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Abstract 

We present a theoretical investigation on the processes underpinning the reduced longitudinal 

spreading documented in stable variable density flows, as opposed to constant density settings, within 

heterogeneous porous media. We do so by decomposing velocity and pressure in terms of stationary 

and dynamic components. The former corresponds to the solution of the constant density flow 

problem, while the latter accounts for the effects induced by density variability. We focus on a stable 

flow configuration and analyze the longitudinal spread of saltwater injected from the bottom of a 

column formed by a heterogeneous porous medium initially fully saturated by freshwater. We adopt 

a perturbation expansion approach and derive the equations satisfied by section-averaged 

concentrations and their ensemble mean values. These formulations are respectively characterized by 

a single realization and an ensemble dispersive flux, which we determine through appropriate closure 

equations. The latter are solved via semi-analytical and numerical approaches. Our formulations and 

associated results enable us to discriminate the relative impact on the density-driven solute 

displacement of (a) covariance of the permeability of the porous medium, (b) cross-covariance 

between permeability and concentration, which is in turn linked to the coupling of flow and transport 

problems, and (c) cross-covariance between the dynamic and stationary velocities. 

  



1. Introduction 

Proper understanding and quantification of the feedback between space-time variability of fluid 

density and the ensuing flow and transport settings is relevant for a variety of environmental and 

industrial problems. These include, e.g., coastal aquifer management (e.g., [1, 18, 29, 36, 51, 62, 51]), 

enhanced oil recovery strategies (e.g., [21, 27, 56]), design and engineering of safe CO2 storage 

protocols (e.g., [19, 40, 48, 65]) as well as quantification of solute transport in fractured media for 

site remediation and/or groundwater source protection (e.g., [8, 53, 57]). In this framework, the effect 

of density contrasts between miscible fluids has been shown to influence the spreading of 

contaminants along directions parallel (e.g., [13], [24], [39], [66]) and normal to mean flow velocity 

(e.g., [2, 22, 38, 46, 45, 47, 55, 61, 64]). A notable feature is that settings associated with variable 

density are characterized by reduced spreading (when compared to constant density) for stable 

configurations (where the light fluid lies above the dense fluid), and by enhanced spreading for 

unstable configurations. 

Reduced spreading is typically attributed to the occurrence of stabilizing effects. A local increase 

in velocity causes a perturbation in the concentration front that does not affect velocities in constant 

density settings. However, the ensuing density increase tends to drag the fluid, resulting in a reduction 

of the velocity peak and of the overall spreading of concentrations. The results of this stabilizing 

effect have been documented in nearly homogenous (e.g., [28, 30, 59]) as well as in heterogeneous 

(e.g., [9, 34, 35, 37]) porous media. 

The complexity of the pore scale geometry and flow patterns, which lead to spatial variability of 

permeability at the continuum scale (e.g., [6, 63]), ultimately governs the variability of solute 

concentration fields typically observed in natural porous formations (e.g., [50, 56]). A common 

practice to address this complexity in constant density scenarios relies on decomposing the velocity 

and concentration fields in terms of the sum of a mean value and a zero-mean fluctuation (i.e., a 

classical perturbation approach). This decomposition is non-unique and can be performed by 

considering spatial (e.g., [3, 15, 49, 63]), temporal (e.g., [6, 17]) or ensemble (e.g., [12, 41, 42, 43, 



44]) averaging techniques. Regardless the nature of this decomposition, a key research goal is the 

formulation and solution of an effective model satisfied by a representative (mean/average) 

concentration. A dispersive flux, given by the average of the cross product between velocity and 

concentration fluctuations, typically arises in such effective models. 

Here, we focus on the interaction between the effects of (a) buoyancy and (b) heterogeneity 

induced by the spatial variability of permeability on density-dependent flow and transport behavior. 

