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Abstract— Resistive switching memory (RRAM) features many
optimal properties for future memory applications that make
RRAM a strong candidate for storage-class memory and embed-
ded nonvolatile memory. This paper addresses the cycling-
induced degradation of RRAM devices based on a HfO,
switching layer. We show that the cycling degradation results
in the decrease of several RRAM parameters, such as the
resistance of the low-resistance state, the set voltage Ve, the
reset voltage Vieset, and others. The degradation with cycling
is further attributed to enhanced ion mobility due to defect
generation within the active filament area in the RRAM device.
A distributed-energy model is developed to simulate the degrada-
tion kinetics and support our physical interpretation. This paper
provides an efficient methodology to predict device degradation
after any arbitrary number of cycles and allows for wear leveling
in memory array.

Index Terms— Cycling-induced degradation, distributed-
energy model, enhanced ion mobility, resistive switching
memory (RRAM).

I. INTRODUCTION

ESISTIVE switching memory (RRAM) attracts broad

interests due to the high-speed operation [1], low-power
consumption [2], [3], and nonvolatile retention [4], thus serv-
ing as a promising candidate for storage-class memory [5]
and embedded nonvolatile memory [6]. To explore the
applications of RRAM, switching variability [7], [9], [10],
resistance fluctuation [11]-[13], and cycling endurance fail-
ure [14]-[16] need to be addressed and understood. It was
shown that the endurance failure of bipolar RRAM is
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usually dictated by negative set, or breakdown during the
reset process [16]. The cycling endurance was shown to be
controlled by the largest voltage Vswop applied during the
negative reset pulse. However, the RRAM device degrada-
tion during cycling before the endurance failure is far less
understood.

This paper studies the cycling-induced degradation of HfO,
RRAM device arranged in a one-transistor/one-resistor (I TIR)
structure. We show that the cycling degradation leads to a
decrease of several RRAM parameters, such as the resistance
of the low-resistance state (LRS), the set voltage Vi, the reset
voltage Vieser, and the corner voltage Viomer, defined as the
voltage for which the switching speed becomes comparable
with the inherent RC delay time in the 1TIR structure. The
decrease of Viomer With the number of cycles N¢ provides
evidence for an enhancement of ion migration mobility with
degradation. The increased ion mobility can be attributed to
the decrease of energy barrier E4o for defect migration in
the switching region. We show that Vi, controls the cycling
degradation rate as well as the endurance failure in our devices.
The degradation effects are quantitatively explained by an
Arrhenius-driven distributed-energy model, and our results
suggest that Vieser and LRS resistance can serve as degradation
monitor and endurance failure predictor for wear out leveling
within the memory circuit.

A preliminary report of cycling degradation in HfO, RRAM
was previously presented [17]. In this paper, we extend the
previous report by elucidating the physical model for degrada-
tion based on the thermally activated defect generation mech-
anisms with distributed energy. We also evidence and support
the capability to monitor degradation by tracking the reset
voltage Vieser Or the LRS resistance R. This methodology may
enable stress-aware methods to predict and anticipate device
failure in the memory array.

II. EXPERIMENTAL SAMPLES AND SETUP

We characterized the RRAM devices consisting of a TiN
bottom electrode, a Ti top electrode (TE) serving as an oxygen
exchange layer, and an amorphous Si-doped HfO, switching
layer [16]. The device size was 40 nm, and the HfO; thickness
was 10 nm [16]. More details about the device stack in our
samples can be found in [18]. As schematically shown in
Fig. 1(a), the ITIR structure was used for on-chip control
of the switching processes. The transistor size in our test
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Fig. 1. Schematic of (a) 1TIR structure of our samples and (b) measured

I-V curve during one cycle indicating LRS, HRS, and the definition of
parameters Vset, Vreset Ireset> and Vsiop. The pulsewidth was 1p =1 us and
the compliance current was Ic = 50 pA.

structures was W/L = 3/1.45 pum, while the gate dielectric
thickness was 15 nm. During the set transition, the current
flowing in the RRAM element was limited to a maximum
compliance current /¢ = 50 pA by proper tuning of the
transistor gate voltage, thus allowing to control the size of the
conductive filament (CF) [19]. The gate voltage was adjusted
to a larger value during the reset pulse to minimize the
transistor resistance for minimum voltage drop. The large gate
voltage during reset also helped keeping the forward bias at
the transistor substrate-drain junction low enough to prevent
excessive diode current.

