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Abstract: In this paper, we investigate the stochastic effects of the microstructure of polysilicon
films on the overall response of microelectromechanical systems (MEMS). A device for on-chip
testing has been purposely designed so as to maximize, in compliance with the production process,
its sensitivity to fluctuations of the microstructural properties; as a side effect, its sensitivity to
geometrical imperfections linked to the etching process has also been enhanced. A reduced-order,
coupled electromechanical model of the device is developed and an identification procedure, based on
a genetic algorithm, is finally adopted to tune the parameters ruling microstructural and geometrical
uncertainties. Besides an initial geometrical imperfection that can be considered specimen-dependent
due to its scattering, the proposed procedure has allowed identifying an average value of the
effective polysilicon Young’s modulus amounting to 140 GPa, and of the over-etch depth with respect
to the target geometry layout amounting to O = −0.09 µm. The procedure has been therefore
shown to be able to assess how the studied stochastic effects are linked to the scattering of the
measured input–output transfer function of the device under standard working conditions. With
a continuous trend in miniaturization induced by the mass production of MEMS, this study can
provide information on how to handle the foreseen growth of such scattering.

Keywords: microelectromechanical systems (MEMS); polysilicon; coupled electromechanical
analysis; stochastic effects; parameter identification

1. Introduction

The advances in the field of integrated circuits and semiconductors had a direct impact on the
emergence of a wide range of micro-sized devices, which we know today as microelectromechanical
systems, or MEMS [1,2]. Combining electronic and structural components at the microscale, MEMS
have been outperforming the conventional technologies in a variety of engineering applications like
e.g., accelerometers, magnetometers, scanners, pressure sensors and gyroscopes [3,4].

Due to the continuous growth in the industrial demand for MEMS applications, novel devices are
designed to feature ever smaller dimensions, with characteristic sizes of some structural components
on the order of 1 µm. The success of these new MEMS critically hinges on their reliability and the
predictability of their performances. However, the miniaturization pathway may increase issues
related to the mechanical and/or geometrical properties of the fabricated devices [5]. This has forced
a focus on assessing the effect of the underlying uncertainty sources at the microscale on the overall
performance of the devices (see, e.g., [6]).

The uncertainties in the mechanical properties of the structural parts of MEMS, primarily of the
movable structures in case of inertial devices, can stem either from the specific fabrication process
adopted [7], or from the fact that their relevant dimensions and the characteristic lengths associated
with material heterogeneities (like, e.g., the grain size) become comparable. While the effects of the
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first cause can be partially reduced by improving the fabrication process, those of the second one
are intrinsically linked to the stochastic nature of the material microstructure. All such effects are
experimentally testified by the scattering in the measured properties of the devices, see e.g., [8–11].

The mentioned variations of the geometrical properties of structures obtained through patterning
and etching of silicon films are often encountered. For instance, in [12], a variation of around 10%
in the dimensions of the movable structure of a polysilicon MEMS was observed; in [1], a 0.2 µm
variation was also observed over a 2 µm thick structural component. In [13], capacitive gaps (for
electrostatic actuation/sensing) varying between 5.3 and 5.6 µm were reported, against a target value
of 5 µm, for a single-crystal MEMS gyroscope. Such variations can obviously differ, depending
on the specific production process adopted. With a focus on the mechanical reliability of inertial
MEMS whose movable structures are made of polysilicon films, in this paper, we assess the link
between microstructural uncertainties due to film morphology and geometry on one side, and the
overall performance of the devices on the other side. For devices featuring single-crystalline movable
structures, the uncertainties linked to the over-etch depth still play a role in possibly setting reliability
and performance issues.

