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Abstract This paper presents rich new families of relative orbits for spacecraft formation
flight generated through the application of continuous thrust with only minimal intervention
into the dynamics of the problem. Such simplicity facilitates implementation for small, low-
cost spacecraft with only position state feedback, and yet permits interesting and novel relative
orbits in both two- and three-body systems with potential future applications in space-based
interferometry, hyperspectral sensing, and on-orbit inspection. Position feedback is used to
modify the natural frequencies of the linearised relative dynamics through direct manipulation
of the system eigenvalues, producing new families of stable relative orbits. Specifically, in
the Hill–Clohessy–Wiltshire frame, simple adaptations of the linearised dynamics are used
to produce a circular relative orbit, frequency-modulated out-of-plane motion, and a novel
doubly periodic cylindrical relative trajectory for the purposes of on-orbit inspection. Within
the circular restricted three-body problem, a similar minimal approach with position feedback
is used to generate new families of stable, frequency-modulated relative orbits in the vicinity
of a Lagrange point, culminating in the derivation of the gain requirements for synchronisation
of the in-plane and out-of-plane frequencies to yield a singly periodic tilted elliptical relative
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orbit with potential use as a Lunar far-side communications relay. The �v requirements for
the cylindrical relative orbit and singly periodic Lagrange point orbit are analysed, and it
is shown that these requirements are modest and feasible for existing low-thrust propulsion
technology.

Keywords Non-Keplerian orbits · Continuous low thrust · Relative spacecraft motion ·
Orbit period modulation · Hill–Clohessy–Wiltshire equations · Restricted three-body
problem

1 Introduction

1.1 Forced relative motion

After the advent of spacecraft rendezvous and docking, perhaps one of the earliest recogni-
tions of the potential utility of spacecraft formation flight was in the form of a space-based
interferometer, proposed by Sholomitsky et al. (1977), and then similarly by Labeyrie (1978).
In the latter decades of the twentieth-century, the uses of multi-spacecraft missions were
explored further, and indeed in recent years several missions using formation flight have
flown, perhaps most prominently the ESA Cluster and NASA Magnetospheric Multiscale
(MMS) missions.

The guidance and control of a wide variety of formation-flying concepts have been compre-
hensively surveyed in the previous decade, encompassing such applications as hyperspectral
sensing and fractionated spacecraft (Scharf et al. 2003, 2004). Until very recently, such con-
cepts generally assumed the use of conventional chemical propulsion for relative motion
control. Low specific impulse and high thrust impose limitations on spacecraft formations,
since the available �v is low and thrusters offer discrete impulses. Using such propulsion
implies that the spacecraft must follow unforced ballistic trajectories between impulses. It
has therefore been proposed that the continuous low thrust offered by modern electrostatic
thrusters could add versatility to spacecraft formation flight (Austin et al. 1977). The thrust
magnitudes required for formation keeping are generally small, and so several concepts for
efficient electrostatic microthrusters have been developed (Cen and Xu 2010; Wirz et al.
2004). Alternatively, Coulomb forces for formation control have been investigated by sev-
eral authors (e.g. Natarajan, and Schaub 2006; Schaub and Hussein 2010; King et al. 2003;
Schaub et al. 2006).

In the restricted three-body problem, Dusek first proposed that artificial equilibrium points
(AEPs) could be created in the vicinity of libration points using continuous thrust (Dusek
1966). Later, Cielaszyk and Wie presented a numerical method for halo orbit determination,
where nonlinearities are considered persistent disturbance inputs (Cielaszyk and Wie 1996).
More recently, Morimoto et al. investigated the thrust requirements to turn any arbitrary point
in a restricted three-body system into an AEP, finding the regions of stable AEPs in small
mass-ratio systems such as the Sun–Earth system which are accessible with small control
accelerations (Morimoto et al. 2007). Other authors considered the use of active control to sta-
bilise the motion of a spacecraft relative to a reference halo orbit in the Hill and restricted three-
body problems, notably producing a circular relative trajectory with applications in formation
flight for stellar interferometry (Scheeres et al. 2003; Hsiao and Scheeres 2005). Actively
controlled formation flight in a two-body system has also been considered by several authors,
such as Bando and Ichikawa (2013), where full-state feedback control has been used to force
a spacecraft onto an arbitrary singly periodic reference orbit relative to an elliptical orbit.
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Displacing the plane of an orbit using out-of-plane thrust was explored most prominently
by Nock (1984), Yashko and Hastings (1996) and McInnes (1977). These displaced-plane
orbits are often referred to as non-Keplerian orbits (NKOs), since the system barycentre is not
in the orbit plane. The use of Solar sails to generate non-Keplerian geostationary orbits was
considered by Baig and McInnes (2008) and Heiligers et al. (2012). Many authors have also
established the existence, stability, and controllability conditions of such orbits (McInnes
1977, 1998; Scheeres 1999; Xu and Xu 2008; Bombardelli and Pelez 2011; Ceriotti et al.
2012; Aliasi et al. 2012), and recently McKay et al. performed a broad survey of NKOs
and their utility (McKay et al. 2011). Recently, Wang et al. offered a new methodology
for analysis of the formation flight of electric sails operating in NKOs, and subsequently
presented a control framework for such sail formations (Wang et al. 2017a, b).

