
 

This article has been accepted for publication and undergone full peer review but has not been 
through the copyediting, typesetting, pagination and proofreading process which may lead to 
differences between this version and the Version of Record. Please cite this article as doi: 
10.1002/esp.4298 

 
This article is protected by copyright. All rights reserved. 

Robotic photosieving from low-cost multirotor sUAS: A proof-of-concept 

P.E. Carbonnneau*1, S. Bizzi2 and G. Marchetti2 

1: Department of Geography, Durham University, Durham, UK. Email: 

patrice.carbonneau@durham.ac.uk 

2: Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Piazza 

Leonardo da Vinci, Milano, Italy. 

*: Corresponding author 

 

Abstract 

Measurement of riverbed material grainsizes is now a routine part of fieldwork in fluvial 

geomorphology and lotic ecology.  In the last decade, several authors have proposed remote sensing 

approaches of grain size measurements based on terrestrial and aerial imagery.  Given the current rise 

of small Unmanned Aerial System (sUAS) applications in geomorphology, there is now increasing 

interest in the application of these remotely sensed grain size mapping methods to sUAS imagery.  

However, success in this area has been limited due to two fundamental problems: lack of constraint 

of image scale for sUAS imagery and blurring effects in sUAS images and resulting orthomosaics.  In 

this work, we solve the former by showing that SfM-photogrammetry can be used in a direct 

georeferencing (DG) workflow (i.e. with no ground validation) in order to predict image scale within 

margins of 3%.    We then propose a novel approach of robotic photosieving of dry exposed riverbed 

grains that relies on near-ground images acquired from a low-cost sUAS and which does not require 

the presence of ground control points or visible scale objects.  We demonstrate that this absence of 

scale objects does not affect photosieving outputs thus resulting in a low-cost and efficient sampling 

method for surficial grains.  
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Introduction 

The remote sensing of riverbed material particle size has been the focus of a substantial amount of 

research in recent years e.g. (Buscombe, 2008; Buscombe et al., 2010; Buscombe and Masselink, 

2009; Carbonneau, 2005; Carbonneau et al., 2005b, 2005a; Detert and Weitbrecht, 2012; Graham et 

al., 2010; Woodget and Austrums, 2017). Generally speaking these methods of particle size 

determination from imagery can be classified in two broad families: Object-based and statistical 

correlation approaches.  As the name implies, the object-based approaches rely on visual or 

automated identification and measurement of clast objects in imagery. Early approaches, dubbed as 

‘photosieving’, relied on visual clast identification and measurement in terrestrial photographs 

(Adams, 1979; Ibbeken and Schleyer, 1986).  Alternatively, several authors have presented 

automated approaches which rely on object-based image analysis (OBIA) in order to segment clasts 

into separate objects that can be fitted to an ellipsoid in order to estimate both the a-axis and b-axis 

most commonly used in particle size descriptions e.g. (Butler et al., 2001; Detert and Weitbrecht, 

2012; Graham et al., 2010, 2005).  The second family of image-based grain-size measurement 

approaches moves away from individual clast identification and correlates the statistical properties 

of image patches with their median or average grain-size.  Within this approach, several algorithms 

and statistical metrics have been applied such as image texture  (Black et al., 2014; Carbonneau et 

al., 2005c, 2005a, 2004; Verdú et al., 2005), image autocorrelation (Buscombe and Masselink, 2009; 

Rubin, 2004) and wavelet transforms (Buscombe et al., 2010; Buscombe and Rubin, 2012). With the 

exception of Buscombe et al.(2010), a  common limitation with these statistical correlation 

approaches is that they require empirical calibration data which is needed to establish a predictive 

relationship yielding grainsizes from some local image statistic.  More generally, one common-point 

that links both the statistical correlation and object-based approach is that they all measure particle 

size in image pixel units and then, at some point in their respective processes, convert these 

dimensions to linear units via knowledge of image scale and/or pixel dimensions.  In the case of 

terrestrial imagery, image scale is commonly established with the inclusion of a scale object in the 

photographs.  In the case of airborne imagery acquired from manned aircraft, the nominal altitude 

above ground level is a closely controlled parameter which allows an accurate image scale to be 

calculated.  However, in the case of drone imagery, precise altitude AGL (Above Ground Level) is not 

well constrained and as a result spatial resolution is not known a priori.   Therefore, precise 

determination of image scale for each image in a small Unmanned Aerial System (sUAS) survey 

remains problematic.  