To conduct the cycling experiment, an arbitrary waveform
generator was used to apply voltage pulses to the TE of the
device and to the transistor gate, while the voltage (V) and
current (/) during set and reset cycles were monitored in
real time by a digital oscilloscope [16]. The transistor source
was connected to ground during all experiments. The bipolar
voltage pulses applied to the TE during one cycle include
a positive triangular pulse of voltage (Vg = 2.4 V) for set
transition, and a negative triangular pulse of voltage Vitop for
reset transition, resulting in a typical /-V curve as shown
in Fig. 1(b). In addition, positive and negative pulse with
voltage (Vg = 0.5 and —0.5 V) were applied for reading
the LRS and high-resistance state (HRS) after set and reset
transition, respectively. The read voltage polarity was chosen
to minimize possible disturbs to the programmed state. As the
read voltage was much smaller than set/reset voltages, we
expect no impact of the read condition (read voltage amplitude
and polarity) on cycling and degradation. The pulsewidth
tp was fixed to 1 us for all applied pulses. The abrupt
increase of current takes place at positive set voltage Ve,
indicating the formation of a CF in correspondence of the set
transition from HRS to LRS. On the other hand, the filament
was dissolved under negative voltage, as evidenced by a more
gradual reset transition from LRS to HRS starting from the
reset voltage Vieser. The current in correspondence of the reset
transition is referred to as the reset current reget.

III. DEPENDENCE ON THE NUMBER OF CYCLES

We studied the degradation dependence on cycle number by
the cycling experiments, where we monitored all /-V curves
in real time. Fig. 2(a) shows the measured resistance R for
LRS and HRS as a function of the number of cycles N¢
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Fig. 2. (a) Measured R for HRS and LRS and (b) median switching

voltages Vser and |Vyeset| as a function of N¢. Endurance failure takes place at
Nc ~2.5x%x 10% due to the collapse of R window induced by negative set. LRS
resistance, Vger, and |Vreset| all decrease with N¢ due to the cycling-induced
degradation before failure.
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Fig. 3. Cumulative distributions of (a) measured R for LRS resistance and

(b) corresponding Ireset at increasing N¢. Note the distribution tails at low R
and high /reset, Which increase with cycling due to the device degradation.

for a typical cycling experiment at Viop = —1.85 V. Data
in Fig. 2(a) refer to a single device at increasing cycles,
although other samples showed the same qualitative behavior.
The resistance window is about 10x between LRS and HRS
until failure takes place at N¢ ~ 2.5 x 10*. Failure appears as
a sudden collapse of the LRS and HRS resistances to an inter-
mediate state. In our previous work, we evidenced that failure
is due to negative set, namely, a breakdown process taking
place during the reset operation under negative voltage, where
the resistance increases abruptly after reset [16]. Although
other failure processes have been reported in the literature,
such as stuck set and stuck reset states [14], [20], we always
detected negative set as the failure event in our devices [16].
Even before failure, however, LRS resistance clearly decreases
during the whole lifetime of the RRAM device, as evidenced
by the median lines of R in Fig. 2(a). On the other hand,
HRS resistance remains approximately constant before failure.
Fig. 2(b) shows the median Ve and |Vieset| as a function
of N¢: Vi decreases from 1.65 to 1.45 V, while |Vieset
decreases from 1.25 to 1.05 V.

To better understand the device degradation phenomena, we
plot the cumulative distributions of LRS resistance at increas-
ing Nc in Fig. 3(a). To guarantee a suitable statistical signif-
icance, each distribution contains the value measured within
103 switching cycles. For instance, for N¢ = 103, we collected
data from N¢ = 500 to N¢ = 1500. Similarly, for N¢ = 104,
we collected data from Nc = 9500 to N¢ = 10500.
Results show that the median value of R decreases with N¢,
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Fig. 4. Measured and calculated /-V curves corresponding to cycles

in (a) main part of the distribution and in (b) distribution tail of Fig. 3 and
layout of the ITIR structure evidencing the parasitic capacitance Cp (c).
Calculations (solid lines) agree well with the measured /-V curve (symbols).
Cycles in the tail correspond to set at high Vser inducing current overshoot
and a resulting low R and high lreset-

as expected from Fig. 2(a). Most importantly, distributions
show increasing tails for increasing N¢ at low R, further
supporting the device degradation. Fig. 3(b) shows the dis-
tributions of Ieger for the same cycles of Fig. 3(a): tails at
high current occur in correspondence of low R tails, since a
high Ireser is needed to dissolve the relatively large CF in the
low R tail.