The present work relies upon an on-chip MEMS testing device proposed in [14,15], fabricated
using the ThELMA (Thick Epipoly Layer for Microactuators and Accelerometers) surface
micromachining process developed by STMicroelectronics (Geneva, Switzerland) (see, e.g., [7,16]),
and designed to purposely enhance the sensitivity of the device response to microstructure-governed
uncertainties. The scattered response of the device is numerically interpreted through a coupled
electromechanical, reduced-order analytical model of the device itself. A genetic algorithm (GA) is
then adopted to quantitatively estimate the uncertainty levels linked to the film mechanical properties,
to the etch variation or over-etch depth [17,18] and to a possible initial offset or geometrical imperfection
of the structure, leading to asymmetry in the response. As reported in [15], a Bayesian inference method
based on particle filtering may show some instabilities close to the pull-in of the devices, in terms
of estimated values of the aforementioned mechanical and over-etch properties tending to diverge
from formerly attained quasi steady-state solutions. To avoid such effects and correctly trusting all the
measurements acquired during the experimental campaign, a batch approach like GA is preferred here.
GAs have been already adopted for the robust optimization of MEMS structures (see, e.g., [19–21]),
but, to the best of our knowledge, not for parameter identification purposes.

The remainder of this work is organized as follows. In Section 2, a description of the on-chip
testing device is reported, and the details of an analytical model that accounts for the deformation of a
microstructured thin beam are provided, in order to assess the effects of beam stiffness, geometry and
initial offset on the input–output relation of the device. Section 3 deals with the adopted GA to estimate
the values of the parameters governing the beam response to loading and the initial imperfection, in
order to optimally match the experimental data collected by testing a set of nominally identical devices.
A statistical analysis of the results is next reported in Section 4. Finally, some concluding remarks and
suggestions for future investigations and further improvements of the proposed model/procedure are
collected in Section 5.

2. On-Chip Testing Device: Experiments and Modeling

The mentioned ThELMA process allows for producing thick polysilicon films, grown on top of
the die substrate, with a columnar microstructure. The micromechanical characterization of the film
has been carried out in this work with the on-chip testing device proposed in [14,15] and shown in
Figure 1. Although devices with a different geometry have been patterned on a single die and capped
through a glass frit-based low temperature wafer-to-wafer bonding technique inside a single cavity
(see [22,23]), in what follows, we will focus on the structure featuring the dimensions reported in
Table 1.
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Figure 1. SEM picture of the on-chip testing device, with a close-up of the polysilicon beam sample.

Table 1. Dimensions of the on-chip testing device.

Parameter Value

beam length (l) 20 µm
beam width (h) 2 µm

out-of-plane beam thickness (w) 22 µm
target gap at capacitors (g0) 2 µm
top/bottom plate length (a) 83 µm

lateral plate length (L) 200 µm

The tested microstructured specimen is represented by the thin beam at the top side of the
massive plate. This beam provides the only link between the suspended plate and the anchor to the
substrate: under the types of electrostatic actuation described in what follows, the plate is displayed
as a rigid body and the only deformed structural part of the device is the beam itself. The featured
out-of-plane thickness w = 22 µm of the beam, in comparison with its in-plane width h = 2 µm, allows
for assuming that plane-strain conditions rule the problem at the beam level. The production process
guarantees that the lateral surfaces of the movable parts of the device, and of the surrounding stators
adopted for actuation and sensing are all flat, with sidewall scallops [24] of negligible effect on the
measured response.

Testing of each polysilicon sample is obtained with a bias voltage applied either as VL to the
lateral stator or as VR to the top and bottom stators; the rotor, the beam and the anchor are instead
electrically grounded. Through VL, the electrostatic actuation provides a lateral force (horizontal in
Figure 1), which induces both a shear and a bending of the beam; through VR, the actuation gives
rise instead to an in-plane torque and so to a pure bending of the beam with no axial and shear
forces. While the structural system can be assumed to behave linearly due to the small displacement
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and rotation experienced by the plate up to pull-in instability [25], the electrostatic actuation at the
parallel (or slightly tilted, see the discussion below related to possible initial imperfections) surfaces
of the capacitors provides actuation forces that are nonlinear functions of the gap in the narrow
electrical domains; these forces are effectively modified by the specimen deformation. Moreover, the
specimen response is measured via the capacitance changes (with respect to the relevant values at
zero actuation) at the same capacitors, say ∆CL for the lateral capacitor and ∆CR for the two rotational
capacitors; the capacitance changes are again nonlinear functions of the beam deformation. Overall,
the output capacitance change vs. input voltage relationships turn out to be nonlinear; actuation
can be progressively increased up to when the attraction forces at capacitors become too large to be
counteracted by the stiffness of the beam, and pull-in instability occurs as marked by the capacitance
value growing to infinity. The experimental results obtained for a set of ten nominally identical devices,
represented in terms of ∆CL and ∆CR as functions of an applied voltage VL or VR, are shown in Figure 2.
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Figure 2. Experimentally measured capacitance change values ∆CL and ∆CR under (a) lateral actuation
through VL, and (b) rotational actuation through VR.