In this short communication, we present a corollary of the work of Carbonneau and Dietrich (2017).  

These authors have demonstrated that a Direct Georeferencing (DG) approach with low-cost sUAS 

can accurately calibrate the camera focal length and predict that the scale of a survey site to within 

ca. ±1%.  Here, we use these findings to demonstrate that individual image scale can also be strongly 

constrained with the proper use of SfM-Photogrammetry in a DG workflow and our results show 

that the altitude above ground level (AGL) and associated scale of images can be predicted to within 

3% when they are included in a larger photogrammetric bloc which is georeferenced with a DG 

workflow (with no ground validation). From this foundation, we present the proof-of-concept for a 

new robotic photosieving approach applied here to dry exposed riverbed material. The objective of 

robotic photosieving is to sample riverbed grainsizes without the need for any type of field 

calibration data, it relies on non-overlapping, near-ground imagery acquired from sUAS at flight 

altitudes below 10 m AGL (Above Ground Level).  Crucially, these images are also part of a larger 
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photogrammetric bloc that includes higher altitude images with a strong network geometry.  In such 

cases, the low-altitude imagery can be aligned in the overall photogrammetric bloc and their 

resulting position and spatial resolution precisely predicted from SfM-photogrammetry.   The 

resulting mm-scale imagery clearly resolves particle edges for fluvial gravels and cobbles and has 

further potential to resolve the gravel/sand transition.  We argue that robotic photosieving, 

combined to recent low-cost multirotor sUAS, provides a novel way forward for remote grain size 

measurements that will transform current fluvial survey practices. 

Methods 

Site Selection and Photosieving Data Acquisition 

Field experiments were conducted in Northern Italy on the rivers Po, and Sesia.  Three sites were 

selected according to grain size:  on the Sesia, we identified a very coarse site with a cobble/boulder 

bed.  On the Po, we identified two sites: one with a sand bed and another with a fine to coarse 

gravel bed.  At each site, we deployed a series of fifteen 30 cm rulers (total length of 310 mm) in 

bright opaque colours as a testable reference scale for aerial imagery.  The stability of ruler length 

was tested by sampling 15 rulers with digital callipers yielding an average length of 310.2 mm with a 

standard deviation of 1.1 mm.  We use 310 mm as a meaningful value for ruler length.  Our approach 

involves sUAS imagery taken from a hovering position at very low altitudes (below 10m) and 

therefore requires a multirotor system.  Imagery was acquired with a consumer-grade Phantom 4 

sUAS manufactured by DJI inc.  Take-off weight is 1.38 Kg and it is equipped with a 6.17 x 4.55 mm 

CMOS colour sensor acquiring 12Mpix still images. The camera has a stock focal length of 3.61 mm 

and is mounted on a gimbal which damps vibrations and compensates for rotational motions of the 

sUAS.  The DJI Phantom 4 is also equipped with a series of downwards facing sensors designed to 

assist hover stability when at low altitudes (<10m) or in GPS-deprived environments.  The Visual 

Positioning System (VPS) uses a combination of ultrasound emitters and optical flow cameras to 

compensate for well-known lack of indoor reception and limitations in the vertical precision of 

consumer grade GPS receivers.  For the surveys reported here, sUAS flight was automated with a 

third-party app: Litchi.  This app gives the pilot full control on all flight parameters: Altitude, heading, 

velocity, intervals, camera angle and settings.  The app also allows the pilot to enter and use pre-

programmed waypoints in order to determine flight pathways.  For each site, the fifteen rulers were 

dropped on the gravel bar and a powered-up drone was carried manually over the rulers. At each, a 

configured button on the pilot’s remote control was used to add a waypoint in the piloting app in 

order to guide the sUAS back to the ruler.  This was found to be the most effective method of 

entering the position of the ruler into the flight control app.  Once the rulers were deployed and 

their position recorded, the waypoint altitudes were increased to 7 m in order to mitigate for the 

relatively low accuracy of the on-board GPS (±2.5m).  Given that the return to any given waypoint 

relies on 2 measurements, one to set the waypoint and another to return, the expected circle of 

error for the waypoint navigation is in the order 10 m.  At 7 m AGL, and given the camera’s field of 

view (FOV) of 94° and 4:3 image ratio, the image footprint is ca. 15X11 m.  The image dimensions 

therefore enclose the expected error thus allowing us to assume that the ruler will be captured in 

the image despite navigation errors.  The resulting pixel resolution is 3.5 mm. However, readers 

should note that the effective altitude above ground level (AGL) along with image footprint and 

resolution, will change as ground elevation varies and require accurate estimation. Figures 1 shows 

an example of a low-altitude image. 
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Photogrammetric Surveys 

