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Abstract—This paper presents an approach to determine the
optimal placement and size of ESSs in a high wind penetration
grid. Genetic Algorithm (GA) is used to find optimal placement
of ESSs so that the combined generation of wind and ESSs is
maximized. A cumulant-based multi-period AC Optimal Power
Flow (OPF) model with the incorporation of ESSs is developed
to take into account wind and load uncertainties in the sizing of
the storage devices. The model is tested on IEEE 57-bus system
and on real Sicilian system in Italy.

I. INTRODUCTION

Renewable energy has been increasingly integrated into
power systems as a result of the effort to reduce CO2

emissions and build a future power grid economically feasible
and environmentally sustainable. Particularly, according to the
Blue Map scenario for power supply (IEA, 2008), electricity
generation from renewable energy provides a share of 22%
of global electricity generation in 2050, which grows almost
threefold compared to the Baseline scenario [1]. Along with
this growing share of renewable technologies, greater interest
has been attracted to the use of Energy Storage Systems (ESSs)
due to the variable nature of renewable energy sources. ESSs
can accommodate renewable generation in time-shifting its
energy to match demand and avoid power curtailment. They
can also be used to mitigate transmission congestion and hedge
forecast errors, etc.

As wind penetration increases, decision on the size and
location of ESSs becomes important for both security of
operation and economy of the system. The goal is to place
a minimum capacity of ESSs at appropriate sites where their
applications will be most exploited. There is a number of stud-
ies investigating optimal sizes and sites of ESSs for different
applications with wind generation such as compensating short-
term wind forecast errors, reducing transmission congestion
and minimizing curtailed wind energy. Some papers use de-
terministic models [2]–[6] while others develop probabilistic
approaches to address wind and load uncertainties [7]–[13].
In [7], for example, a stochastic programming methodology
is proposed to solve ESS sizing optimization problem in grid-
connected wind power plants. The paper takes into account the
variability of wind power, system load and electricity prices.
The optimization is solved using sample average approx-
imation approach. In [8], chance-constrained programming
is employed in optimal sizing of Battery ESS (BESS) for
wind power applications. GA combined with Monte-Carlo
simulation is used to solve the optimization problem in order to
minimize energy cost while keeping the differences between
wind/BESS output and a predefined profile within a certain

limit. Paper [9] proposes a probabilistic method for sizing
an ESS to reduce the effect of uncertainty of short-term
wind power forecasts. P. Xiong et al [10] apply a two-stage
stochastic model for determining both optimal locations and
sizes of ESS under uncertain wind power. A stochastic mixed-
integer linear programming formulation is proposed in [11]
to co-optimize storage siting and sizing. The approach is
applied to a realistic WECC system. References [12] and
[13] propose a probabilistic methodology to optimally place
ESSs in a deregulated power system. The papers use two-point
estimate method to incorporate uncertainties into a DC OPF
model. However, the probabilistic DC OPF model with ESS
integration is solved independently for each single hour in the
whole time frame. This way of solving the model does not
adequately represent ESS operation in a deregulated market
since the addition of ESSs introduces time inter-dependence
behavior into the OPF model. Moreover, computation time is
expected to be very high for large-size systems.

In this paper, we propose a combined GA and probabilistic
OPF (POPF) model to optimally place and size ESSs in
power systems. The ESSs are used for time-shifting wind
power to match system demand, hence improve overall system
revenue. The GA is applied for optimal siting of the ESSs
while the POPF is used for sizing the ESSs under wind and
load uncertainties. The POPF is based on cumulant approach,
thus can effectively capture system uncertainty into the OPF
model. Contribution of the paper includes an approach for
optimally place and size ESSs for wind integration, taking into
account wind and load uncertainties in the sizing of ESSs.
This approach is based on a multi-period AC OPF model,
which is a mathematically appropriate approach for studying
storage devices, and can be applied for planning problems
with ESSs in large systems. The remainder of the paper is
organized as follows: In Section II, the POPF model with ESSs
is described. Section III describes probabilistic modeling of
power injections. In Section IV, the methodology is shown. In
section V, tests and results are discussed. Section VI concludes
the paper.