According to the qualitative description of the device behavior provided here above, it emerges
that discerning the effects of material uncertainties linked to the polysilicon morphology in the beam
and of geometrical uncertainties linked to over-etch depth, on the measured response of the device,
is a nontrivial task. Hence, an identification procedure, based on a GA, is proposed in Section 3 to
assess the mentioned uncertainties from the scattering in the responses of Figure 2, all related to the
nominally identical specimens.

Moving now to the formulation of the analytical model of the device, accounting for the beam
slenderness measured through its length/in-plane width ratio, the Timoshenko theory for thin or
moderately thick beams is adopted. For a homogeneous micro-cantilever beam, the relationship
between the load components at its tip (point A in Figure 1), in terms of shear force F and in-plane
torque M, and the induced deflection u and rotation θ then reads:{

(1 + ψT)F
M

}
=

EI
l3

[
12 −6l
−6l 4l2

]{
u
θ

}
(1)

where (see also Table 1 and Figure 1): l, h and w are, respectively, the length, in-plane width and
out-of-plane thickness of the beam; I = wh3/12 is the in-plane moment of inertia of the beam
cross-section; E is the effective Young’s modulus of the beam, accounting for the elastic orthotropy of
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each FCC silicon grain [26] and for the polycrystalline morphology [27,28]; EI represents the flexural
rigidity of the cantilever; ψT is a dimensionless factor that accounts for the shear deformations in the
beam and is a function of the so-called shear correction factor (see, e.g., [29] for anisotropic beams).
Due to the already mentioned small gap between the conductors (amounting to g0 in the initial,
ideal offset-free configuration), pull-in happens for this device when the assumption of a linearized
kinematics is still valid.

The loading terms F and M in Equation (1) are provided by the electrostatic actuation. As already
discussed in [15], due to the small rotation of the rotor for any admissible value of VL and VR, along
the faces of the conductors, the local solution for parallel plate capacitors can be adopted to provide
the densities (per unit area) of the attraction force as:

f =
εV2

2g2 (2)

and of the capacitance as:

c =
ε

g
(3)

where: ε = εrε0; εr is the relative permittivity of the medium, and ε0 is the dielectric constant in the
free space; g is the local gap in the electrical domain; and V is the applied voltage (either VL or VR,
depending on the actuation type). When the beam deforms, the gaps gL and gR, once again across the
electrical domains for the lateral and the top-bottom capacitors, can be linked to the displacement u
and rotation θ at the cantilever tip via:

gL =g0 − u− x2 sin θ

gR =g0 + x1 sin θ
(4)

where, according to what was depicted in Figure 1, it is assumed that u is positive if pointing to the
right, and θ is positive if counterclockwise.

Due to the high ratio between the in-plane length L (a) of the surface of the lateral (top-bottom)
stator and the reference gap g0, fringe effects are disregarded. Hence, upon integration over the
capacitor surfaces, the electrostatic actuation turns out to provide, in the lateral case:

FL =
εwV2

L L
2 (g0 − u) (g0 − u− L sin θ)

ML =
εwV2

L

2 sin2 θ

(
L sin θ

g0 − u− L sin θ
+ log

(
g0 − u− L sin θ

g0 − u

)) (5)

and in the rotational case:

FR =0

MR =
εwV2

R

sin2 θ

(
log

 g0 +
(

L
2 − a

)
sin θ

g0 +
L
2 sin θ

+
ag0 sin θ(

g0 +
(

L
2 − a

)
sin θ

) (
g0 +

L
2 sin θ

)) (6)

As for sensing, the values of capacitance between the facing plates in the two displaced
configurations respectively read:

CL =
εw

sin θ
log
(

g0 − u
g0 − u− L sin θ

)
(7)

CR =
2εw
sin θ

log

 g0 +
L
2 sin θ

g0 +
(

L
2 − a

)
sin θ

 (8)
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As already pointed out, the device output is actually measured through the capacitance changes,
i.e., the variations ∆CL and ∆CR with respect to the values CL0 and CR0 in the initial (either affected by
imperfection or offset-free) configuration. Formulae reported here above are similar to those in [15];
the differences between the two sets of equations are only due to a different representation of the
logarithmic terms.