1.2 Problem motivation and approach

In this paper, rich new families of relative trajectories for spacecraft formation flight are
generated through the application of continuous thrust. In both the two-body Hill–Clohessy–
Wiltshire frame and the circular restricted three-body problem, it is shown that simple position
feedback can be used to modify the natural frequencies of the linearised dynamics through
direct manipulation of the system eigenvalues and to thereby produce interesting and novel
stable relative orbits. Whereas past authors have generally used a top-down engineering
approach, designing active controllers with which to force a spacecraft onto a predetermined
reference trajectory (e.g. Scheeres et al. 2003; Hsiao and Scheeres 2005; Bando and Ichikawa
2013), this paper instead seeks to generate rich new families of orbits with only position
feedback and without a reference trajectory, thereby only minimally intervening into the
dynamics of the problem. The assumption of the use of only position feedback instead of
full-state feedback is justified by the goal of providing access to useful new trajectories for
small, low-cost spacecraft equipped only with position sensing relative to a target spacecraft
(e.g. Sansone et al. 2017). The use of only position feedback mitigates the difficulties in
implementing accurate relative velocity sensing aboard such a spacecraft and also avoids
the need for taking the time derivative of the position (a method which is inherently prone
to noise errors), whilst still permitting attainment of relative orbits in both two- and three-
body systems with potential future applications in space-based interferometry, hyperspectral
sensing, and on-orbit inspection.

In 2010, NASA published a comprehensive study of on-orbit servicing, concluding that on-
orbit servicing infrastructure was an essential and economical supporting step for future space
missions (NASA GSFC 2010). It follows that on-orbit inspection is a necessary precursor
to servicing, since it allows for advance detection and identification of points of failure
aboard a satellite. In geostationary orbit, for example, many satellites could be inspected by
a single small satellite or formations of small satellites in order to determine the need for
servicing. Past authors have therefore proposed a number of free-flying strategies for on-orbit
inspection (Woffinden 2004), and notably for space situational awareness (Erdner 2007) a
15 nanosatellite constellation tasked with inspecting the entire geostationary ring in less than
a single year. However, the necessity of ballistic flight imposes limitations on an inspection
mission—limitations which can be effectively addressed with the introduction of continuous
low thrust.

One such major limitation of ballistic flight is that both the in-plane motion and decoupled
out-of-plane motion of the spacecraft possess the same period, which is the reference orbit
period. By making the system closed-loop and applying continuous low thrust proportional
to the relative position of the spacecraft, it is possible to modify the natural period of the
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system. Due to the decoupling of the in-plane motion and out-of-plane motion, it is possi-
ble to have the case where the periods are distinct, and to cause the spacecraft to follow,
for example, a helix of varying pitch around a target. This new and novel trajectory is a
useful ability for on-orbit inspection as it allows for a detailed sweep of a target. Alterna-
tively, for astronomy by a disaggregated spacecraft, a lens and formation of sensors could
be made to rotate uniformly around a core spacecraft and thereby scan a large swathe of the
sky.

The concept of using thrust proportional to relative position only to modify the natural
periods of motion can also be usefully applied to the circular restricted three-body problem.
Though the problem is normally nonlinear, the motion of a spacecraft in proximity to a
Lagrange point can be linearised, and thrust proportional to position can be implemented.
This can be used firstly to force the system to become linearly stable, and secondly to modify
the natural frequencies of the motion. Further, the in-plane motion and out-of-plane motion
can be coupled to yield a singly periodic orbit around the Lagrange point, which could be
applied to provide a constantly visible communications relay for another spacecraft.

The structure of the paper is as follows. Section 2 builds on initial work (Arnot and
McInnes 2015) concerning forced motion relative to a circular two-body reference orbit, and
using a state-space approach systematically explores a number of different types of forced
relative motion, with the final aim of generating a novel doubly periodic cylindrical relative
orbit for on-orbit inspection of a target by a chase spacecraft. Section 3 concerns forced
motion relative to a Lagrange point in the restricted three-body problem, using an approach
similar to Sect. 2 and to recent authors such as Bando and Ichikawa (2013) to modify the
natural frequencies of motion within regions of closed-loop stability, producing new and
interesting types of multiply- and singly periodic relative trajectories. These novel relative
orbits have wide ranging applications, such as for hyperspectral astronomy and the provision
of constantly visible communications relays.

2 Thrust augmented relative motion in the two-body rotating frame

This section comprises the systematic derivation and exploration of new families of forced
relative orbits using linearised dynamics derived from the two-body problem. Using a state-
space method, simple position feedback control will be used to manipulate the eigenvalues
(and therefore the natural frequencies) of the system to produce interesting and novel new
relative orbits. The primary aim of this section is to generate relative orbits with potential
future applications in on-orbit inspection—an area where the advantages of modifying the
frequencies of periodic motion are readily apparent.

Figure 1 illustrates a rotating reference frame centred on a circular reference orbit about a
point-mass central body. The motion of a chase spacecraft relative to a target on the reference
orbit can be described by the linear Hill–Clohessy–Wiltshire (HCW) equations (Wiltshire
and Clohessy 1960). With the target at the origin of the reference frame, we take the x-axis
as following the radius vector from the central mass through the target, the z-axis following
the orbital angular momentum vector, and the y-axis points in the along-track direction of
the target’s motion around the central body. This reference frame forms the environment in
which new relative orbits are generated throughout this section of the paper.