Fig. 4(a) and (b) shows the -V curves collected for the
same cells in the main part, corresponding to 50% (median)
percentile [Fig. 4(a)], and in the tail [Fig. 4(b)] of the dis-
tribution. The median /-V curve shows a standard switching
behavior with et & Ic [19]. On the other hand, the tail /-V
curve shows a larger Vg, which is due to a deep HRS with
high resistance, and a corresponding low R and high Iege; as
a result of the current overshoot. In particular, the relatively
high Vi causes a current overshoot, which results in a rela-
tively low R and a correspondingly large leser > Ic. Although
previous work has shown that much smaller overshoot effect
can be attained in integrated 1TIR as opposed to the wire-
bonded ITIR structures [21], our data provide evidence
for the overshoot effect in integrated 171 R at particularly
high Vi. The current overshoot in the distribution tail can
be attributed to the parasitic capacitance Cp [19], [21], [22]
in the 171R structure in Fig. 4(c). Calculated /-V curves
in Fig. 4(a) and (b), which were obtained by an analytical
model for set/reset processes [23] with Cp = 30 fF, closely
accounting for the measured characteristics. We estimate that
about 90% of Cp is due to the metal routing in our test
structure, while the remaining 10% is contributed by the
transistor. Note that data in Fig. 4(b) do not allow to directly
evaluate the overshoot current during set transition, because we
measured the transistor current at the source side, which does
not include the capacitance discharge current [see Fig. 4(c)].
However, the overshoot current can be indirectly estimated by
noting that It is roughly equal to the maximum current
during set transition; thus, we can argue that the overshoot
current is approximately 80 uA in Fig. 4(b).

To further support the above explanation of the tail behavior,
Fig. 5 shows the correlation plot of the LRS resistance R as
a function of Vi for Ne ~ 2 x 10*. For the sake of clarity,
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Fig. 5. Measured LRS resistance as a function of Vger, providing a
definition of Veorner. As Vset varies due to stochastic switching, R shows two
different behaviors: for low Vet (region A), set transition is controlled by Ic;
thus, R remains independent of Vger. At high Vet (region B), the C p-induced
current overshoot takes place (see Fig. 4) as a result of the high switching
speed at high voltage, thus causing relatively low R and correspondingly
high Ireset-

only the average R is reported for each value of Vg con-
sidering 1000 consecutive cycles of a single RRAM device.
Here, Vit and R were changing as a result of cycle-to-cycle
variations, whereas Nc¢ and the corresponding degradation
state of the device can be considered approximately constant.
Two regions can be distinguished in the correlation plot,
namely, region A at low Vg and region B at relatively
high Vi. The resistance R in region A is approximately
constant and equal to the value expected from the compliance
current, namely, R =~ V¢ /Ic, where Vc =~ 1 V [19] as in the
I-V curve of Fig. 4(a). On the other hand, region B corre-
sponds to the distribution tails of Fig. 3, where R decreases
with Vet as a result of the parasitic overshoot. The LRS resis-
tance in region B is controlled by the parasitic capacitance Cp
via the current overshoot as in Fig. 4(b). In region A, due
to the relatively small Vi, the set transition takes place on
a relatively long switching time f; thus, Cp is discharged
at relatively low current levels below the I¢ limit. Since zg
exponentially decreases at increasing Vier [24], [25], the set
transition takes place within a relatively short time at high V.
In this time frame, the current for the set transition is readily
supplied by the capacitance Cp; thus, the device current can
easily exceed the compliance current I¢. Current overshoot
induces overgrowth of the CF, which is evidenced in the
distribution tails at low R and high [leg in Fig. 3. The
difference between the regions A and B lies therefore in the
different switching speed, which is slower than the RC time
in A (tget > RC) and faster in B (t,er < RC).