The model discussed so far is purely deterministic. To account for uncertainties at the micro-scale,
terms related to the variability of the response of the device under fluctuations of stiffness and geometry
of the structure must be considered.

As far as the mechanical properties of the polysilicon film are concerned, the parameters coming
into play in the model are the effective elastic moduli E and G of the beam, the latter being implicitly
accounted for through the coefficient ψT in Equation (1). To provide insights into the effect of the
polycrystalline morphology on the effective stiffness of the beam, the results of homogenization
on a statistical volume element can be resorted (see, e.g., [27,30]). By increasing the size of the
polycrystalline sample, bounds on or estimates of the elastic moduli all converge to the asymptotic
values in accordance with e.g., [31]; for small samples, featuring a few grains only across the entire
width of the beam (see Figure 3), results get much scattered. The relevant scattering can then be
assessed by continuously varying the beam microstructure in a Monte Carlo analysis (see also [32]).
Alternatively, the effective elastic moduli of the beam can be identified by handling the experimental
plots of Figure 2 for each single specimen, finding the optimal values of the moduli matching at best
the data, and then assessing the variability of these values within the set of tested devices.

Figure 3. Close-up of an example of (digital) polycrystalline morphology of the movable structure.

As far as the geometrical uncertainties are concerned instead, two different sources can be
considered. First of all, the initial structural configuration can be characterized by an offset,
or geometrical imperfection induced by the processes of deposition and release of the polysilicon film.
Within the proposed framework, such imperfection is parametrized by the displacement u0 and the
rotation θ0 at the cantilever tip under no actuation. Such values affect the gap across the electrical
domains, and so modify both actuation and sensing. In addition to that, the etching process necessary
to release the movable structure from the substrate also induces a so-called over-etch, which can be
defined as a defect in the in-plane geometry due to a fluctuation of, for example, temperature and
etchant concentration (see [15,18,33]). If O identifies the over-etch depth, assumed to be isotropic in the
plane of motion of the structure, in the ideal configuration, the main geometric features of the device
are modified according to:

h? = h− 2O

l? = l + 2O

g?0 = g0 + 2O

(9)
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The deviation O from the target geometry, and so the sample-dependent lengths h?, l? and g?0 ,
can be estimated too by matching the experimental data.

To account for all of the above-mentioned sources of uncertainties at the microscale, the values
of E, G, O, u0 and θ0 should be identified for each single specimen by minimizing a measure of the
discrepancy between the applied voltage vs. capacitance change responses depicted in Figure 2,
and the relevant model outcomes. To avoid the typical issues ruled by curse of dimensionality in
identification problems, see e.g., [34], that can be even amplified by the nonlinear equations governing
actuation and sensing, the set of parameters to be tuned has to be analyzed first.

Concerning the effective elastic moduli, while E has a major role in Equation (1), G affects the
solution only by modifying the beam compliance to allow for shear deformations; due to the beam
slenderness and accounting for the results of [27], where it was shown that in-plane elastic isotropy
can be attained for rather small volume elements of the polysilicon film, G is set in what follows
according to G = E

2(1+ν)
, where Poisson’s ratio is assumed to be ν = 0.175 (see again [27]). The

microstructure-dependent value of G is therefore directly correlated to the variability of the effective
Young’s modulus E, which becomes the only elastic parameter handled by the identification procedure.
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Figure 4. Lateral actuation through VL = 15 V, sensitivity of the capacitance change ∆CL to: (a) E;
(b) O; (c) u0; (d) θ0.