The well-known HCW equations, augmented with continuous thrust terms, are (Wiltshire
and Clohessy 1960):
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Fig. 1 Rotating frame of
reference

ẍ = 3n2x + 2n ẏ + ux (1a)

ÿ = −2nẋ + uy (1b)

z̈ = −n2z + uz, (1c)

where ux , uy , and uz are the thrust-induced acceleration terms, and n is the angular velocity
of the rotating frame. This is in turn given by

n =
√

μ/R3 (2)

in which μ is the gravitational parameter and R is the inertial-frame orbit radius.
To apply controlling thrust terms to the HCW equations, the motion from Eq. (1a–1c) is

first converted to the state-space form

ẋ = Ax + Bu, (3)

where x = [x y z ẋ ẏ ż]T , and

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5)

An extremely simple strategy is proposed whereby the thrust-induced acceleration is
proportional to the displacement in the radial, along-track, and out-of-plane axes only. The
acceleration-law is defined by

u = −Kx. (6)
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The feedback gain matrix K is given by

K =
⎡
⎣
K11 0 0 0 0 0
0 K22 0 0 0 0
0 0 K33 0 0 0

⎤
⎦ . (7)

The upper bound of the input acceleration can be easily defined therefore in terms of the
maximum displacement in each axis, as

umax =
⎡
⎣

|uxmax|
|uymax|
|uzmax|

⎤
⎦ =

⎡
⎣
K11xmax

K22ymax

K33zmax

⎤
⎦ . (8)

The control acceleration can therefore be bounded through the appropriate selection of the
maximum displacement in each axis, which is in turn generally determined from the initial
conditions.

Now, set Ac = A − BK , which has eigenvalues λ and corresponding eigenvectors V .
The general eigenvalues are found to be

λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
√

−K11−K22−n2−
√

(K11−K22)2+2(K11+7K22)n2+n4
√

2√
−K11−K22−n2−

√
(K11−K22)2+2(K11+7K22)n2+n4

√
2

−
√

−K11−K22−n2+
√

(K11−K22)2+2(K11+7K22)n2+n4
√

2√
−K11−K22−n2+

√
(K11−K22)2+2(K11+7K22)n2+n4

√
2

−√−K33 − n2√
−K33 − n2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

Since the eigenvalues represent the natural frequencies of the system, modifying K there-
fore directly modifies these frequencies. Feedback gains K11 and K22 both affect the first two
conjugate pairs of eigenvalues corresponding to the in-plane motion, and K33 only affects a
single decoupled pair of eigenvalues, corresponding to the z-axis motion. This key idea of
modifying the natural frequencies of the system through feedback is used to produce interest-
ing and novel relative trajectories in both the two-body and subsequent three-body sections
of this paper.

Stable oscillatory behaviour occurs when the eigenvalues are imaginary, so it is useful
to find the corresponding range of gains for this behaviour. Considering the second, fourth,
and sixth elements of Eq. (9), λ2, λ4, and λ6, since these eigenvalues each form one half of
a conjugate pair, plots indicating the regions in which these eigenvalues are real, complex,
and imaginary are given in Fig. 2. Unstable regions are found where the real parts of the
eigenvalues are greater than zero. The eigenvalue λ6 is considered separately since it is only
affected by a single gain, K33.

The state transition matrix, Φ, which can be used to find the general solution to the system,
is given by

123



Orbit period modulation for relative motion Page 7 of 23  12 

Fig. 2 Regions for which (a) λ2, (b) λ4, and (c) λ6 are purely imaginary, purely real, and complex

Φ = W(t)W−1(0). (10)

The fundamental solution to the system, W(t), can be found using

W(t) = V

⎡
⎢⎢⎢⎣

eλ1t 0 · · · 0
0 eλ2t · · · 0
...

. . .
...

0 · · · eλ6t

⎤
⎥⎥⎥⎦ . (11)

Note that, in the case where the eigenvalues are complex, it is necessary to take the real
and imaginary parts of the complex solution separately to find the real fundamental solution
to the system, Wr(t). The general solution to the system, including control inputs, can then
be found using

x(t) = Wr(t)Wr
−1(0)x(0) + Wr(t)

∫ t

t0
Wr

−1(τ )Bu dτ. (12)

In the case that K11 = K22 = K33 = 0, the time domain solution to the system is equal
to the well-known closed-form solutions to the HCW equations, shown in Eq. (13):
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⎡
⎢⎢⎢⎢⎢⎢⎣

x(t)
y(t)
z(t)
ẋ(t)
ẏ(t)
ż(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

4 − 3 cos nt 0 0 1
n sin nt 2

n (1 − cos nt) 0
6(sin nt − nt) 1 0 − 2

n (1 − cos nt) 1
n (4 sin nt − 3nt) 0

0 0 cos nt 0 0 1
n sin nt

3n sin nt 0 0 cos nt 2 sin nt 0
−6(1 − cos nt) 0 0 −2 sin nt 4 cos nt − 3 0

0 0 −n sin nt 0 0 cos nt

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x0
y0
z0
ẋ0
ẏ0
ż0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(13)

Since the aim of this work is to modify the natural frequencies of the system and thereby
generate novel trajectories, it is necessary that at least one of the gains is nonzero, and so the
solution in Eq. (13) cannot be used in its entirety. However, part of this solution will be used
in certain �v calculations later in this section.

2.1 Artificial equilibria and a simple circular relative orbit

A simple yet interesting case to demonstrate the eigenvalue-based approach is that of the
generation of artificial static equilibria in the rotating frame using continuous thrust, since,
if nonzero initial velocity is not assumed, it is useful to characterise the type and frequency
of motion followed by the spacecraft. Such equilibria in the rotating frame are equivalent to
type III non-Keplerian orbits when viewed from an inertial frame (McInnes 1977).