II. PROBABILISTIC OPTIMAL POWER FLOW WITH ESSS

A. Multi-period AC optimal power flow model

The AC OPF model with ESS integration has the objective
function of minimizing ESS capital cost and system total



generation cost:
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where, CcapESS
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j ) is ESS capital cost, which

consists of energy-related cost and power-related cost; Bmax
j

and Rmax
j are respectively energy and power capacity of the

ESS at bus j; P t
G,i is real generation power at bus i in period

t; P t
ch,j and P t

d,j are charging and discharging power of ESS
at bus j in period t; c0i, c1i, and c2i are cost coefficients of
generating unit at bus i; cch,j and cd,j are respectively cost
coefficients for charging and discharging power of ESS at bus
j; ng and ns are total number of generating units and total
number of ESSs, respectively; T is the optimization period
considered.

The last component in the objective function (1) represents
complementary constraints, which make sure the ESS is not
charged and discharged at the same time. These constraints
are managed by applying suitable fictitious charging and
discharging costs (cch and cd) for the ESS. When charging,
the ESS is treated as a normal load. Therefore, the operational
cost of charging is the Locational Marginal Price (LMP) at the
ESS bus, and the charging cost cch is set to zero. To prevent
simultaneous charging and discharging, the operational cost of
discharging cd is set to a very small quantity, i.e., cd = 10−2

($/MWh), as presented in [14].
This objective function is subject to network constraints and

constraints on ESSs.
Power balance equations: Include equations for real and

reactive power at each node i in each time period t:
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ch,i are real and reactive generation power of generating

unit at bus i in period t, real and reactive power of load at bus i
in period t, real and reactive discharging power of ESS at bus i
in period t and real and reactive charging power of ESS at bus
i in period t, respectively; V t

i and V t
k are voltage magnitude of

bus i and k at period t, respectively; θti and θtk are voltage angle
of bus i and k at period t, respectively; Gik and Bik are line
conductance and line susceptance of branch ik, respectively;
nb is the total number of buses in the system.

Upper and lower limits for voltage magnitudes:
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i are lower and upper limit of voltage
magnitude at bus i, respectively.
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where, Itij and Itji are magnitude of the current flowing from
bus i to bus j and from bus j to bus i in hour t, respectively;
Imax
ij and Imax

ji are upper limit of current flow from bus i to
bus j and from bus j to bus i, respectively.

ESS energy balance equations:
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where, Bt
i and Bt−1

i are energy of ESS at bus i in hour t and
t-1, respectively; 4t is the time step.
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Pmin
d,i ≤ P t

d,i ≤ Rmax
i (10)

Pmin
ch,i ≤ P t

ch,i ≤ Rmax
i (11)

where, Pmin
d,i and Pmin

ch,i are lower limit of real discharging
and charging power of ESS at bus i.

ESS energy limits:

Bmin
i ≤ Bt

i ≤ Bmax
i (12)

where, Bmin
i is lower limit of energy of ESS at bus i.

Budget constraints:

ns∑
i=1

Rmax
i ≤ Rtot (13)

ns∑
i=1

Bmax
i ≤ Btot (14)

where, Rtot and Btot are respectively maximum allowable
power and energy capacity of the ESSs to be installed.



B. Cumulant-based Probabilistic OPF

Cumulant-based POPF relies on the behavior of random
variables (r.v.s) when they are combined in a linearized
fashion around the solution of a deterministic OPF [15].

When input variables of the OPF problem presented in
Section II-A are uncertain, the problem is defined as a POPF
problem. The relationship between vectors of output and input
r.v.s is generally formulated as follows:

z = h(x) (15)
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h(·): mapping function between input and output.