We then proceed to design the photogrammetric survey that we hypothesize will allow us to predict 

the scale of the near-ground images.  Readers should note that we make an important assumption: 

the method developed here is intended to work in tandem with sUAS mapping methods.   

Consequently, in what follows, we are designing the photogrammetric survey based on our 

experience in SfM-Photogrammetry as published in recent literature (Carbonneau and Dietrich, 

2017; Fonstad et al., 2013; James and Robson, 2014). Our image geometry therefore aims to deliver 

best results, in a DG workflow, for camera calibration and topographic precision and also to deliver 

high quality orthoimagery and topography that are commonly expected as part of any sUAS survey.  

Carbonneau and Dietrich (2017) and Fonstad et al. (2013) both recommend the use of two flight 

altitudes, the drone was therefore programmed to collect imagery at altitudes of 20 m and 60 m AGL 

along straight flight lines in multiple directions.  For these 2 higher altitudes, waypoints were not 

used to define individual image acquisition locations, they were only used to determine the 

endpoints of individual flight lines.  The relatively low altitude of 20 m was selected in order to 

minimise disparities between the near-ground imagery and the higher altitude imagery and 

therefore insure that the image matching algorithm in the photogrammetric software could find 

sufficient correspondence with the near-ground images.  Images at altitudes of 20 m were acquired 

at nadir (camera axis normal to the surface).  The higher altitude was set at 60 m since this is the 

legal limit for drone flights in Italian airspace operated by non-commercial pilots.  These images 

were acquired at 30 degrees off-nadir.  sUAS velocity and image intervals were set for 80% forward 

overlap.  Lines at 20 m AGL were positioned for 50% sidelaps with lines at 60 m perpendicular to 

these and providing additional overlap in the image network geometry.  Given the flight time of the 

Phantom 4, we anticipated that this flight pattern could cover areas in excess of 70 000 m2 and leave 

sufficient battery to collect the near-ground imagery required for the photosieving. 

Another key point that readers should note is that there is no spatial overlap within the near-ground 

image data.  Whilst it would be possible to acquire overlapping images within a full photogrammetric 

survey with a base altitude of 7m, the low ground altitude, combined to the requirement of 80% 

forward overlap and 50-60% sidelap in the imagery, would lead to forward velocities of only 3 km/h 

and flight lines separated by ~5m.  For example, with a flight time of 20 minutes, the Phantom 4 

could cover 1 linear km under these conditions.  At 7 m altitude the image footprint is 11m.  If we 

choose 2 lines of 500 m, separated by 5m, we obtain a total image swath of 500 mX17 m which is 

only 8500 m2. We consider this working area to be unacceptably small and we therefore opted for a 

sampling approach where any given near-ground photo with mm-scale resolution only overlaps with 

higher altitude photos with cm-scale resolutions. Therefore, the photogrammetric process described 

here cannot deliver mm-scale topographic data based on the resolution of the near-ground imagery.  

For the near-ground imagery, we only aim to derive the accurate position of the camera at the time 

of acquisition and then use this information in the calculation of an accurate image scale.   

Photogrammetric Processing 

Image networks for each site were processed as single ‘chunks’ (i.e. image blocs) with Agisoft 

Photoscan version 1.2.6.  First we setup 3 chunks which had data for each of 3 sites at all altitudes. 

Second, we setup 3 additional chunks where the 60 m altitude data was excluded.  This data will 

therefore be processed without oblique views.  Photoscan was used to align the image network, on 
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the ‘highest’ accuracy setting and build a dense point cloud on the ‘medium’ setting.   Raster DEMs 

are not used in this work.  For additional detail on the steps used in SfM-Photogrammetry, readers 

can now consult a growing body of published work (Bemis et al., 2014; Fonstad et al., 2013; James 

and Robson, 2012; Smith et al., 2016; Westoby et al., 2012).  The image blocs were referenced solely 

from the geotags recorded in the image metadata.  Carbonneau and Dietrich (2017) found that such 

an approach can yield high quality data with slope errors below 1 degree and scale errors 0.4-4%.  