Consider the state vector x = [x, y, z, ẋ, ẏ, ż]T in which ẋ , ẏ, and ż must be zero for
a static displacement. Since u = −Kx, the system state equation is ẋ = Ax + B(−Kx).
With zero initial velocity (ẋ0 = ẏ0 = ż0 = 0) the system state is held constant by selecting
the feedback gains as

K =
⎡
⎣

3n2 0 0 0 0 0
0 0 0 0 0 0
0 0 −n2 0 0 0

⎤
⎦ . (14)

With reference to Fig. 2, the motion should be stable, with all nonzero eigenvalues being
imaginary. Indeed, the eigenvalues of the system are found to be

λ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−2in
2in
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (15)

If the initial velocity is zero, there are no oscillations and the spacecraft remains fixed at
its initial position. However, with nonzero initial velocity, since the coefficient of both λ1

and λ2 is 2, the forced natural frequency of the motion in the x–y plane is twice the unforced
natural frequency. Since K22 = 0, for static formations in the rotating frame, the along-track
position is arbitrary as it does not affect the required thrust. For a thrust-induced acceleration
vector u of fixed magnitude, a required thrust vector field for static equilibrium positions in
the x–z plane can be generated, as shown in Fig. 3 where all values are normalised by the
reference orbit radius. All subsequent plots of relative orbits in the two-body section are also
normalised in this way.

Interestingly, the in-plane motion of the spacecraft can be made circular in this case simply
by selecting the appropriate initial velocity in the x- and y-directions. Recalling the well-
known condition for bounded motion in the HCW equations, ẏ0 = − 2nx0, it is necessary
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Fig. 3 Required thrust vector
field for static formations in the
x-z plane, where the position is
normalised by the reference orbit
radius, and the acceleration is
normalised by the reference orbit
radius and orbit period

Fig. 4 Non-dimensional
in-plane circular relative orbit
achieved with single axis thrust

only to add the condition ẋ0 = 2ny0, and with the feedback gains of Eq. (14) the result is
a circular trajectory in the x–y plane. As already indicated, the relative orbit period is half
of the reference orbit period. Furthermore, in this case the gain K33 is arbitrary because the
z-axis motion is decoupled and the circular trajectory exists only in the x–y plane, and so
the circular relative orbit is achieved using thrust in only the radial direction. An example of
this type of relative motion is plotted in Fig. 4.

In the case of zero initial velocity, i.e. for a static formation, the �V required to maintain
the formation is simple to calculate. Since with zero initial velocity ux is constant, and
assuming independent body-mounted thrusters on each axis, it is possible to use

�vx = 3n2xτ, (16)

where τ is the duration for which the formation is maintained. Similarly, since uz is also
constant, we can use

�vz = n2zτ. (17)

123



 12 Page 10 of 23 C. S. Arnot et al.

Using an example of a geostationary target, with Eqs. (16) and (17), the �V accumulated
for a chase spacecraft positioned for one sidereal day in a 100 m z-axis statically displaced
NKO is 0.046 m s−1, and for a 100 m x-axis displacement is 0.138 m s−1. Assuming the use
of electrostatic ion thrusters with a specific impulse of 3000 s, for a nanosatellite with initial
mass of 10 kg, this amounts to a propellant expenditure of only 1.56×10−5 and 4.69×10−5

kg, respectively.

2.2 Modulation of the out-of-plane period

Having considered the in-plane behaviour of the system under the feedback gains of Eq. (14),
the out-of-plane motion is now considered. When K33 = − n2 with some nonzero z0, the
chase spacecraft is fixed in a displaced non-Keplerian orbit whose plane does not contain
the two-body centre of mass. Oppositely, when K33 = 0, we have the ballistic case, and
the spacecraft oscillates along the z-axis with a period equal to the reference orbit period. A
z-displaced static formation can therefore be considered a periodic relative orbit with infinite
out-of-plane period. As noted by Arnot and McInnes (2015), it is possible to modify the period
of the periodic z-axis motion by making the z-axis thrust proportional to displacement. The
period of the motion along the z-axis is now modified by changing the out-of-plane thrust
component.

To begin, it is necessary to substitute K33 = − n2 with K33 = −ψ2, so that the eigenvalue
corresponding to the out-of-plane motion, λ6 in Eq. (9), becomes

λ6 =
√

ψ2 − n2. (18)

It follows that

Ac =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−K11 + 3n2 0 0 0 2n 0
0 −K22 0 −2n 0 0
0 0 ψ2 − n2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (19)

The augmented angular frequency, Ω , is defined by

Ω2 = (n2 − ψ2) (20)

and by

Ω = n

k
(21)

in which k represents the number of reference orbit periods in which the thrust augmented
relative motion completes a single out-of-plane cycle. Therefore, k can be considered the
augmented period coefficient, so that the period of the z-axis motion is Tz = kT . Through
use of out-of-plane thrust, the period of the z-axis motion can now be freely chosen.

Substituting Eq. (21) into (20), it is possible to rearrange for ψ such that

ψ = n

√
1 −

( 1

k2

)
. (22)

It can then be shown that the equation of out-of-plane motion is given by

z̈ = − n2z

k2 , (23)
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Fig. 5 Relative orbit with forced
out-of-plane period of 3T

which is a harmonic oscillator whose natural frequency can now be selected through the
coefficient of the out-of-plane thrust law. The maximum input acceleration for this type of
relative orbit is given simply by |uzmax| = ψ2z0, assuming that the initial velocity is zero.

An example of thrust augmented z-axis motion is shown in Fig. 5, where k = 3, x0 =
z0 = 0.5, and ẏ0 = −2nx0, simulated for three reference orbit periods.