At the optimum, KKT optimality conditions must be ful-
filled [16].

Incorporating wind and load as r.v.s into the first-order
KKT conditions, we have:

F (z,x) = 0 (16)

where, F (·) is set of nonlinear equations determining the first-
order KKT conditions.

The relationship between z and x is formed by taking full
derivative of (16):

HL∆z + ∆x = 0 (17)

where, ∆z and ∆x are changes of vectors of output and input
r.v.s, respectively; HL is the Hessian matrix of the Lagrangian
function with respect to z.

Equation (17) is arranged as:

∆z = −H−1L ∆x (18)

Using linearized relationship (18) and based on the proper-
ties of cumulant [17], cumulants of output r.v.s can be calcu-
lated from cumulants of input r.v.s. Probability distributions
of output r.v.s are then obtained.

III. PROBABILISTIC MODELING OF POWER INJECTIONS

For a power injection in power systems such as load or wind
power generation, its stochastic nature can be characterized
by a probability density function (p.d.f.) and/or a cumulative
distribution function (c.d.f.). Such functions can be estimated
based on historical data. In the literature, load is usually
assumed to be characterized by a Gaussian distribution, while
wind power generation is usually modeled by various generic
continuous distributions such as Gaussian, Beta, Gamma,
Weibull, etc.

For wind power, it is hard to fit power output of a wind
farm to a common distribution function, since its probability
distribution regularity is usually poor. To overcome this issue,
a methodology is applied to estimate discrete distributions
for wind power output based on measured data: daily wind
power profiles of several years are clustered into distinct
groups (clusters); daily profiles belonging to each cluster are
then used to build each impulse of discrete distribution for
each hour; the probability of each impulse (corresponding to

each cluster) is calculated proportionally to the total daily
profiles; eventually, discrete distribution of wind power output
for each hour is obtained. Various techniques have been tested
to perform clustering analysis [18]. For the identification of
wind power clusters, k-means algorithm is used.

IV. METHODOLOGY

The overall methodology of this approach is summarized in
the flowchart (Fig. 1). In this approach, optimal location of the
ESSs and the expected value of the optimal size are determined
by GA and the deterministic OPF. The goal is to minimize ESS
investment cost and the total generation cost while maximizing
the combined generation of wind and storage. Accordingly, the
fitness function is described as:
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GA is an attractive and powerful alternative to other op-
timization methods in many power system problems because
of its robustness and efficiency [19]–[22]. Also, it is appro-
priate to solve optimal placement problems since traditional
derivative-based optimization approaches handle with diffi-
culty the non-convexity, non-linearity and discontinuity of the
problem [13]. GA operates based on the mechanics of natural
selection and genetics. It starts with a population of randomly
generated candidates. Each candidate is called a chromosome
and is made by a binary bit string structure that codes, in
this paper, the candidate buses for ESSs. Each chromosome
has its corresponding fitness which indicates its suitability
as an optimal solution. The GA iteratively produces a new
population from the old population by means of GA operators.
When this cycle of genetic recombination process is iterated
for many generations, the overall fitness of the population
generally improves [23].

Initially, the first population is randomly generated from
the solution space to place the ESSs. The multi-period OPF is
run with this placement of the ESSs to minimize the objective
function (1). GA, using results from the OPF, evaluates the
fitness (19) of each individual in the population. The fitness of
individuals is linearly ranked and stochastic universal sampling
method is applied to select individuals for breeding. Single
point crossover method is applied on the selected individuals
to produce new offspring which are then mutated to introduce
new genes to the existing solutions. Finally, new offspring
are evaluated and reintroduced into the current population to
give new population. This routine is repeated until the GA
convergence is reached. The best chromosome provides the
optimal siting of ESSs, and the optimal solution gives the
optimal power capacity Rmax and energy capacity Bmax of
the ESSs along with their corresponding optimal operational
profiles. At this point, optimal locations of ESSs and their
capacities are obtained. The probabilistic part of the POPF
is performed to assess the risk of not being able to store the
available energy during operation of the ESSs due to wind and
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Figure 1. Flowchart of the proposed methodology

load random behavior. Specifically, cumulants of the r.v.s at
each hour are calculated and probability distributions of ESS
capacities are built at each hour. Based on information from
these probability distributions, decision makers will finally
choose the size of ESSs to be installed.