Our key aim is to provide a physically-based quantitative analysis of the above documented reduction 

of the width of the dispersion zone in stable flow configurations. The essence of the matter is 

illustrated in Figure 1, obtained using the procedures described in Section 2. Saltwater is continuously 

injected within a porous domain initially saturated with freshwater. The permeability of the porous 

medium is modelled as a random function of space characterized by a multivariate log-Gaussian 

distribution. A realization of permeability is displayed in Figure 1a. Figures 1b, 1c, and 1d display a 

snapshot of solute concentration, for three diverse values of density contrast, as quantified through 

the gravity number, Ng, which reflects the relative importance of buoyancy and viscous forces (see 

Section 2.1 for additional details). These plots evidence two major elements: (a) the progressive 

reduction of the width of the dispersion zone and (b) the tendency of the concentration profile to 

resemble a configuration typical of homogenous media for increasing values of Ng. It is then natural 

to ask: (a) Can we detect the basic physical mechanisms at the heart of this behavior? (b) What is the 

feedback between the effects of buoyancy and physical heterogeneity of the domain in the 

concentration distribution? and (c) Can we quantify the relative importance of buoyancy and 

permeability heterogeneity on the pattern of the observed spreading process? These are precisely the 

key questions we address in this work. 

Previous studies have adressed the above questions. Hassanizadeh and Lejnse [28] proposed an 

extension of Fick’s law to model the local dispersive flux, i.e., the dispersive flux appearing in the 

upscaled (from pore- to continuum-scale) transport equation. These authors modeled the local 

dispersive flux as a nonlinear function of the local concentration gradient through the introduction of 



a coefficient of proportionality (termed β by them). This model has been shown to accurately 

reproduce a set of laboratory experiments in homogenous media under a stable configuration [59], as 

well as breakthrough curves obtained from a suite of two-dimensional numerical simulations in 

heterogeneous media, [31]. However, a clear and unambiguous link between β and the underlying 

physical processes is still missing. Watson et al. [59] and Landman et al. [32] observed that β depends 

on the mean flow rate. Landman et al. [31] documented a notable dependence of β on the fluid density 

contrast in heterogeneous formation and introduced two upscaling models (from pore to continuum 

and from continuum to continuum scale) based on homogenization theory. Both models render a good 

reproduction of the numerical results of Landman et al. [32] and provide a relatively simple nonlinear 

relationship between the dispersive flux and the gradient of section averaged concentrations. Welty 

and Gelhar [60] introduced an analytical expression for the asymptotic (long-time) longitudinal 

macro-dispersivity under the assumption that the velocity field is a second-order stationary random 

process. These authors show that macro-dispersion is a function of the gradient of the ensemble mean 

concentration, flow rate, displacement distance, gravity, fluid density and viscosity and log-

permeability correlation scale and variance. However, as we highlight in Section 3, the velocity field 

is not (statistically) stationary in a variable density problem, due to the coupling between flow and 

transport equations. In this framework, the objectives of this work are (i) to obtain an upscaled 

equation for flow and transport in a variable density context, (ii) to highlight the factors that control 

the dispersive flux, and (iii) to investigate the features of the reduced solute dispersion that is observed 

under stable displacement conditions. 

2. Flow and transport Model and problem set up  

Fluid flow in porous media is described by conservation of mass and Darcy’s law, in the form 
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where 
*ρ  [ML-3], 

*  [M T-1 L-1] and 
*p  [M T-2 L-1] are fluid density, viscosity, and pressure, 



respectively, 
*g  [LT-2] is gravity, *z  [L] is elevation, 

*t  [T] is time, 
*

q  [L T-1] is Darcy’s flux, 
*

k  

[L2] is the permeability tensor and   [-] is porosity, which we treat as a constant scalar. 

