clearly, to an increased 𝑀𝐴0.2 corresponds also a higher value of the coverage indicator 

Co𝑣0.2. 
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When a situation with a larger density of reference trajectories is considered, the oscillations of the lower 

bound become of smaller amplitude, although more frequent. This happens, for example, when a larger number 

𝑅 of reference trajectories is available or when the variability within the degradation trajectories becomes 

smaller. To show this, we have reduced the variance of the parameters 𝜑𝑚0 and 𝑄𝑚, 𝑚 = 1: 6, and of the load 

𝜎 and temperature 𝑇 used in the model of eq. (11) to simulate 𝑁𝑡𝑠𝑡 = 50 test trajectories and 𝑁𝑡𝑟𝑛 = 50 

training sets of 𝑅 = 50 reference trajectories. The optimization procedure applied for the case with 𝑅 = 7 has 

been used to set the parameters to the values 𝜆 = 5x10−5 and 𝛾 = 0.95. Four examples of the predictions 

obtained are shown in Figure A3, whereas the values of the performance indicators are presented in Table A2. 

As expected, with a higher density of training trajectories available, the prediction is both more accurate and 

precise. 

 

Figure A3: predictions obtained for 4 different test trajectories using R=50 reference trajectories and parameters 𝝀 = 𝟓𝐱𝟏𝟎−𝟓 

and 𝜸 = 𝟎. 𝟗𝟓. 

 

Table A2: 𝑹𝑼𝑳 prediction performance with 𝝀 = 𝟓𝐱𝟏𝟎−𝟓 and 𝜸 = 𝟎. 𝟗𝟓 

 𝛽 = 25% 𝛽 = 50% 𝛽 = 75% 

𝑅𝑈𝐿̅̅ ̅̅ ̅̅  (104) 3.108 2.090 1.102 

𝐶𝑜𝑣0.2 0.814 0.832 0.808 

√𝑀𝑆𝐸 (103) 5.313 17.1% 3.444 16.5% 1.659 15.1% 

𝑀𝐴0.2 (103) 4.961 16.0% 3.187 15.2% 1.788 16.2% 
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Appendix B 

Figure A4 shows the predictions obtained for the 𝑄 = 8 trajectories, when parameters 𝜆 = 0.05 and 𝛾 = 1 are 

used. In trajectory 6, we notice that the confidence bound is higher than the 𝑅𝑈𝐿 prediction. This is an example 

of the counterintuitive results that can be obtained by setting 𝛾 = 1 if two trajectories are very similar. Figure 

A5 shows the similarities 𝑠𝑗∗
𝑟  and the BBAs 𝑚𝑅𝑈𝐿 assigned to the reference trajectories for the test trajectory 

6 at time 𝜏15 = 15 working days (upper). We notice that trajectory 8 receives the belief assignment 

𝑚𝑅𝑈𝐿({𝑅𝑈𝐿
8}) = 0.937. Figure A5 also shows the evolution of the observable parameters ∆𝑃𝑖

𝑞
, �̇�𝑖

𝑞
, and 𝑇𝑖

𝑞
 

(bottom), for the test trajectory 6 and the reference trajectory 8 receiving the maximum belief assignment. We 

notice that all three parameters ∆𝑃𝑖
𝑞
, �̇�𝑖

𝑞
, and 𝑇𝑖

𝑞
 of the two trajectories are very similar around time 𝜏15 = 15  

working days, but evolve very differently after that time. To correct this problem, it is sufficient to reduce the 

value of parameter 𝛾 as can be seen from Section 3.2, Figure 9.  

 

Figure A4: predictions obtained for the 𝑸 = 𝟖 filter clogging trajectories available using parameters 𝝀 = 𝟎. 𝟎𝟓 and 𝜸 = 𝟏. 
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Figure A5: evolution of the three observable parameters ∆𝑷𝒊
𝒒
, �̇�𝒊

𝒒
, and 𝑻𝒊

𝒒
 (bottom) for trajectories 𝒒 = 𝟔 and 𝒒 = 𝟖, with 

similarities 𝒔𝒋∗
𝒓  and BBAs 𝒎𝑹𝑼𝑳 at time 𝝉𝟏𝟓 = 𝟏𝟓 working days (upper). 
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