V. TESTS AND RESULTS

A. IEEE 57-bus system

A test is carried out with the proposed approach on modified
IEEE 57-bus system. In this system, total load with a peak of
1620 MW is supplied from both conventional generators and
wind. There are 6 conventional generators (at buses 1, 2, 3,
6, 8, and 9) with total capacity of 1565 MW. Wind farms
are present in a windy area surrounding bus 12: 450 MW
are connected to bus 12 and other smaller wind farms are
connected to busses close to bus 12 for a total wind capacity
of 750 MW, accounting for 46.3% of wind power penetration.
ESSs are to be placed for time-shifting wind energy from
off-peak periods (low electricity price) to peak periods (high
electricity price) to add economic value to wind energy and
avoid wind generation curtailment.

Based on a scale-up version of 3-year measured hourly wind
power (from January 1, 2009 to December 31, 2011) of a real
wind farm in Sicily, Italy, long-term probability distribution
for the total wind power is estimated, using the methodology
presented in Section III. Total system load follows the typical
daily load profiles of 4 seasons in [24]. Load uncertainty
is modeled by assigning it among load buses according to
different distributions: loads at buses 15, 38, 44, 50 and 56 are
assumed to have Beta distributions with parameters computed
by using expected values and standard deviations (assumed to
be equal to 10, 12, 9, 8 and 11% of their expected values,
respectively) [25]; loads at remaining buses are assumed

normally distributed with standard deviations equal to 10%
of the expected values.

Result of the combined GA and deterministic OPF is shown
in Table I. In this case, the model decided to install 2 ESSs, a
bigger one at a wind bus (bus 12) and a smaller one at a load
bus (bus 29).

TABLE I. SIMULATION RESULT OF THE COMBINED GA AND

DETERMINISTIC OPF

Optimal location Bmax Rmax

(Bus number) (MWh) (MW)
12 495.2 95.6
29 172.2 31.0

As an example, operation of the ESS at bus 12 can be
seen in Fig. 2. Clearly, the storage is effectively used to time-
shift wind energy by charging wind power at low load periods
(hours 1 to 7) and then releasing it during the first peak periods
of hours 9 to 12 and the second peak periods of hours 20 to
22. There is no wind curtailment and wind power output is
fully dispatched.

Figure 2. Operation of the ESS at bus 12

Since input variables of the OPF problem are actually
stochastic, power and energy capacities of the ESS (i.e.,
output of the combined GA-OPF problem) are also random
variables. Now, the probabilistic assessment is performed on
ESS capacities obtained in Table I at the corresponding buses.

According to Fig. 2, the ESS reaches its power capacity
(Rmax) at hours 4 and 5, and reaches its energy capacity
(Bmax) at hour 7, after 6 consecutive charging periods. Since
wind and load variation is highest at hour 4, we choose
to perform probabilistic assessment for ESS power capacity,
based on its operation at this hour. In Fig. 3, we show results
of the POPF: c.d.f. of ESS power capacity at hour 4. In this
case, installation of the capacity according to Table I would be
not enough in some operating conditions. If the decision maker
decided to install ESS for a capacity of 143 MW, almost the
whole range of the probability distribution would be covered.
If a lower value of capacity is decided, it will lead to a risk of
not having enough power capacity for handling uncertainty in
the system. For example, using 122, 116, 104 and 102 MW
will cover 99, 95, 85 and 75% of the whole range of the



probability distribution, respectively. This means that if 5% of
risk is accepted, for instance, power capacity of the ESS is
approximately 18.9% reduced. Similarly, with 15% and 25%
of risk allowed, power capacity of the ESS is roughly 27.3%
and 28.7% reduced, respectively.