The different regimes in the R—Vge correlation plot allow
to define the corner voltage Vcomer, as the voltage mark-
ing the boundary between region A and B in Fig. 5. The
corner voltage can thus be defined as the voltage Vg for
which #, = RCp thus marking the onset of region B for
Vset > Viorner- Based on its definition, Viomer can be used as
an additional monitor of the switching properties of the device
and its degradation, similar to Vet and Vieser. Fig. 6(a) shows
the average Vset as a function of R for Viop = —1.85 V and
increasing N¢ for a single RRAM device. As N¢ increases,
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Fig. 6. (a) LRS resistance as a function of Vgt for increasing N¢, and
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correlation indicates a decay of Vcorer With a corresponding broadening of
region B, hence of tails in Fig. 3, at increasing Nc. Degradation leads to
a decrease of all the switching voltages, consistent with an increasing ion
mobility in the active region.
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Fig. 7. Sketch of cycling-induced degradation effects for increasing Nc.

At low N¢, (a) CF size of normal switching is well controlled by /¢ in
region A, while (b) relatively large CF is obtained by C p-induced overshoot
in region B. As N¢ increases, (c) and (d) CF size in both region A and B,
respectively, become larger because of the higher density of defects,
e.g., oxygen vacancies, resulting in more migration paths and a correspond-
ingly higher ion migration mobility.

R decreases in region A, consistently with Fig. 3(a), while
Veorner decreases, thus causing the widening of region B.
Fig. 6(b) shows V.omer extracted from Fig. 6(a) as a function
of N¢, compared with Ve and Vieger, all showing a decaying
behavior with N¢. Due to the decrease of Viomer, the RRAM
device becomes more subject to parasitic overshoot, which
thus accounts for the increasing tails at low R in Fig. 3(a).
Since Viomer corresponds to a constant switching time, the
decrease of Viomer provides evidence for the switching time
becoming increasingly short at a given voltage with increas-
ing Nc, as also supported by the decay of Ve and Vieser- We
thus conclude that cycling degradation leads to a faster switch-
ing time, which we attribute to an enhanced ion migration.

IV. PHYSICAL INTERPRETATION AND MODEL

The cycling degradation phenomena in Figs. 2-6 are inter-
preted in terms of the defect generation model shown in Fig. 7.

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 11, NOVEMBER 2016

- |
2]
[0}
[
i} o
Model
10 10°
Ng
Fig. 8. Sketch of (a) energy barrier E 4 for ion migration and (b) assumed
E 4¢ as a function of N¢ in our model for Viiop = —1.85 V.

Initially, relatively few defects are present in the active
CF area; thus, the CF remains relatively small in region A
[Fig. 7(a)], and larger in region B [Fig. 7(b)] as a result of the
capacitive current overshoot. During cycling, repeated set/reset
pulses cause the generation of additional defects (e.g., oxygen
vacancies), thus increasing the defect reservoir at the TE side.
The higher concentration of oxygen vacancies in the CF active
region also causes an enhanced ion mobility [26]. This can be
interpreted as the high oxygen vacancy concentration causing
enhanced oxygen self-diffusion and lower migration barrier,
which can be attributed to the larger available free space
for ion migration and the weakening of local oxygen-cation
bonds [26], [27]. As a result of the larger reservoir and
higher mobility, the CF size after set transition in region A is
increased after cycling in Fig. 7(c), thanks to the lower value
of V¢, which reflects switching speed [19]. The larger CF in
region A accounts for the decrease of R in Figs. 2(a) and 3(a)
for LRS. In the presence of current overshoot at high Vi,
the enhanced switching speed and the consequent decrease
of Viomer result in even larger CF and lower R in the
distribution tail in Fig. 7(d).

To model the degradation effects after cycling, we attributed
the cycling-enhanced ion mobility to a decrease of the
energy barrier E4o controlling defect migration under an
applied voltage, as shown in Fig. 8(a). Here, the energy
barrier at a specific voltage is given by E4 = Ex0 —a qV,
where E g is the zero-voltage energy barrier and « is the
coefficient describing voltage-induced barrier lowering [19].
Fig. 8(b) shows the assumed dependence of E4o9 on N¢ for
a reference stop voltage Vsop = —1.85 Vi E4o decreases
from 1.22 eV around 2 x 10° cycles to 0.95 eV around
2.5 x 10* cycles close to the failure. By introducing the
decreasing E 4o in our analytical switching model [23], we
simulated the /-V curves at increasing N¢ and extracted
LRS resistance R, Vg, and Vit from the simulated
I-V curves. Fig. 9 shows the measured and calculated
I-V curves for Nc = 1 after forming process [Fig. 9(a)]
and N¢c = 2 x 10* [Fig. 9(b)], indicating a decrease of Vi
and Vieser at increasing N¢. The model can account for the
I-V curves and for its dependence on N¢ of the switching
parameters, thus supporting our interpretation of enhanced ion
migration in terms of decreased E 4¢.