We consider solute transport to be locally governed by the advection-dispersion equation 
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Here 
*C  [-] is solute concentration, and 

*
D  [L T-2] is the local dispersion tensor, modeled as 
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where *
mD  is molecular diffusion, *

T  and *

L  [L] respectively are transverse and longitudinal 

dispersivities, I  is the identity matrix, and 
*

v  [L T-1] is fluid velocity defined as 

* * v q / . (4)  

We focus on a stable density-dependent problem within a heterogeneous porous domain, Ω, of 

width 
*W  [L], and height 

*H  [L], as depicted in Figure 1. In our set-up Darcy’s flux 
*

q  has 

components *

zq  and *

yq , respectively along the vertical, *z , and horizontal, 
*y , direction. The column 

is initially filled by freshwater with density *

fρ . Seawater with density *

sρ  at concentration sC  is 

continuously injected at time 
*t  0 at the bottom of the column, i.e., at 

* 0z  . The remaining 

boundary conditions are: (1) no flow at 
* *0,y W ; (2) constant pressure **

BCp p  at 
* 0z  ; (3) 

prescribed vertical flux, * *

z BCq q , and solute mass flux  * * * * * ** *

BCC C q C   q D n  at 
* *z H , 

with 
*

n  being a unit vector pointing outwards (see Figure 1). 

Closure of the system (1)-(4) is obtained by assuming viscosity to be constant and expressing

*ρ  as a linear function of 
*C  (e.g., [1]) 

* * * *

fρ =ρ + C ,     with  * * * /s f sρ ρ C   .  (5)  



In the following we assume isotropic dispersivity values, * * *

T L     and disregard *
mD  since 

its contribution to the dispersion tensor can be usually neglected (e.g., [31]). Therefore, (3) reduces 

to 

* * *| | ID v .  (6) 

We adopt *k , 
*

k  being the geometric mean of the permeability field, as characteristic length 

scale. This leads to the introduction of the following dimensionless quantities 
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with * * *
s f     , * * /CBC Bqv  . Using (7), Eqs. (1), (2), (5) and (6) can be written in dimensionless 

form as 
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Here, Pe  is the Peclet number, expressing the ratio between advective and dispersive transport rate, 

and 
gN  is the gravity number, expressing the relative intensity of buoyancy and viscosity effects. 

We solve (8)-(11) by means of the widely tested code SUTRA [58]. Domain heterogeneity is 

modeled by treating the dimensionless permeability k  as an isotropic random field 

 exp ( , )Y y z Ik , where Y(y, z) is a zero-mean second order stationary random process of space 

characterized by an isotropic exponential covariance function 



* * *2( ) exp( / )YY YC l r r , (12) 

*
r  [L], 2

Y  [-] and 
*l  [L] respectively being the separation vector (or lag) between two spatial 

locations, variance and correlation length (or integral scale) of Y. The heterogeneous Y fields are 

synthetically generated by the widely used and tested code SGSIM [20] on a uniform grid structured 

with five generation nodes per correlation length, 
*l  as detailed in Section 4. 

3. Theoretical framework 

We start by deriving the equation satisfied by section-averaged concentrations in the setting of 

Figure 1, which naturally leads to an effective one-dimensional model. This equation includes a term, 

called single realization dispersive flux, which enables us to embed in a simple one-dimensional 

(along the mean flow direction) mathematical formulation the effect of the spatial heterogeneity of k. 

We then leverage on the above one-dimensional (section-averaged) model and average it in 

probability space. The ensuing mathematical formulation includes an ensemble dispersive flux that 

enables us to encapsulate the effect of the uncertainty in the spatial arrangement of k on the mean 

concentration distribution. The main purpose of the analytical formulations presented in Sections 3.1-

3.2 is to enrich our understanding of the interplay between permeability and stabilizing effects that is 

at the origin of the solute spread reduction taking place in stable flows within heterogeneous media. 

Our formulations facilitate grasping the impact of variations of Ng and 2
Y  on the system behavior in 

terms of flow structure and resulting solute spreading. Our study enables us to link the key moments 

of the flow and log-permeability fields to the solute spreading behavior. 