To assess now the effect of parameters E, O, u0 and θ0 on the measurables, the relevant sensitivities
of the capacitance change ∆CL under an actuation of VL = 15 V, and of the capacitance change ∆CR
under an actuation of VR = 30 V are respectively reported in Figures 4 and 5. In Figure 4, it is shown
that the sensitivity (as quantified by the slope of the plots) to u0 is rather limited in the considered
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intervals, which have been set as follows. E is assumed to vary in the range E ∈ [Emin = 130 GPa,
Emax = 169 GPa], see [26], bounded by the values relevant to single-crystalline silicon for rotations in
the plane perpendicular to one crystal lattice orientation. In accordance with the production process,
O and u0 are respectively assumed to vary in the ranges O ∈[Omin = −0.15 µm, Omax = 0.15 µm] and
u0 ∈[u0,min = −0.1 µm, u0,max = 0.1 µm]. Finally, the range of variation for θ0 is set by considering
the pull-in instability, so that θ0 ∈[θ0,min = −4 mrad, θ0,max = 4 mrad]. In Figure 5, the sensitivity
to u0 is not reported, as it is assumed null in the case of rotational actuation. In fact, under a lateral
actuation pull-in occurs for upull-in

0 = g0
3 = 0.67 µm; under rotational actuation, this value of upull-in

0
would induce a variation of the surface of the facing conductors at top/bottom stators, and so of the
in-plane electrostatic-induced torque MR (the only non zero actuation term in this case) amounting to
0.67
83 ≈ 0.8%. For the considered range of u0 reported above here, the variation would be even smaller

and surely masked in the experiments by the noise level shown in Figure 2. According to this reasoning
and to what reported in Figure 4c, the identification problem can then be focused on the estimation
of E, O and θ0 only. Remarkably, the sensitivity analysis cannot be adopted alone for identification
purposes, as the effects of E and O are shown to be rather similar: in fact, a more compliant beam,
due to either a less-stiff material or a thinner cross-section, provides higher values of ∆CL and ∆CR,
independently of the type or actuation. Vice-versa, positive values of θ0 induce a softening (and higher
values of the capacitance change) under a lateral actuation and stiffening under a rotational actuation.
To properly distinguish each effect, a GA is then adopted to govern the identification procedure.
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Figure 5. Rotational actuation through VR = 30 V, sensitivity of the capacitance change ∆CR to: (a) E;
(b) O; (c) θ0.
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3. Identification Procedure: Genetic Algorithm

GAs are heuristic computational algorithms, mainly based on the evolutionary ideas of genetics
and natural selection (see [35–38]).

Through simplifications of the evolutionary theory, GAs can be considered as stochastic
optimization engines that handle a population of candidate solutions (also known as individuals
or phenotypes), and employ heuristics such as selection, crossover and mutation to evolve such
individuals over sequential generations. The basic steps of the method can be summarized as follows:

1. Generate a random initial population composed of nP candidate solutions;
2. Evaluate the fitness for each member of the current population through a purposely defined

objective function;
3. Select the so-called parents, i.e., members better fitting the object, for reproduction purposes;
4. Pass a number of so-called elite parents to the next generation population;
5. Generate offspring by combining the elements (or chromosomes) of two parents, and by applying

variations (based on any specific probability distribution) to a parent or to the newly generated
offspring. The first operator is called crossover, whereas the second one is termed mutation;

6. Replace the current population with the newly generated offspring;
7. Perform steps 2 to 6 until a termination condition is met, in terms of either maximum number of

generations or minimum change in the value of the best fitness among subsequent generations.

The initial distribution of individuals should be in accordance with the a priori knowledge (also
called expert guess in other contexts) of the most probable values or distributions of the parameters
governing the problem/model. In the absence of such information, a general practice is to use a
random distribution of the population over the search space, so as to increase the chance of accurately
locating the optimal solution.

As reported here above concerning the offspring generation, besides handling the elite members,
crossover and mutation are both used. The former operator enables the algorithm to combine the
elements of the best parents to generate possibly superior offspring; the latter instead prevents the loss
of diversity [37] by making random changes in the elements of each individual. GAs differ from one
another depending on how operators are tailored to form the next generation. In the current work, 5%
of individuals with the best fitness value has been passed to the next generation as the elite. As for
the evolution of the other individuals, a uniform crossover with a probability of 50% and a uniform
mutation with a probability of 1% have been adopted. Such crossover implies that the elements of the
individuals are randomly taken from the parents’ ones.