The analytical model also allows to calculate the correlation
between LRS resistance and Vg, which we obtained by
repeating the simulation of the /—V curve at varying Vi,
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and Vset for increasing N¢, and (b) measured and calculated Vset, Vieset,
Veorner, and LRS resistance as a function of N¢. Results in (a) and (b)
were obtained with a physics-based analytical model of RRAM [23] with
E 4o given in Fig. 8(b).

which was changed by assuming different initial values of
the gap length in the CF to mimic the statistical variability
of HRS in Fig. 5 [23]. Fig. 10(a) shows the measured and
calculated R as a function of Vi at increasing N¢ for
Vstop = —1.85 V, indicating that the decreasing Eao in
our model can account for the decrease of Viomer With
cycling. Fig. 10(b) shows the measured and calculated switch-
ing parameters, namely, Vcorer, Vset> |Vresetl, and R as a
function of N¢ for Vgop = —1.85 V. Simulation results
show that the model can well account for the decrease of the
switching parameters with Nc, confirming the picture of an
enhanced ion migration rate induced by cycling, and support-
ing our model for the prediction of RRAM degradation during
cycling.

To further support our interpretation of RRAM degradation,
we measured Vier and Vieger at variable pulsewidth 7p of the tri-
angular set/reset pulse for increasing N¢. Fig. 11(a) schemat-
ically shows the pulse shape adopted for the experiments,
where the sequences of triangular set/reset pulses were applied,
and 7p was changed to monitor the sweep-rate dependence
of the switching parameters. Fig. 11(b) shows the measured
Vet and |Vieset| as a function of 7p for increasing Nc. Both
set and reset voltages decrease with ¢p as a result of the time-
voltage dependence of RRAM switching phenomena [19].
In addition, Vet and |Vieget| decrease with increasing N¢ due
to degradation. Calculation results by our analytical model [23]
in Fig. 11(c) show a similar dependence on #p and N¢, thus
further supporting the description of enhanced ion mobility by
a decreased E 4o in Figs. 7 and 8.
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Fig. 11.  Schematic illustration of the pulse shape for the experiments done

at (a) variable 7p, (b) measured Vger and |Vieset| as a function of 7p at
increasing N¢ and (c) corresponding calculation results.

V. DEPENDENCE ON Vjop

Previous studies indicate that Vsop, namely, the maximum
voltage in the negative reset operation, plays an important role
in controlling endurance lifetime [16]. As Vi) is increased,
the HRS increases, thus allowing to achieve a larger R window
with less variability. On the other hand, the cycling endurance
decreases with Viyop as a result of the negative set failure taking
place during the reset operation.

To study the impact of Viop on cycling-induced degradation,
we analyzed the degradation of the switching parameters
during cycling at various Vsgop. Fig. 12 shows the average
values of |Vieset| [Fig. 12(a)], Veomer [Fig. 12(b)], and LRS
resistance [Fig. 12(c)] as a function of N¢ at the increasing
values of Viiop = —1.65, —1.75, —1.85, and —1.95 V. All the
parameters show an approximately linear decay with log(N¢),
where the slope of the decay increases with |Vop|. We define
the degradation rate as the derivative of data in Fig. 12(a)—(c)
with respect to log(Nc¢). Fig. 12(d) reports the degradation rate
for |Viesetls Veorers and R, showing that all the degradation
rates increase with |Vsop|. These results confirm the key role
of Viiop in controlling RRAM degradation and failure.