Figure 3. c.d.f. of power capacity of ESS at bus 12, hour 4

In Fig. 4, energy capacity of the ESS is probabilistically
assessed. As can be noticed from this figure, the use of 708,
627, 592 and 572 MWh will cover 99, 95, 85 and 75% of
the whole range of the probability distribution, respectively.
This also means that a 5%, 15%, and 25% of risk accepted
will result in a reduction of 20.4%, 24.9%, and 27.4% of the
energy capacity, respectively.

Figure 4. c.d.f. of energy capacity of ESS at bus 12, hour 7

In this case, if the decision maker needs to cover 85%
of wind and load variations, for instance, power and energy
capacity of the ESS at bus 12 has to be 104 MW and 592
MWh, respectively.

B. Sicilian system

Similarly, in this section, the proposed approach is tested on
a large network, i.e., Sicilian system. Sicily is the largest island
in Italy and Sicilian power system consists of 539 buses, 664
branches and 261 generating units, including 10 wind farms
with total installed capacity of 1407 MW. Hourly wind power
from September 1, 2011 to August 31, 2012 is used. Total
system load with a peak of 5620 MW is assumed to follow

the typical daily load profile in Fig. 5. Loads are assumed to
have normal distribution with standard deviation of 10% of
their expected values.

Figure 5. Load profile

Result of the combined GA and deterministic OPF is shown
in Table I. In this case, the model decided to install only 1 ESS
at a wind bus, i.e., bus 214. This ESS is used to efficiently
shift the wind energy from off-peak (hours 1 to 5) to peak
periods (hours 10 to 12 and 18 to 20) as shown in Fig. 6.

TABLE II. SIMULATION RESULT OF THE COMBINED GA AND

DETERMINISTIC OPF

Optimal location Bmax Rmax

(Bus number) (MWh) (MW)
214 172.0 49.7

Figure 6. Operation of the ESS

Now, probabilistic assessment is also performed on the
obtained ESS capacities in Table II at the corresponding bus:
c.d.f.s of ESS power and energy capacity are built (figures
7 and 8). Accordingly, in Fig. 7, the use of 49.7 MW (the
expected value capacity in Table II) can only cover about 55%
of the uncertainty while the use of about 55.9 MW, 58.6 MW,
70.5 MW and 76 MW can cover 75%, 85%, 95% and 99% of
the uncertainty, respectively. Likewise, in Fig. 8, the expected
value capacity of 172 MW can only handle around 50% of



system uncertainty whereas an energy capacity of 211.8 MWh,
222.2 MWh, 240.4 MWh and 282.1 MWh can approximately
cover 75%, 85%, 95% and 99% of the uncertainty.

Figure 7. c.d.f. of ESS power capacity, hour 5

Figure 8. c.d.f. of ESS energy capacity, hour 7

VI. CONCLUSIONS

The paper proposes an approach based on the combined
GA and probabilistic multi-period AC OPF to optimally place
and size ESSs so that the combined generation of ESSs and
wind power is maximized. The model effectively captures un-
certainty of wind and load resources in the planning of ESSs.
The model is extensively tested on IEEE 57-bus system and a
real-size system, i.e., Sicilian system. Computing time for the
Sicilian system is around 48 hours implemented using Matlab
programming language on an Intel core i7 CPU 3.4GHz/8.00
GB RAM PC, which is reasonable for a planning problem.
Test results show that to cover higher ranges of uncertainties,
ESS capacities are necessarily higher than the expected value
capacities. If a certain level of risk is acceptable, both power
and energy capacities will be smaller and the model allows to
estimate ESS capacities according to the levels of uncertainties
to be covered.
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