The photogrammetric processing had 4 key outputs:  point clouds of the bar surfaces, point clouds of 

the adjusted camera positions, adjusted focal lengths and undistorted photos. The ‘adjusted’ camera 

positions correspond to the final positions and orientations after a least-squares bundle adjustment 

implemented by Photoscan.   These camera positions will be more reliable than the raw GPS 

metatags present in the imagery.  During the bundle adjustment, Photoscan also estimates camera 

parameters in order to refine and adjust values for lens distortion and focal length.  Finally, we used 

Photoscan to export undistorted (non-orthorectified) imagery.  The point cloud and camera location 

data was then imported into CloudCompare.  In accordance with the findings of Carbonneau and 

Dietrich (2017), we assume that the best quality surfaces are those processed with all 3 altitudes and 

we use these as the reference surfaces for each site.  TIN meshes were then calculated as the best-

fitting plane spanning point trios for each surface.  Once these meshes were calculated, we imported 

the XYZ adjusted camera positions as a point cloud and calculated a cloud-to-mesh distance that 

yielded the distance of each camera to the interpolated mesh surface along the Z-direction of the 

model.  We thus avoid the interpolation effects associated to raster DEMs and limit the role of 

interpolation to the calculation of a mesh for the reference surface.   

 

Remote Scale Predictions 

After point cloud generation and processing, we proceeded to scale predictions.  Our approach is to 

predict the length of the rulers in the near-ground imagery with a combination of camera and flight 

altitude data and to compare these predictions to the known ruler length of 310 mm.  Using basic 

camera geometry, the length of a ruler in object space (i.e. real-world space) can be predicted by eq. 

1: 

𝑅𝑜 =
𝐻∗𝑅𝑖

𝑓
      (1) 

Where Ro is the length of the ruler in object space, H is the flying height expressed in linear units and 

calculated as the height difference between the reference surface and the camera position, Ri is the 

length of the ruler in image space as measured in the imagery and expressed as a number of image 

pixels, we used the Matlab imtools function to display and measure ruler length on-screen.  f is the 

focal length expressed in pixel units. We test 3 focal lengths: the stock focal length supplied by DJI 

(Case 1); the single-altitude (with only images acquired at 20 m AGL) calibrated focal length (Case 2) 

and the double-altitude (with images from both 20 and 60 m AGL) calibrated focal length (Case 3). 
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Comparison of Robotic Photosieving vs Traditional Photosieving 

Finally, we examine how errors in scale predictions would propagate into a photosieving project 

composed of multiple images.  Images were classified with an object-based approach in ENVI 5.3 

which allowed us to quantify sand % by surface.  Images with more than a 20% presence (by surface) 

of sand were excluded from further analysis since mm-scale imagery is not capable of delineating 

individual sand grains.  We processed the remaining images (27) with BASEGRAIN, an open-source 

package for automated object-based grainsize measurement (Detert and Weitbrecht, 2012). Given 

the spatial resolution of the images, the cut-off b-axis length was set to 10 mm in order to exclude 

the detection of any grains smaller that ca. 3X3 pixels.  BASEGRAIN parameters were saved and for 

each of the 27 images, the photosieving process was run twice.  The first time, the scale was 

manually determined by re-measuring the ruler object on-screen with the BASEGAIN ‘scale’ tool and 

setting this length to 310mm.  Individual detected clasts from all images were then merged to 

produce 1 large population of photosieved grains.   The second time, the image scale was directly 

entered as that predicted by the case 3 SfM-photogrammetry workflow, the resulting clast data was 

once again merged to produce a second large population of sampled grains.  Outputs were analysed 

by comparing grain size fractions and by performing a statistical Wilcoxon rank sum test to verify if 

the median grain sizes of both large distributions were statistically equal.  Figure 2 presents a 

flowchart summarising the entire robotic photosieving workflow. 