The population size to explore the parameter space is another important factor to set the
effectiveness of the procedure [39,40]. A large population would clearly imply numerous evaluations
and thus a high computational cost; on the other hand, such a large population would be advantageous,
as it allows a thorough space search and thus a higher chance to find the optimal solution in the case of
objective functions characterized by multiple local minima/maxima. In the current work, a population
size nP = 5000 has been managed to estimate the values of the unknown parameters E, O and θ0

for each tested sample. The procedure has been set to terminate after four successive generations
exhibiting no improvement (or a marginal improvement) of the best fitness value.

4. Results

Through the use of the GA detailed in Section 3, the values of the free model parameters E, O and
θ0 have been calibrated for each specimen by minimizing a scalar measure of the discrepancy between
the experimental and the model responses. For this purpose, the following discrete objective function
φ has been defined:

φ =
N

∑
i=1

(
|∆Cexp,i

L − ∆Cmod,i
L |+ |∆Cexp,i

R − ∆Cmod,i
R |

)
(10)
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where: N is the number of sampling points, evenly spaced by 0.5 V across the adopted ranges of
actuation voltage; for each value of the actuation voltage, ∆Cexp,i

L and ∆Cexp,i
R are the corresponding

values of the capacitance changes experimentally measured, whereas ∆Cmod,i
L and ∆Cmod,i

R are those
provided by the model; | � | stands for the absolute value of term �. Since the range of values for the
capacitance changes are all similar, independently of the actuation type, the two terms related to lateral
and rotational sensing are summed without any scaling or weighting factor (see, e.g., [41]). Since,
in [15], it was shown that Bayesian parameter estimates have a tendency to diverge from a rather
voltage-independent solution when pull-in is approached, the two terms in Equation (10) have also not
been downscaled by a factor increasing with the capacitance change. Function (10) thus exploits the
sensing modes, and so the possible redundancy in the data, by mixing the two relevant discrepancy
terms. In this objective function, while E and O have a direct effect on the currently measured values
of the capacitance at conductors, the rotation angle θ0 describes a distortion of the initial geometry of
the device and so affects the values of CL0 and CR0 at no actuation; since values of ∆CL and ∆CR are
actually measured and collected from the model, all three of the parameters have an impact on the
solution as shown by the sensitivity analysis of Figures 4 and 5.

Although not discussed in details in Section 2, the question as to whether the over-etch depth can
be considered isotropic in the plane of motion of the structure is still under debate. To simplify the
model or, in other words, to reduce the number of parameters to be identified, it has been assumed
that O is direction-independent. If this assumption did not allow to describe appropriately the real
geometry of the system after the etching phase, the value of the gap g?0 (see Equation (9)) would be
different across the electrical domains for lateral and rotational actuation/sensing; accordingly, the
measured responses would be affected differently by O. To partially cope with this additional problem
related to the production process of the devices, the objective function φ in Equation (10) is obtained
by summing the contributions related to lateral and rotational sensing, but not those coming from
the different kinds of actuation. Two different optimization problems are then solved for each tested
device, depending on whether the lateral or rotational actuation is enforced.

The solutions provided by the GA for the ten tested samples, in terms of actuation-dependent
estimated values of E, O and θ0, are collected in Table 2 together with a statistical analysis providing
mean and standard deviation for each parameter. As already discussed in [15], for some specimens,
the solution turns out to be independent of the actuation type, within the accuracy featured by the
present stochastic frame; for some others, the solution is instead greatly dependent on the actuation
type. The difference between the two solutions under either VL or VR can be partially related to the
already mentioned anisotropic over-etch depth. However, to specifically address the major difference
reported for the values of E, anchor compliance [42] should be accounted for. In this regard, according
to the data relevant to E, we can state that values very close to the lower bound Emin = 130 GPa
allowed for polysilicon can be thought of as a weighted average of the bending film stiffness, which
affects the solution along the whole length of the beam, and of the anchor stiffness, which is instead
a concentrated term related only to the top end cross-section of the beam. This specific topic will
be investigated in future works and is not further discussed here, since a proper evaluation of the
anchor compliance would require three-dimensional analyses of the anchor region and Monte Carlo
simulations to also assess the superimposed effect of the polysilicon morphology.