Clearly, when k = 1, the thrust-induced acceleration in the z-direction is zero, corre-
sponding to ballistic motion. However, when k < 1, the thrust is nonzero and in the opposite
direction to the case k > 1. In addition, the frequency of oscillation in the z-direction is
greater than the unforced frequency. When k → ∞, the expression for the thrust accelera-
tion simplifies to uz = n2z, so K33 = − n2, and the z-axis displacement becomes fixed: that
is, the trajectory is equivalent to static equilibria in the rotating frame.

To calculate the �v required to maintain this type of continuously forced orbit, we must
first consider the third row of Eq. (13) which describes the unforced out-of-plane position
of the chase spacecraft. Since ż0 = 0 and the frequency of the out-of-plane motion is now
defined by Ω , the out-of-plane displacement simplifies to

z(t) = z0 cos Ωt. (24)

It follows that the thrust command, uz , becomes

uz = ψ2z0 cos Ωt. (25)

To find the �v accumulated over multiple orbit periods, the magnitude of the acceleration
must be considered since the direction of the out-of-plane thrust changes direction at every
plane crossing. This requires description as a piecewise function, such that
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|uz | =
{

ψ2z0 cos Ωt if cos Ωt ≥ 0

−ψ2z0 cos Ωt if cos Ωt < 0
. (26)

The integral then takes the form (Arnot and McInnes 2015)

�v = ψ2z0

[
η

∫ t=Tz

t=0
| cos Ωt |dt +

∫ t=ε+ηTz

t=ηTz
| cos Ωt |dt

]
, (27)

where η is the integer number of complete z-axis motion periods which have elapsed and ε is
the additional time over the integer number of periods. Thus, the expression for accumulated
�v becomes

�v = ψ2z0

[
4η

Ω
+

∫ t=ε+Tz

t=ηTz
| cos Ωt |dt

]
. (28)

Equation (28) can be integrated for all positive integer values of η, and for 0 ≤ ε < Tz .

2.3 The cylindrical relative orbit

Now that a means to modulate the frequency of the out-of-plane motion is possessed, an
interesting and novel application can be envisaged: on-orbit inspection of a target by a chase
spacecraft using continuous thrust to modify its relative orbit period. The concept of on-orbit
inspection has been explored by other authors; however, the use of continuous low thrust
has generally not been considered in this context. Using continuous thrust, a chase space-
craft on an inspection mission can actively force its relative motion to enable operationally
advantageous new Keplerian and non-Keplerian inspection trajectories. Perhaps the most
commercially viable example is that of a small spacecraft tasked to inspect multiple satellites
on the geostationary ring, and so previous work has considered the use of a thrust augmented
relative orbit in which the chase spacecraft tracks the Sun vector around a target in geo-
stationary orbit (Arnot and McInnes 2015). Such a trajectory makes use of constant-angle
sunlight to facilitate visual inspection. Here the more general case of a cylindrical relative
orbit is considered, which makes use of thrust augmented in-plane motion and out-of-plane
motion to produce an orbit with two distinct modified periods.

A simple cylindrical relative orbit can be achieved by using the circular in-plane orbit
already described (using K11 = 3n2 and K22 = 0) combined with out-of-plane orbit period
modulation (K33 = −ψ2). Selecting an appropriate out-of-plane period, the result is that the
chase spacecraft performs a helical sweep around the target as it oscillates between z0 and
−z0 with an in-plane period of 0.5T . However, although it is possible to freely select the out-
of-plane period, this type of trajectory has a fixed in-plane period. A circular relative orbit
whose period and orientation can also be freely selected would be of greater operational
advantage. Bando and Ichikawa (2013) showed that circular and elliptical relative orbits
of arbitrary frequency were achievable using active control; however, a useful analytical
description of such a family of orbits has apparently not been presented in the literature and
is derived parametrically as follows.

To produce a circular trajectory about the target spacecraft, consider first a three-
dimensional circle described parametrically by the vector α = [α1, α2, α3]T , which is
collinear with the circle’s transformed x-axis (transformed from the x-axis of the rotating
frame and fixed with respect to the circle), and the vector β = [β1, β2, β3]T , which is
collinear with the transformed y-axis of the circle. Both α and β are unit vectors. The vector
describing the position of the circle’s centre in the rotating frame is c = [c1, c2, c3]T , r is the
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radius vector of the circle, and θ is the angle between the radius vector and the x-axis as mea-
sured in the anticlockwise direction about the circle’s central axis. It is taken that θ = −γ nt
(negative because the motion of the chase spacecraft in the x-y-plane is clockwise), where γ

is the ratio of the target spacecraft’s Keplerian orbit period to that of the circular relative orbit
in the rotating frame (for instance, if γ = 1, the period of the circular motion is equal to that
of the Keplerian orbit of the target spacecraft), and where n and t have their usual meaning.
The inclusion of γ permits the modification of the period of the relative orbit, so that

r = c+ r cos(θ)α + r sin(θ)β. (29)

The first and second derivatives of Eq. (29) are found to be

ṙ = rγ n sin(θ)α − rγ n cos(θ)β (30)

r̈ = −r(γ n)2 cos(θ)α − r(γ n)2 sin(θ)β. (31)

It follows that, in this case, ẋ = [ṙ, r̈]T . Then, referring to Eq. (3), we recall the acceler-
ation input u = [ux , uy, uz]T . Thus, it can be shown that