VI. MODELING OF Viop-DEPENDENT DEGRADATION

To account for the degradation process taking place over
several decades of N¢, we developed a model for the gen-
eration of defects with a distributed barrier Ep, as shown
in Fig. 13(a). According to the model, defects are gener-
ated during set/reset cycling by a thermally activated process
across multiple energy barriers with continuously distributed
amplitude Ep. The defects with small generation barrier Ep
[e.g., well 1 in Fig. 13(a)] are generated initially in the cycling,
while the defects with high Ep [e.g., well 4 in Fig. 13(a)] are
generated after a large N¢. In the model, the defect generation
time 7 obeys the Arrhenius law given by

Ep
T = 10e kT

(1

where 7( is a preexponential constant (rg = 1 us), T is the
local temperature in the CF region during set/reset, k is the
Boltzmann constant, and Ep is a generic energy barrier within
uniform distribution in Fig. 13(a). As N¢ increases, the global
time in (1) increases, thus defects with relatively high energy
Ep start being generated because of the relationship between
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Fig. 12.  (a) Measured and calculated |Vreset|, (b) |Vcorer| and (c) LRS resistance as a function of N¢ at increasing Vsiop, and (d) degradation rates

for all the switching parameters as a function of |Vsiop|. Results indicate that Vsiop accelerates the degradation rates, supporting the key role of Vsiop in

RRAM degradation and failure.

generation time 7 and energy barrier Ep in (1). The time-
dependent defect distribution g(Ep) is given by [28]

dg _1-¢

dt 1 @
where ¢ is the time measured during all the set/reset operations
and 7 is given by (1). In fact, given the thermally activated
process described in (1), only the time during set and reset is
effective for defect generation. The local temperature in the
CF region can be evaluated by the analytical Joule heating
formula given by [29]

T=Ty+aV? (3)

where Tj is the room temperature (300 K in our experiments)
and a is a coefficient proportional to the ratio between effec-
tive thermal and electrical resistance in the CF region [16].
Local Joule heating during the set and reset processes accel-
erates the Arrhenius-driven defect generation. In particular,
as |Vswopl increases, T increases during reset, thus accounting
for the role of Viop in controlling the degradation rate.
It should be noted that Vyop also causes a deeper HRS at the
end of the reset operation, thus causing a relatively large Ve
in the following set process [16]. The larger Vi causes a
larger T during the set process, which also might induce
more degradation based on (1)—(3). This highlights the role
of Viop in inducing higher local T both directly during the
reset process, and indirectly during the set process.

Fig. 13(b) shows the calculated g(Ep) at increasing
N¢ for Vsop = —1.65 'V, obtained by the model in (1)—(3).
In the calculation, we integrated (2) to evaluate g(Ep) during
all the set/reset cycles at variable V. Simulation results in
Fig. 13(b) show that the defects at small Ep are first generated
at small Nc¢, followed by the defects at high Ep for large Nc.
By integrating the defect distribution g(Ep), one gets the total
defect density G, given by

G =/8(ED)dED )
where g(Ep) is integrated over the whole Ep-axis. The
function G yields a figure of merit for the overall degradation
in the CF region, and was assumed to be correlated with the
value of E 4o dictating the energy barrier for defect migration
during the set and reset processes. Fig. 13(c) shows the
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Fig. 13.  Schematic illustration of (a) distributed-energy model for degra-

dation, (b) calculated defect distribution g(Ep) at increasing N¢ for
Vstop = —1.65 'V, (c) calculated E 40 as a function of total defect density, and
(d) calculated migration barrier E 4o as a function of N¢ at increasing Vsop.
The calculated E 4o can then be used in the analytical model of RRAM
to compute the /-V characteristics for any degradation condition, namely,
N¢ and Vgop [23].

assumed piecewise-linear E 40 — G correlation, which is based
on the idea that a large value of G reflects a large degradation
and large defect density in the CF area, thus corresponding to
a relatively high ion mobility with low E 9.

Fig. 13(d) shows the calculated E 4¢ as a function of N¢ at
increasing |Vitopl, obtained by (1)—(4). As |Vop| increases,
E4o decreases with increasingly steep slope, evidencing a
faster degradation rate. By using the resulting E 4o obtained
from the model in (1)-(4), one can calculate the /-V curve
for the RRAM device at any degradation condition, namely, an
arbitrary Nc and Vtp. For any value of E g, corresponding
to a specific degradation state from Fig. 13, we performed
simulations by using our analytical model for the set/reset
processes [23]. By using this methodology, we calculated
the switching parameters as a function of Nc¢. Fig. 12
shows the calculated |Vieset| [Fig. 12(a)], | Vieset| [Fig. 12(b)],
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Fig. 15.  (a) Measured Vieset and (b) LRS resistance as a function of Vsiop
for Nc = 1 (initial) and just before endurance failure (final), supporting Vyeset
and LRS resistance as reliable monitor for the prediction of failure.