The rather fast convergence of the GA is shown in Figure 6, where boxplots (with no outliers)
are adopted to depict the spreading of the values of the objective function over all the individuals, at
increasing number of generations. This solution is related to the case of specimen #2 under rotational
actuation through VR, but similar results have been obtained for all the samples, independently of the
actuation type. To better assess the convergence towards the optimal parameter values, besides the
plot in Figure 6a that mainly shows the spreading of the values, a close-up is reported in Figure 6b to
show how the median (and not only the best values associated to minima) is greatly improved from
the eighth generation onward.
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Table 2. Spacimen- and actuation-dependent values of model parameters E, O and θ0 estimated by
the GA.

E (GPa) O (µm) θ0 (milliradian)

Specimen # through VR through VL through VR through VL through VR through VL

1 134.6 131.6 −0.10 −0.05 0.08 0.34
2 147.6 137.7 −0.09 −0.02 −0.15 0.07
3 150.8 153.2 −0.09 −0.13 −0.31 −0.30
4 149.5 130.7 −0.12 −0.07 −0.01 −0.05
5 149.5 141.8 −0.09 −0.10 −0.55 −0.56
6 161.5 144.2 −0.07 −0.07 −0.42 −0.85
7 130.3 134.3 −0.10 −0.10 0.07 0.41
8 134.0 130.2 −0.12 −0.06 0.12 0.46
9 131.1 135.5 −0.04 −0.05 0.91 1.00

10 132.2 142.6 −0.06 −0.12 0.52 0.53

mean 142.1 138.2 −0.09 −0.08 0.03 0.10
standard deviation 10.9 7.3 0.03 0.03 0.44 0.56
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(b)

Figure 6. Example of the convergence of the optimal solution provided by the GA at increasing number
of generations: (a) boxplot showing the spreading of the values of the objective function relevant to all
the individuals, and (b) close-up near the optimum.

By comparing the estimated values of E and O gathered in Table 2 and the same values estimated
through the particle filtering procedure in [15], and by considering as a figure of merit the agreement
between the values obtained handling the data related to the two actuation types, it clearly emerges
that θ0, being an additional variable of the inverse problem, may improve the effectiveness of the
approach, meant as the capability to provide an actuation-independent solution. For a validation of the
outcomes of the parameter identification task, a comparison between model and experimental applied
voltage vs. capacitance change plots are therefore reported in Figures 7 and 8 for specimens #9 and
#4, respectively. The solution corresponding to the former specimen is almost actuation-independent,
and so it is expected that the parameter values tuned using either VL or VR can accurately match all
the experimental curves. The other way around, the solution corresponding to the latter specimen
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depends much on the type of actuation, especially concerning E; therefore, the model responses
obtained through the two different sets of parameters may be somehow different from each other.
Overall, in all the cases, the solution provided by the GA allows for perfectly matching the two
experimental ∆CL and ∆CR curves obtained under the same actuation. Hence, actuation-dependent
solutions not perfectly matching all the experimental data have to be ascribed to a partial inaccuracy
of the theoretical model to cope with all the uncertainty sources, rather than to a failure of the adopted
identification procedure.

To finally assess the spreading of the identified solutions for all the tested specimens, and so the
possible variability of parameters within a single wafer, in Figure 9, the distribution functions of E,
O and θ0 are gathered. Due to the limited number of samples tested (but keeping in mind that these
microscale tests are quite time-consuming to carry out due to the coupled electromechanical physics
governing the system response, the extremely small values of the capacitance change to be measured,
and the handling of tiny devices in a hopefully clean room), results are reported in terms of cumulative
distribution functions. O and θ0 values, although not symmetrically distributed around a zero mean,
have been fitted using Gaussian or normal distributions; in fact, even with marginal or negligible
probability, values far from the relevant medians can still be physically-sound. E values have been
instead fitted using a lognormal distribution, allowed for to surely (in statistical sense) avoid negative
values. Two different fitting functions have been adopted for each parameter, depending on the type of
actuation; relevant parameters shaping the fitting distributions are all collected at the bottom of Table 2.
From the three graphs, it clearly emerges once more that O and θ0 are well estimated, with a rather
limited and slightly actuation-dependent scattering. E looks instead too scattered across the tested
devices, with a remarkable dependence on the actuation type; in statistical terms, a non-negligible
probability of values smaller than the lower bound Emin = 130 GPa is obtained. Such unphysical
outcomes can be justified, at least partially, by having disregarded the said additional beam compliance
at the anchor.
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Figure 7. Specimen #9: capacitance change values ∆CL and ∆CR under (a) lateral actuation through
VL and (b) rotational actuation through VR. Comparison between the experimentally measured
response, and the theoretical solution with model parameters tuned by the GA under either lateral or
rotational actuation.
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Figure 8. Specimen #4: capacitance change values ∆CL and ∆CR under (a) lateral actuation through
VL and (b) rotational actuation through VR. Comparison between the experimentally measured
response, and the theoretical solution with model parameters tuned by the GA under either lateral or
rotational actuation.
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Figure 9. Cumulative distribution functions of model parameters (a) E, (b) O and (c) θ0 estimated by
the GA under either lateral or rotational actuation, and relevant fitting curves.
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5. Conclusions