Results 

Table 1 gives the basic descriptors of the photogrammetry outputs produced for each of the three 

sites.  A key result is that Photoscan failed to calibrate the focal length without oblique view images 

(case 2) and returned the stock value as the adjusted focal length.  Case 2 results are therefore not 

kept for further analysis. Model examination revealed that 32 of the 45 near ground images yielded 

usable data.  Three near-ground image acquisitions missed their target ruler.  Clearly in these cases, 

the GPS error exceeded the error of ±2.5 m in XY reported by DJI.  The likely explanation for this is 

simply that these position samples are from the tail of the distribution used by the manufacturer to 

establish an RMS error value to be passed to the consumer.  For near-ground images, the average 

position difference before and after the photogrammetric adjustment is -0.20m, -0.14m, 2.25m, in X, 

Y and Z respectively.  However, the more significant issue was that 10 near-ground images did not 

align in the overall photogrammetric models thus not returning an adjusted camera position and 

making an accurate determine of altitude AGL impossible.  Seven of these images were for the sandy 

site on the river Po.  This suggests that matching failure is due to a lack of unique key point features 

identifiable in both near-ground and higher altitude imagery.    

Inspection of the camera altitudes AGL shows that the flight altitudes AGL as estimated from the 

image alignment varied from 3.8 m to 7.4 m.  Figure 3  shows altitude distribution.  Equation 1 was 

then applied to the resulting flight altitudes and using the focal length data presented in table 1.  The 

prediction errors were then calculated as a % of actual ruler length.  Figure 4 shows results with 

mean scale predictions errors of -0.4% and -1.2% with standard deviations of 1.7% and 2.6% 

respectively. Maximum errors were -5.11% for the stock focal (case 1/2) and -4.03% for the 

calibrated focal length (case 3).  Calibration of the focal length did not improve the mean error, but it 

reduced standard deviation and produced a normal distribution of the errors. Overall these results 

are coherent with previous findings. Carbonneau and Dietrich (2017) found that using a direct 
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georeferencing workflow could restitute model scales to within 0.2-4% depending on the image 

network geometry.  Furthermore,  James et al (2017) propose a simple relationship of n-1/2 x control 

precision as an estimate of absolute precision for an SfM survey.  Using this relationship with our 

data (see table 1) we obtain precisions of ~15cm.  When compared to the planned flying height of 

7m, this precision represents an error of ~3% which very closely matches the finding above. 

Initial observation of the low-altitude imagery clearly shows recognisable grains that are easily 

identified by a human observer (e.g. fig. 1).   This indicates that aerial photosieving will be possible in 

analogy with the approach of Dugdale et al. (2010).   Figure 5 displays a sample outputs from 

BASEGRAIN.  We find that for sandy patches the object-based algorithm performed poorly with small 

homogenous patches of sand being falsely identified as clasts (top right of figure 5).  Performance 

for larger clasts is good with most particles being successfully delineated.  Figure 6 shows the results 

of the wider application of BASEGRAIN to a set of 27 images.  Automated photosieving returned in 

excess of 1 million detected grains in the image dataset.  Figure 6 shows that the distributions and 

resulting values for D16, D50 and D84 are quasi-identical.  Furthermore, the Wilcoxon rank sum test for 

equal medians (equivalent to a Mann Whitney U-test) returned a p-value of 0.71 therefore accepting 

the null hypothesis that the medians (D50) are equal. 

Discussion 

We have demonstrated that robotic photosieving using image scales predicted from SfM-

photogrammetry delivers statistically equal grain size median values (D50) when compared to the 

traditional approach of determining spatial resolution with a visible scale object.  Robotic 

photosieving can now be deployed without the presence of rulers meaning that the pilot and field 

crew do not need direct access to the sample location. Assuming most users will require 2D 

orthoimagery and 3D models, robotic photosieving only requires 1 additional flight when combined 

to the sUAS mapping approach used in Carbonnneau and Dietrich (2017). Our results have also again 

demonstrated the importance of oblique views for camera calibration.  Based on our experience and 

results, we recommend that readers use multiple flight altitudes and viewing angles during surveys 

(Carbonneau and Dietrich, 2017; James et al., 2017).    

Overall, the errors associated to robotic photosieving will match the widely researched errors 

already reported in the photosieving literature (Adams, 1979; Butler et al., 2001; Detert and 

Weitbrecht, 2012; Dugdale et al., 2010). Dugdale et al. (2010) present a summary of 11 additional 

papers reporting on the quality of photosieving results when compared to bulk sampling.  Overall, 

authors report very strong linear relationships (R2>0.85) between photosieving and field outputs.  