3.1 Section-Averaged Concentration 

Point concentration values ( , , )C y z t  are seldom available from laboratory or field experiments 

[7], section-averaged concentration profiles being typically monitored (e.g., [11, 23, 26, 31, 39, 52]). 

Therefore, we focus on cross-section (or horizontal) average concentration, ( , )C z t , where the overbar 

indicates the horizontal averaging operator defined as 
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where   denotes a generic quantity (a parameter or a state variable). In the following, we derive the 

equation satisfied by ( , )C z t  relying on the Boussinesq approximation (e.g., [18], [21]), i.e., assuming 

that 
ρ ρ

ρ t ρ
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q >> q . Under this assumption (8) and (9) can be simplified as 
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Note that k  is spatially variable and all remaining quantities (i.e., v, q, p, ρ, C and D) are both spatially 

and temporally variable. According to (14)-(15), steady state conditions never occur in the variable 

density problem considered in this work and sketched in Figure 1 because flow evolves in time due 

to the effects of the buoyancy term in (14). Therefore, (14) must be solved jointly with (10) and (15). 

We decompose each variable in (14)-(15) as the sum of a horizontal spatial mean and a (spatial) 

zero-mean fluctuation (along the y-direction), i.e., 
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where horizontally-averaged quantities depend on  ,z t , while fluctuations depend on  , ,y z t . 

According to (10), one can see that 

f C   , ' 'C  . (17) 

Horizontally averaged concentrations, ( , )C z t , satisfy the following equation (see A.4 in Appendix 

A) 
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where ' 'zv C  is the single realization dispersive flux. At second order, the latter reads (see A.11a) 
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Here, ( , , , )T
zG z t    is the deterministic Green’s function introduced in (A.10) and '( , ) '( , )z zv z t v    

(defined in (A.11b)) is the horizontal average of '( , , ) '( , , )z zv y z t v y   , i.e., of the product between 

vertical velocity fluctuations evaluated at the same horizontal coordinate and diverse vertical 

positions and times. The single realization dispersive flux, ' 'zv C , embeds in the upscaled one-

dimensional (vertical) model (18) the effect of permeability fluctuations on the section-averaged 

concentration ( , )C z t  (e.g., [16]). 

To highlight the effect of density variations on ( , , )C y z t , we decompose the vector of velocity 

fluctuations as the sum of (a) a stationary component, '( , )st z yv , which corresponds to the solution 

of (14) with constant density ( f  ), and (b) a dynamic component, '( , , )dy z y tv , accounting for 

the stabilizing buoyancy effects due to density variations, i.e., 

'( , , ) '( , ) '( , , )st dyy z t y z y z t v v v .  (20) 

The equations satisfied by '( , )st y zv  and '( , , )dy y z yv  are derived in Appendix C and read (see (C.5)) 
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Here, similar to (20), we decompose pressure fluctuation  as the sum of a stationary, 

, and a dynamic, , component. A numerical analysis of (21) (details not shown) 

reveals that, for the set up of Figure 1, ( , ) '( , ) / /stY y z p y z z     and 

gN '( , , ) '( , , ) /dyy z t p y z t z    . Therefore, (21) can be approximated as  
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
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While (22) shows a clear dependence of '( , )st
zv y z  on the fluctuation ( , )Y y z  of the permeability field, 

'( , , )p y z t

'( , )stp y z '( , , )dyp y z t



the behavior of '( , , )dy
zv y z t  depends on that of '( , , )y z t  through the multiplying factor gN / . 

Noticing that according to (17) '( , , ) '( , , )y z t C y z t  , and making use of (20) and (A.8), the second 

of (22) can be rewritten as  
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Equation (23) allows recognizing that '( , , )dy
zv y z t  is a non-local quantity embedding flow and 

transport features. Two effects are encapsulated in (23): (i) permeability fluctuations are seen to 

promote velocity fluctuations; (ii) the action of the stabilizing buoyant term contributes to reducing 

velocity fluctuations, with an intensity proportional to Ng and to the density fluctuations. These two 

competing mechanisms are weighted by the mean concentration (or density) gradient, the behavior 

of which is a function of both Ng and permeability heterogeneity.  