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ
ẏ
ż

3n2x + 2n ẏ + ux
−2nẋ + uy

−n2z + uz

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

rγ n sin(θ)α1 − rγ n cos(θ)β1

rγ n sin(θ)α2 − rγ n cos(θ)β2

rγ n sin(θ)α3 − rγ n cos(θ)β4

−r(γ n)2 cos(θ)α1 − r(γ n)2 sin(θ)β1

−r(γ n)2 cos(θ)α2 − r(γ n)2 sin(θ)β2

−r(γ n)2 cos(θ)α3 − r(γ n)2 sin(θ)β3

⎤
⎥⎥⎥⎥⎥⎥⎦

. (32)

The input acceleration u can then be obtained as

u =
⎡
⎣
n2(−r(α1(γ

2 + 3) − 2β2γ ) cos γ nt + r(2α2γ + β1(γ
2 + 3)) sin γ nt − 3c1

−n2rγ ((2α1 − β2γ ) sin γ nt + (α2γ + 2β1) cos γ nt)
n2(−α3r(γ 2 − 1) cos γ nt + β3r(γ 2 − 1) sin γ nt + c3

⎤
⎦ .

(33)
Using ux from Eq. (33), it can be shown that the single axis thrust case described earlier is

a special case of the general thrust equations. Since the special case is a circle in the x-y plane
and centred at the origin, α = [1, 0, 0]T , β = [0, 1, 0]T , and c = [0, 0, 0]T , u simplifies to

u =
⎡
⎣

−n2r(γ 2 − 2γ + 3) cos γ nt
−n2rγ (2 − γ ) sin γ nt

0

⎤
⎦ , (34)

where r cos γ nt ≡ x . Therefore, in order for the first row of Eq. (34) to be equivalent to
ux = − 3n2x , it is clear that γ = 2. Interestingly, we note that with γ = 2, it follows that
uy = 0 and as required, ux = − 3n2r cos 2nt ≡ −3n2x , which is equivalent to the earlier
state feedback case where K11 = 3n2. This provides a particularly simple steering law with
a useful application. The value of γ also correctly indicates that the period of the in-plane
motion is 0.5T . From Eq. (34), it is deduced that the maximum input acceleration in each
axis is given by |uxmax| = −n2r(γ 2 − 2γ + 3) and |uymax| = −n2rγ (2 − γ ) for the x-axis
and y-axis, respectively.

The general case thrust commands of Eq. (33) can be used to produce a circular rela-
tive orbit with arbitrary dimension, orientation, and frequency. However, for the cylindrical
relative orbit, the circle is only required in the x-y plane, and so the vectors α and β are
collinear with the rotating frame x- and y-axes in this case. The two unit vectors α and β

are [1, 0, 0]T and [0, 1, 0]T , respectively. The circle’s centre is c = [0, 0, z]. Now, using the
in-plane thrust components defined in Eq. (34) and the out-of-plane gain K33 = −ψ2, the
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Fig. 6 Cylindrical relative orbit
with γ = 1 and k = 9

natural frequencies of the circular in-plane motion and oscillatory out-of-plane motion can be
freely modified. As before, the z-axis position varies sinusoidally between the maximum and
minimum displacement. An example cylindrical relative orbit achieved using this approach
is displayed in Fig. 6, with non-dimensional axes.

The �v required to maintain the cylindrical orbit is found by integrating the three thrust
acceleration components and summing the result, assuming independent body-mounted
thrusters. Taking the x and y components from Eq. (34), the moduli are

|ux | =
{

| − n2r(γ 2 − 2γ + 3)| cos γ nt if cos γ nt ≥ 0

−n2r(γ 2 − 2γ + 3) cos γ nt if cos γ nt < 0
(35a)

|uy | =
{

| − n2rγ (2 − γ )| sin γ nt if sin γ nt ≥ 0

−n2rγ (2 − γ ) sin γ nt if sin γ nt < 0.
(35b)

The integrals then become (Arnot and McInnes 2015)

�vx = | − n2r(γ 2 − 2γ + 3)|
[
q

∫ t=Txy

t=0
| cos γ nt |dt +

∫ t=υ+qTxy

t=qTxy
| cos γ nt |dt

]

(36a)

�vy = | − n2rγ (2 − γ )|
[
q

∫ t=Txy

t=0
| sin γ nt |dt +

∫ t=υ+qTxy

t=qTxy
| sin γ nt |dt

]
, (36b)

where �vx and �vy are the components of �v in the x- and y-directions, respectively, Txy
is the period of the x-y planar motion, q is the integer number of x-y planar motion periods
which have elapsed, and υ is the additional time over the integer number of x-y motion
periods. Integrating, the expressions for �v become

�vx = | − n2r(γ 2 − 2γ + 3)|
[

4q

γ n
+

∫ t=υ+qTxy

t=qTxy
| cos γ nt |dt

]
(37a)
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Fig. 7 Schematic of the circular
restricted three-body problem
with ρ = 0.01213 (equivalent to
the Earth–Moon system)

�vy = | − n2rγ (2 − γ )|
[

4q

γ n
+

∫ t=υ+qTxy

t=qTxy
| sin γ nt |dt

]
. (37b)

The z-axis component of �v is as given in Eq. (28). Equations (37a) and (37b) can be
integrated for all positive integer values of q , and for 0 ≤ υ < Txy . Using the Sun vector
tracking orbit (which orbits a geostationary target with an in-plane period of one Solar day and
out-of-plane period of one year) as an example of this type of orbit (Arnot and McInnes 2015),
with a 100-m in-plane radius, 43.3 m maximum out-of-plane displacement, and independent
axis-aligned thrusters, the total �v for a full year of operation would be 36.7 m s−1. This
would amount to 0.0125 kg of propellant for a 10 kg nanosatellite equipped with electrostatic
thrusters with specific impulse of 3000 s.