and LRS resistance [Fig. 12(c)] as a function of N¢ at increas-
ing |Vitopl. Fig. 12(d) shows the corresponding degradation
rates for all the parameters. Fig. 14 shows the correlation
plot of measured and calculated Ve and |Vieser| as a func-
tion of Viomer, Where data and calculations were extracted
from Fig. 12; results indicate a strong correlation among the
switching parameters, irrespective of N¢ and Viyp during
degradation. Such a strong correlation supports our description
of the degradation state in terms of a single parameter, namely,
E 4o or equivalently G, in Fig. 13(d). In other words, the
degraded state of the device can be described uniquely by
the value of E.q, irrespective of specific N¢ and Viop.
These results support the accuracy of our model in predicting
degradation of the /-V curves in RRAM after cycling.

VII. DEGRADATION AND FAILURE MONITORS

Our results reveal that the RRAM switching parameters
can be used as monitors of degradation, thus allowing to
predict and anticipate device failure. To confirm this pic-
ture, Fig. 15 shows the initial (N¢ 1) and final values
of |Vieset| [Fig. 15(a)] and R [Fig. 15(b)] as a function of
[Vstopl. For instance, |Vreset| in Fig. 15(a) is around 1.25 V
initially (N¢ = 1), while its final value approaches 1.1 V
at the end of device lifetime, i.e., just before endurance
failure. Note that the endurance lifetime Nc f,j changes by
several decades by varying Viop [16]. Despite this dramatic
dependence of lifetime on Viop, the critical values of Vieet
and R do not show any significant variation, suggesting that
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the degradation state is approximately the same just before
failure. Endurance failure can thus be considered as one of
the degradation state along with other states in Fig. 12. By
considering the /-V curve at any particular state of the device,
one can thus anticipate how far the device is from the end
of lifetime, without keeping track of the number of cycles
and the value of Vyop. The latter, in particular, might change
randomly from cycle-to-cycle if program-verify techniques are
used, thus making indirect estimation of degradation quite
difficult. The direct evaluation of one or more device switching
parameters, e.g., Vieset, allows instead to anticipate device
failure to distribute cycling for wear leveling in the memory
array. For instance, Vieser and/or R could be monitored within
one array block, where cells undergo a similar workload, for
the purpose of monitoring average degradation and organize
wear out leveling within the memory system. Similar system-
level management algorithms are in fact becoming essen-
tial to maximize flash memory reliability, e.g., in solid-state
drives [30], [31].

As a practical example of estimating the current endurance,
we first note that |Vieset| decreases linearly with log(t) between
Nco =2 x 103 and failure in Fig. 12(a). Thus, given Ve at
one specific point in life, we can evaluate the current cycle
count as

(Vreset — Vieset,i )
log(N¢) = log(Nco) + .
(Vreset,f - Vreset,i)

x [log(Nc tait) — log(Nco)] Q)

where Vieser,; is the initial value of Vieset, Vieset, r is the final
value of Vieser, and Nc fail is the expected endurance lifetime,
which depends on Vp. Therefore, knowing the average
operating Vop for one particular product/operation, one can
evaluate the average endurance lifetime Nc faj1, thus allowing
to estimate the cycle count from (5). For instance, considering
Vieset,i = —1.25 V and Vieser, f = —1.1 V in Fig. 12(a), and
assuming Viop = —1.75 V and Vieset = —1.17 V, we obtain

Nco =2 x 10* from (5), in good agreement with the linear
fitting of Vieser in Fig. 12(a). This supports the ability to
estimate degradation in RRAM devices based on the value
of the switching parameters.

VIII. CONCLUSION

This paper addresses the cycling-induced degradation
of RRAM devices and a new model to predict degradation
effects as a function of the cycling conditions. We evidence
that cycling degradation causes the decrease of Vier, Viesets
Veorner» and LRS resistance, as a result of an enhanced ion
migration with reduced energy barrier E49. We show that the
degradation rate increases with Viop, which is consistent with
previous results showing that endurance lifetime is controlled
by Visop- A distributed-energy Arrhenius model was introduced
to model the Vgyqp-driven degradation kinetics. This paper
indicates that device degradation and endurance failure can
be predicted by monitoring the switching parameters during
cycling.
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