In the following, we briefly elucidate the benefit of decomposition (20) by focusing on a simple 

heterogeneous domain formed by a single semi-circular inclusion of high permeability ( , ) 10y z  Ik  

(depicted in red in Figures 2a-2c), within an otherwise uniform porous medium with ( , )y z  Ik . The 

remaining relevant key dimensionless quantities are set to gN 0.35 , Pe = 0.25 , 0.35  , 40f 

. The analysis for randomly heterogeneous porous media is offered in Section 4. Figures 2a, 2b and 

2c respectively depict '( , )st y zv , '( , , )dy y z tv  and '( , , )y z tv  at time t = 664. The total velocity field 

( , , )y z tv  is shown in Figure 2d together with the concentration field. As an additional term of 

comparison, Figure 2e depicts ( , )y zv  and ( , , )C y z t  computed at the same dimensionless time 

considering a solute with f   (i.e., corresponding to the transport of a passive scalar in a constant 

density setting). Figures 2d and 2e clearly show that solute spreading decreases when density effects 

are considered. This observed reduction of solute dispersion for the variable density stable scenario 

is strictly linked to the ensuing velocity distribution. Figure 2a indicates that vertical stationary flow 



fluctuations, 'st
zv , are positive in the high permeability zone, favoring solute advancement within this 

area. This generates positive density fluctuations, ' , which in turn trigger negative vertical dynamic 

flow fluctuations, 'dy
zv , due to the effect of (reduction in) buoyancy (see Figure 2b). The opposite 

occurs in the portion of the domain adjacent to the high permeability inclusion. Since 'st
zv  and 'dy

zv  

are associated with opposite signs, the total vertical flow fluctuation 'zv  is smaller than its counterpart 

evaluated for the constant density scenario (compare Figure 2c and Figure 2a). Note that the 

stabilizing effect of 'dy
zv  tends to decrease the intensity of 'zv  (with respect to the uniform density 

case) without altering its sign. This behavior is also observed in the heterogeneous field analyzed in 

Section 4 for the investigated values of Ng. Ultimately, the velocity field at the solute front is more 

uniform in the variable density than in the constant density case (compare the velocity fields in 

Figures 2d and 2e) causing a decreased solute dispersion in the former scenario, as compared against 

the latter. This observation is further supported by Figures 2f and 2e where the distribution along z of 

the variance of the vertical velocity, 
2

( , )
zv z t , and of ' 'zv C  (19) for the constant density case (black 

curves) are compared against their counterpart associated with variable density (red curves). One can 

clearly note the reduction of the magnitude of both 
2

( , )
zv z t  and ' 'zv C  under variable density 

conditions. The basic mechanisms highlighted here for this relatively simple heterogeneous 

configuration are at the heart of the observed reduction in solute spreading observed for stable 

variable density flow within heterogeneous porous media, as further discussed in Section 4. 

3.2 Ensemble Analysis 

Here we treat k as a second order stationary random field and derive the equation satisfied by the 

ensemble mean of the section-averaged concentration, i.e., ( , )C z t ,  indicating the ensemble 

mean operator. This analysis enables us to link the main features of ( , )C z t  to key statistics of the 

permeability field. The equation satisfied by ( , )C z t  results from ensemble averaging of (18), i.e., 
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where ' 'zv C  is the ensemble dispersive flux defined, at second order and after localization with 

respect to the mean concentration vertical gradient, as (see Appendix B, eq. (B.3)) 
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Here '( , ) '( , )z zv z t v    is the horizontal spatial mean of '( , , ) '( , , )z zv y z t v y    which is the 

covariance between the vertical velocity fluctuation at z at time t and its counterpart evaluated at   

at time  , both at the same horizontal coordinate y. The ensemble dispersive flux takes into account 

the effect of the spatial heterogeneity of k across the ensemble of realizations on the evaluation of the 

ensemble mean of the section-averaged concentration. As discussed by Morales-Casique et al. [41], 

[42], the ensemble dispersive flux is related to the effects of the loss of information associated with 

the random nature of k, and therefore of the velocity field, on the prediction of C  through C .  