3 Thrust augmented orbits at Lagrange points

Thus far, this paper has considered only relative motion around a circular reference orbit using
linearised dynamics derived from the two-body problem. However, a similar approach can
be used for the generation of thrust augmented relative orbits in the vicinity of a Lagrange
point, in the circular restricted three-body problem (CRTBP), using linearised dynamics
for spacecraft relative motion. Whereas the previous section considered the generation of
orbits with potential applications for on-orbit inspection, this section aims to derive the
feedback gains necessary to synchronise the in-plane and out-of-plane frequencies to produce
a stable, three-dimensional, singly periodic orbit with potential utility as an Earth–Moon L2

communications relay with constant visibility from the Earth. A special case of this kind of
orbit, controlled using solar radiation pressure, was investigated by Tanaka and Kawaguchi
(2016) and can further be considered an extension of Farquhar’s original concept for a Lunar
far-side communications relay (Farquhar 1968).

In Fig. 7, the layout of the CRTBP rotating frame is given. Within this frame, a space-
craft’s position vector is normalised using the system’s circular orbit radius, and the time
is normalised by the orbit period. The orbit period is taken to be 2π and the normalised
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time is t . The usual origin of the system is at the barycentre of the two primary masses, the
axis X is aligned with the vector connecting the two primary masses (m1 and m2) and Y is
perpendicular to it such that the X -Y plane is the Earth–Moon plane. However, since the aim
is to examine the motion of a low-thrust spacecraft relative to a Lagrange point, it is useful
to place the origin of the system at the Lagrange point in question, Li . Using this new origin,
x is aligned with the X -axis, y is aligned with the Y -axis, and z completes the right-hand
coordinate system. The linearised equations of relative motion in the vicinity of the Lagrange
point are given by Farquhar (1968)

ẍ = 2 ẏ + (2σi + 1)x (38a)

ÿ = (1 − σi )y − 2ẋ (38b)

z̈ = −σi z. (38c)

It is taken that

σi = ρ

|li (ρ) − 1 + ρ|3 + (1 − ρ)

|li (ρ) + ρ|3 (39)

in which li (ρ) is the distance of the collinear Lagrange point from the system barycentre.
The mass ratio ρ is given by

ρ = m2

m1 + m2
. (40)

The distance of the Lagrange point from the system barycentre can be found by solving
the quintic expression resulting from

li (ρ) = 1 − ρ

r3
1

(li (ρ) + ρ) + ρ

r3
2

(li (ρ) − 1 + ρ). (41)

The general state-space form has the same construction as Eq. (3), where x =
[x y z ẋ ẏ ż]T , u has the same form as Eq. (6), and K is the same as Eq. (7). The sys-
tem matrix A has the new form

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2σi + 1 0 0 0 2 0
0 1 − σi 0 −2 0 0
0 0 −σi 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(42)

and B is the same as Eq. (5). Using the relation Ac = A− BK which has eigenvalues λ and
eigenvectors V , the general eigenvalues of the closed-loop system are found to be

λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
√

−2−K11−K22+σi−
√
K 2

11+8(K22−σi )−2K11(−4+K22+3σi )+(K22+3σi )
2

√
2√

−2−K11−K22+σi−
√
K 2

11+8(K22−σi )−2K11(−4+K22+3σi )+(K22+3σi )
2

√
2

−
√

−2−K11−K22+σi+
√
K 2

11+8(K22−σi )−2K11(−4+K22+3σi )+(K22+3σi )
2

√
2√

−2−K11−K22+σi+
√
K 2

11+8(K22−σi )−2K11(−4+K22+3σi )+(K22+3σi )
2

√
2

−√−K33 − σi√−K33 − σi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (43)
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Fig. 8 Regions for which (a) λ2, (b) λ4, and (c) λ6 are purely imaginary, purely real, and complex, for
Earth–Moon L2 point (σ2 = 3.19097)

Thus, in similar fashion to the linearised two-body problem, it is possible to modify
the natural frequencies of the in-plane motion and out-of-plane motion independently by
modifying K . For the Earth–Moon L2 point (ρ = 0.01213, σ2 = 3.19097) the regions
where the eigenvalues are purely imaginary, real, or complex are shown in Fig. 8. These
regions are similar to those of the two-body system, however unlike the two-body case the
region boundaries are dependent on σi and so the stable region changes at different Lagrange
points and with different ρ.

With reference to Fig. 8, it is worth noting that, unlike within the two-body HCW system,
the in-plane motion around the Earth–Moon L2 is naturally unstable. With K11 and K22

both at zero, λ4 is positive and real. Therefore, in order to design useful, stable, oscillatory
relative trajectories around the Lagrange point, it is necessary to apply feedback gains such
that the eigenvalues become purely imaginary. For the Earth–Moon L2 point, the relative
in-plane motion will be stable and oscillatory when gains of approximately K11 > 2.28σ2

and K22 > −0.65σ2 are selected.
For arbitrary initial conditions, with K11 and K22 in the stable region, interesting doubly

periodic trajectories are produced. An example of this is shown in Fig. 9, where K11 =
K22 = 10σ2 and the initial velocity is zero. Since the z-axis motion is decoupled, it is not
shown here.
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Fig. 9 In-plane trajectory for the doubly periodic case, using K11 = K22 = 10σ2, for Earth–Moon L2
(σ2 = 3.19097)

Let p j + iq j be the eigenvector corresponding to eigenvalue λ j , and consider only the
two in-plane eigenvalues λ2 and λ4 (since the out-of-plane motion is decoupled) such that
j = (2, 4). Recalling that the eigenvalue λ j is equivalent to the natural frequency ω j , it can
be shown that the three-dimensional periodic solution is found from Baig (2009)⎡