This body of work also reports systematic errors ranging from 0.05 to 0.33 (1  unit = log2(mm 

units)).   Of specific interest to our results, Dugdale et al. (2010) also found that when using aerial 

images acquired from a manned aircraft for photosieving there was a slight positive bias of 1-2 pixels 

caused by operator errors when visually identifying particle edges.  If transposed to our results, this 

would imply a bias of 4-6mm.  The effect of this bias on the lower size fractions will be mitigated by 

our grain size cut-off of 10mm.   However, given the importance of fine grain size fractions in many 

ecological processes such as fish habitat selection, this does impose a significant limitation to robotic 

photosieving.  A further mitigation can be added by using a lower flying altitude for the robotic 

photosieving imagery.   In the case of this proof-of-concept, the photosieving images were collected 

at an altitude of 7 m in order to offset the low precision of the on-board GPS and maximise the 
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chances that near-ground images actually capture the ruler. This resulted in image spatial 

resolutions ranging from 2-3 mm.  This is a relatively low spatial resolution and a field operator with 

a camera could easily capture images with sub-mm spatial resolution.  But, flight design can also 

improve the resolution, and given that rulers are not required for the actual implementation of 

robotic photosieving, the flying altitude can be set as low as 2-3 m to mitigate the bias observed by 

Dugdale et al. (2010).  However, readers should be cautioned that when operating at lower 

altitudes, photogrammetric errors can represent a greater percentage of the flying height and thus 

increase the errors in the robotic photosieving outputs.  This could be mitigated by following the 

advice of James et al (2017) and increasing the number of images.  For example, in the case of the 

present survey, table 1 shows that the predicted precision p, is on the order of 15 cm which is 

roughly 3% of the 7 m flying height.  If we had collected the photosieving imagery at 2m, the error 

would have increased to 8%.  However, if we had collected twice as many images (~500), the error 

could be reduced to 5%.  Alternatively, developing new low-cost technologies that improve the 

location accuracy of on-board drone positioning would also help improve the quality of robotic 

photosieving (James et al., 2017).   However, it should be noted that by flying at lower altitudes, the 

correspondence between the near-ground imagery and the mid-altitude imagery will be reduced 

which might lead to a failure to align the photosieving images in the overall photogrammetric bloc.  

In such cases, the recommended solution is to reduce the altitude of the intermediate flight.   

The approach presented here will facilitate the sampling and recording of fluvial grain size as well as 

the overall monitoring of gravel bar evolution.  Similarly to geological work in Bemis et al.(2014), the 

geolocated grain size data combined to the high resolution photogrammetric surveys collected in the 

robotic photosieving workflow provide a recorded dataset that is not only useful for single-epoch 

analysis, but that will also prove valuable for change detection studies or simply when site 

information needs to be revisited by other researchers.  Indeed, robotic photosieving can be used to 

rapidly collect a very large sample of surficial grain size.  A typical drone battery of 15-20 minutes 

could easily provide in excess of 100 samples over areas of 1 hectare.  Since Carbonneau et al. (2004) 

used a photosieving approach to calibrate their airborne grain size mapping method, robotic 

photosieving could also calibrate statistical grain size mapping methods if spatially continuous grain 

size information is required.  However, we note that if spatially continuous grain size maps are not 

required, users may not actually need to undertake the extra step of calibrating and executing a 

grain size mapping algorithm and the robotic photosieving data could suffice for bar-scale grain size 

characterisation easily repeated on multiple gravel bars 

Another key advantage of the robotic photosieving workflow described here is the potential to 

identify the gravel/sand transition identified by many authors as critical to ecohydraulic processes 

e.g. (Sear, 1993; Soulsby et al., 2001; Wu, 2000).  If, as suggested above, robotic photosieving is 

carried out with a Phantom 4 drone at an altitude of 2 m, then the resulting imagery would have a 

resolution of 1.1mm.  If the same survey is carried out with a Phantom 4 pro and the improved 

camera, the resulting ground resolution would be 0.7 mm.  As we approach sub-mm scale imagery, 

we can begin to identify grains in the 2-5 mm range and thus identify the gravel/sand transition at 2 

mm according to the Wentworth scale.  Currently, ground-based imagery collected on foot is the 

only option for the acquisition of sub-mm imagery.  Robotic photosieving therefore has the capacity 

to effectively automate the important field task of grain size sampling. 
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Conclusion 