Equation (25) highlights the key role of the velocity field statistics in controlling the ensemble 

dispersive flux. We show in Appendix D that the velocity covariance, '( , ) '( , )z zv z t v   , can be 

decomposed as the sum of four terms, involving stationary and dynamic velocity fluctuations, as (see 

(D.12)) 
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where  A ,  B  ,  C ,  D  are operators defined (D.8)-(D.11). Equation (26) indicates that 

while the horizontal spatial mean of the stationary-stationary term, '( ) '( )st st
z zv z v  , depends on the 



covariance of the log-permeability field, the stationary-dynamic, '( ) '( , )st dy
z zv z v   , and dynamic-

stationary, '( , ) '( )dy st
z zv z t v  , terms depend on the cross-covariance ( ) '( , )Y z C    between log 

permeability and concentration and are characterized by a quasi-linear dependence on Ng, since 

( ) '( , )Y z C    in (26) depends on Ng as dictated by (E.5). Otherwise, the dynamic-dynamic 

component, '( , ) '( , )dy dy
z zv z t v   , is a function of the covariance of the concentration field, 

'( , ) '( , )C z t C   , and exhibits a quasi-linear dependence on Ng
2 (note that also '( , ) '( , )C z t C    

depends on Ng, as shown in (F.6)). The main features of covariances embedded in (26) and their 

impact on the solute transport behavior are analyzed and discussed in Section 4. Note that the constant 

flow boundary condition and the adoption of the Boussinesq approximation in our set-up ensure that 

the center of mass of the advancing solute front travels at the same speed for all realizations of Y, thus 

yielding no artificial spreading (see e.g., [16]). 

4. Results and discussion 

Numerical Monte Carlo (MC) based and semi-analytical results are presented here for the quantities 

introduced in Section 3, i.e., velocity covariance, cross-covariance between concentration and 

permeability, ensemble dispersive flux and concentration variance. Numerical and semi-analytical 

results are depicted as solid and dashed curves, respectively, in the plots of this Section. We recall 

for convenience the main assumptions invoked in our semi-analytical formulations presented in 

Section 3, i.e.,: (i) all statistical moments are approximated at second order (in terms of the fluctuation 

Y of the permeability field), thus nominally limiting our semi-analytical solution to mildly 

heterogeneous media, 2 1Y  ; (ii) flow and transport Green’s functions are approximated by their 

one-dimensional formulations (A.10) and (D.4b). Additionally, to speed up the evaluation of our 

semi-analytical expressions and to make use of already existing analytical results, (iii) cross-

covariance between log conductivity and hydraulic head in (E.5) is computed via an analytical 



solution available for mean uniform steady-state flow in an infinite two-dimensional domain [14]; 

and (iv) the contribution of '( ) '( )st st
z zv z v   in (25)-(26) is set equal to 2

Y l , which corresponds to the 

asymptotic value for macro dispersion derived in Gelhar and Axness [25]. Due to the coupled nature 

of the problem (e.g., ' 'zv C  depends on /C z  , as shown by (24)), a semi-analytical solution for 

the quantities presented in Section 3 requires an iterative procedure and therefore a CPU time which 

is comparable with the one associated with MC simulations. Hence, in the following we take 

advantage of the MC results to evaluate the mean concentration gradient, /C z  . 