⎢⎢⎣
x
y
ẋ
ẏ

⎤
⎥⎥⎦ = cos(ω2t)[A p2 + Bq2] + sin(ω2t)[B p2 − Aq2]

+ cos(ω4t)[C p4 + Dq4] + sin(ω4t)[D p4 − Cq4]. (44)

From this, by setting t = 0, the initial conditions are
⎡
⎢⎢⎣
x0

y0

ẋ0

ẏ0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−2ω2B − 2ω4D
A(h + ω2

2) + C(h + ω2
4)

2ω2
2 A + 2ω2

4C
ω2(h + ω2

2)B + ω4(h + ω2
4)D

⎤
⎥⎥⎦ . (45)

The constants A, B, C , and D are then

⎡
⎢⎢⎣
A
B
C
D

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−−hẋ0−ẋ0ω2
4+2y0ω2

4
2h(ω2

2−ω2
4)

−−2 ẏ0−hx0−x0ω2
4

2ω2(ω2
2−ω2

4)

−−hẋ0−ẋ0ω2
2+2y0ω2

2
2h(ω2

4−ω2
2)

−−2 ẏ0−hx0−x0ω2
2

2ω4(ω
2
4−ω2

2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (46)
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The initial conditions required for C = 0 and D = 0 are then found to be

[
ẋ0

ẏ0

]
=

⎡
⎣

2y0ω2
2

h+ω2
2−x0(h+ω2

2)

2

⎤
⎦ . (47)

So a periodic solution with the same form as the ballistic periodic solution (Baig 2009)
and dependence on a single natural frequency ω2 is found as

x(t) = −Ax cos(ω2t + φ) (48a)

y(t) = k Ax sin(ω2t + φ) (48b)

in which k = (ω2
2+h)

2ω2
, Ax is the amplitude of the x-axis motion, and φ is the phase angle.

Both K11 and K22 can now be varied to change the natural frequency and y-axis amplitude
of the elliptical relative orbit around the Lagrange point. The out-of-plane motion, which is
always periodic, has the solution

z(t) = Az sin(ω6t + φz), (49)

where Az is the z-axis amplitude, φz is the phase angle, and ω6 is the out-of-plane natural
frequency which can be modified by changing K33. The periodic in-plane motion generated
by these initial conditions is shown in Fig. 10, where K11 = K22 = 10σ2 and the initial
velocity is as in Eq. (47).

It can then be shown that 3-D periodic orbits are achieved when ω2/ω6 is a rational number,
and quasi-periodic Lissajous trajectories are attained when ω2/ω6 is irrational. An example
of a thrust augmented Lissajous trajectory is plotted in Fig. 11, where K11 = K22 = 10σ2

and K33 = 0.
For ω2 = ω6, it is necessary that

K33 =
2+K11+K22−3σi+

√
K 2

11+8(K22−σi )−2K11(−4+K22 + 3σi ) + (K22 + 3σi )2

2
.

(50)

This produces a tilted periodic orbit with a potential application in providing an L2 com-
munications relay for the far side of the Moon with respect to the Earth, as an extension of
the concept first proposed by Farquhar (1968): instead of out-of-plane phase-jump control
impulses, continuous low thrust with gain governed by Eq. (50) is used to prevent occultation
of the spacecraft behind the Moon. Constant line of sight with Earth is achieved by ensuring
that Ax and Az are greater than the radius of the Moon’s relative umbra. The in-plane and 3-D
trajectories of a spacecraft on such an orbit around the Earth–Moon L2 are shown in Fig. 12,
for Ax = Az = 1800 km. For this example orbit, with zero thrust in the in-plane directions,
the peak thrust-induced acceleration in the z-axis is 3.56µm s−2. The required �vz for one
year of operation is 74.4 m s−1, corresponding to a 0.025 kg propellant expenditure for a
spacecraft with initial mass of 10 kg, equipped with electrostatic thrusters of Isp = 3000 s.

4 Conclusions

Continuous low-thrust propulsion can augment the capabilities of spacecraft formations by
allowing relative flight on forced Keplerian and non-Keplerian trajectories. Simple control
strategies using only position feedback can be applied to generate rich new families of
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Fig. 10 Periodic in-plane trajectory, using K11 = K22 = 10σ2

Fig. 11 Thrust augmented Lissajous trajectory about Earth–Moon L2 point, using K11 = K22 = 10σ2
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Fig. 12 Trajectory around Earth–Moon L2 point when ωxy = ωz , using K11 = K22 = 0

stable relative orbits in both the two-body and restricted three-body problems, whilst requir-
ing only minimal intervention into the dynamics of the problem, to permit implementation
aboard small, low-cost spacecraft. One main contribution of this paper is the parametric
derivation of a forced circular orbit of arbitrary dimension, orientation, and period rela-
tive to a target on a circular two-body orbit. A second contribution is the derivation of
thrust commands for out-of-plane period modulation, leading to the analytical description
of a cylindrical relative orbit in the two-body rotating frame, with potential future appli-
cations in on-orbit inspection. A third contribution is the derivation of gain requirements
for the synchronisation of in-plane and out-of-plane periods of a relative orbit around a
Lagrange point in the restricted three-body problem, such that a stable, singly periodic
3-D trajectory can be accessed for the purposes of providing a constantly visible Earth–
Moon L2 communications relay. Further, the propellant requirements for each new orbit
type are relatively small and achievable when the use of modern electrostatic thrusters is
assumed.
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