We have presented the proof-of-concept for a novel approach to robotic measurement of dry, 

exposed, riverbed grains based on low-cost multirotor sUAS, that does not require any ground 

validation.  Based on the prediction of image scale in a direct georeferencing (DG) SfM-

photogrammetry workflow, robotic photosieving will allow fluvial geomorphologist to rapidly sample 

particle size in reach-scale, inaccessible, areas with minimal field-effort.  Furthermore, the use of a 

low-cost sUAS and one of many widely available SfM-photogrammetry packages, both commonly 

found in most geography departments, makes the process easily transferable to any researcher.        
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 # 
Images 

Area 
[m2] 

Pts 
[x103] 

  
[mm] 

p 
[cm] 

Re 
[pix] 

Focal [mm] 
(case 1) 

Focal [mm] 
(case 2) 

Focal [mm] 
(case 3) 

Site 1 272 72423 586 20 15.16 0.65 3.610 3.610 3.651 

Site 2 276 99375 624 20 15.05 0.84 3.610 3.610 3.536 

Site 3 181 39274 529 20 18.58 1.47 3.610 3.610 3.701 

 

Table 1.  Basic descriptors for photogrammetry outputs.  The number of images includes the 15 

near-ground photosieving images taken at each site. Site area is calculated by exporting a raster 

DEM at resolutions of 25cm and summing the number of non-null pixel areas.   gives the expected 

relative noise error estimated from the results of Carbonneau and Dietrich (2017) as 0.1% of the 

base flying height (20 m). p is the absolute precision as estimated by the work of James et al (2017).  

These authors show that (n-1/2 x control precision) is a good estimate for the absolute precision of a 

sUAS survey. Here n is the number of points  (here the number of images) and the control precision 

is taken as the reported GPS error of ±2.5m  Re is the average reprojection error, in pixels, resulting 

from the alignment process.  Case 1 focal length is the stock value provided by DJI inc.  Case 2 is the 

focal length for model camera calibrations where 60m flight data (oblique view) was excluded and 

Case 3 is the calibrated focal length with the full image dataset.  Readers will notice that case 1 and 

case 2 focal lengths are identical.  Photoscan failed to calibrate the focal length in case 2 and 

returned the stock value, all the solutions were processed with a full set of default camera 

parameters (focal, principal point offset and distortion).  
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Figure 1: Sample photo of a ruler (total length 310 mm) taken on the river Pô, Northern Italy. 
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Figure 2. sUAS mapping and robotic photosieving flowchart.  Grey elements are input or 

intermediary data. Black elements are processes requiring software. White elements are final 

outputs. 
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Figure 3. Camera altitude distribution for all sites.  The variation around the programmed flight 

altitude of 7m reflects both local changes in topography at the field sites and errors of the flight 

computer when trying to maintain altitude.  For low altitudes AGL and where the Visual Positioning 

System functions to enhance GPS-Z precision, DJI reports these as ±0.5 m. Average difference of 

camera location in Z before and after photogrammetric adjustment, 2.25 m, suggests this error may 

be higher.  
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Figure 4 Ruler Length error distributions for stock (case 1) and adjusted (case 3) focal lengths. Error 

% was calculated with respect to actual ruler size of 310mm. Negative errors should be interpreted 

as the predicted length being smaller than the actual length. 
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Figure 5. Example of a BASEGRAIN automated photosieving output.   
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Figure 6. Comparative distributions of photosieving outputs. In part A), the outputs were scaled with 

manual measurement of the ruler on-screen.  In part B), the scale was derived from the SfM 

workflow described in the paper.  A Wilcoxon rank sum test confirmed that the medians of both 

distributions are statistically equal.   
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Graphical Abstract 

We present a novel approach to grain size sampling: robotic photosieving.   Our approach uses drones 

to collet near-ground imagery. At altitudes below 10 meters, individual clasts are visible in imagery 

thus opening the path for automated photosieving methods.  We show how the additional use of a 

recently developed workflow for the direct georeferencing of drone-based photogrammetric surveys 

allows robotic photosieving to operate remotely without the need for any ground validation or direct 

site access.  

 

 

 

Comparative distributions of robotic photosieving outputs. In part A), the outputs were scaled 

with manual measurement of the ruler on-screen.  In part B), the scale was derived from the SfM 

workflow described in the paper.  A Wilcoxon rank sum test confirmed that the medians of both 

distributions are statistically equal.   

 