In this paper, a problem of uncertainty quantification at the microscale has been approached.
The analysis has been motivated by the continuous demand for further miniaturization in the MEMS
industry. Some reliability and predictability problems have been already encountered when dealing
with inertial devices with a characteristic size of some structural members comparable with the internal
length-scale of polycrystalline silicon films.

A microsystem has been purposely designed for on-chip testing. To simplify as much as possible
the stress state in the tested polysilicon samples, a statically determinate movable structure, consisting
of a massive plate (rotor) connected to the substrate through a cantilever beam, has been electrostatically
actuated thanks to stators placed around the plate itself. Actuation and sensing have been designed to
provide two different types of deformation in the microstructured beam (pure bending under rotational
actuation, and coupled bending/shear under lateral actuation) and so to allow collecting redundant
experimental data.

Due to the small ratio between the target in-plane width of the beam and the characteristic size of
the silicon grains, experimental data (in terms of measured capacitance change vs. applied voltage)
have shown a remarkable scattering that cannot be caught by accounting only for the uncertainties
related to the effective elastic properties of the polysilicon film. Additional uncertainty sources
linked to the geometry of the movable structure have been then considered, in terms of imperfections
induced by the patterning/etching phases of the production process and quantified by the so-called
over-etch depth and by an initial offset (caused also by possible gradients of the residual stresses). To
provide an interpretation of the experimental data and of the scattering induced by all the mentioned
uncertainty sources, an analytical (reduced-order) coupled electromechanical model of the device has
been provided.

To reduce to a minimum possible issues related to the handling of the experimental data close to
pull-in instability, a genetic algorithm has been next adopted to tune the elasticity- and geometry-related
free parameters of the model, by matching the response of each single device tested in the experimental
phase of this study. The outcomes of this parameter identification procedure have been finally collected
altogether, and a statistical dispersion analysis has been provided. The offset has been parametrized
by an initial tilting of the plate, which has shown a large scattering quantified through a standard
deviation of 0.44 and 0.56 milliradians, respectively, in the case of rotational or lateral actuation. The
values of the effective polysilicon Young’s modulus E and of the over-etch depth O, averaged over
all the tested samples, have been instead estimated to amount to: E = 142.1 GPa, O = −0.09 µm
in the case of rotational actuation; E = 138.2 GPa, O = −0.08 µm in the case of lateral actuation.
These values and also the relevant standard deviations agree quite well with each other, so they can
be considered as physically related to micromechanical features of the film constituting the movable
structure of the device, and not induced instead by artifacts due to the actuation mechanisms or to the
identification procedure.

While the parameters related to geometrical imperfections have been finally described well via
Gaussian probability distributions, the beam effective elasticity has been shown to be too scattered to
be described via a physically-sound lognormal distribution. This latter result has been partially related
to having neglected a further compliance term at the beam anchor, which is typically negligible at the
macroscale but can become of importance at the microscale, in the case of slender beams connected to
the substrate via a single anchor region.

To further increase the accuracy of the results, a full-order, coupled electromechanical finite
element analysis of the movable structure and of the surrounding fluid will be considered in future
investigations. To properly account for the stochastic effects induced by the polysilicon morphology in
the beam, a Monte Carlo procedure will be used. To reduce the overall computational burden of the
finite element-driven Monte Carlo simulations, model order reduction procedures will be proposed, so
as to finally quantify, with a high degree of fidelity, the microstructure- and production process-induced
uncertainties in inertial MEMS.
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