In our simulations we set 0.35  , 
*

k  = 10-9 m2, H* = 0.3 m, W* = 0.05 m, *  = 1.2510-4 m, 

* 31000 kg / mf  , * 31025 kg / ms  , *l = 2.5010-3 m (i.e., 
* */ 6H W  , 

** / 9486.8H H k  , 

** / 1581.1W W k  , 
** / 79l l k  , 

* */ 120H l  , 
* */ 20W l  , Pe = 0.25 , 

* */ 20l   , 

40fρ  ). The size of the domain has been selected to ensure that we frame our calculations on a 

large system, in terms of the correlation scale, *l , of Y. The domain is discretized by a regular mesh 

of square elements. We performed a set of preliminary simulations aimed at testing the influence of 

space and time grid discretization on the quantities of interest (namely, horizontal mean 

concentration, single realization and ensemble dispersive flux and velocity covariance). Accurate 

results at an affordable CPU time have been obtained with a spatial grid formed by 100  600 elements 

(i.e., * *z y    = 510-4 m) and dimensionless time step t  = 2.8. Five rows of grid elements formed 

by a homogeneous porous medium with 
**k k  are added at the inlet boundary to regularize solute 

inflow. This procedure is commonly adopted in experimental set-ups with highly heterogeneous 

porous media (e.g., Kretz et al., 2003) to regularize the inflow conditions. We investigate four 

scenarios characterized by diverse levels of heterogeneity of the permeability field, i.e., 2
Y  = 0.1, 



0.5, combined with diverse intensities of buoyancy effects, as quantified by gN  = 0, 0.1, 1.0. Our 

numerical results are grounded on 1000 MC simulations for each parameter set investigated. 

4.1 Variance and Covariance of Vertical Velocity 

The covariance of the vertical velocity components (26) plays a critical role in determining the 

mean solute transport behavior, as highlighted by (24)-(25). Here, we compare the results obtained 

for the constant and variable density scenarios to elucidate and quantify the origin of the reduced 

solute spreading documented in Figure 1. 

Figures 3 depicts the velocity variance, 
2'zv , and the (negative) mean concentration gradient, 

/C z   , at three dimensionless times (i.e., 3

1 2.2 10t   , 3

2 4.4 10t   , and 3

3 6.6 10t   ) for 

gN 1  (left) and gN 0.1  (right) and for 2 0.1Y  (two top rows) and 2 0.5Y   (two bottom rows). 

For illustration purposes, Figure 3 includes only the Monte Carlo based numerical results. The 

corresponding semi-analytical results are in good agreement with these. Velocity variance 
2'zv  

varies with z. It is zero at the boundaries (recall that we maintain a constant permeability at the five 

extreme rows of elements), but immediately rises to its constant density stationary value, except at 

the region near the solute front, where it is reduced. This reduction reflects the role of the space-time 

variability of fluid density in stabilizing the system, thus reducing 
2'zv  at the solute front as Ng 

increases. The occurrence of local minima of 
2'zv  and /C z   is strikingly evident for gN 1  

and small heterogeneity ( 2 0.1Y  ). Decreasing the intensity of buoyancy effects (i.e., for gN 0.1 ) 

and/or increasing 2
Y  cause the local minima of 

2'zv  to be dampened and local maxima of 

/C z   to decrease. We remark that there is strong feedback between the behavior of 
2'zv  and 

/C z  . An increase of 
2'zv  and the corresponding increase of the vertical velocity fluctuation 



'( , , )zv y z t  is associated with an increase of the solute spreading. These are in turn linked to a decrease 

of the mean concentration gradient, /C z  , i.e., to a smoothing of mean concentration profiles. 

We have shown in (26) that the vertical velocity covariance, '( , ) '( , )z zv z t v   , can be 

decomposed as the sum of four components. These are shown in Figure 4 for 2 0.1Y  , and gN 1

(left) and Ng = 0.1 (right). Both the overall covariance '( , ) '( , )z zv z t v    (red curve Figure 4a) and 

its stationary component '( ) '( )st st
z zv z v   (black curve) attain their maximum value at the front (the 

curves are plotted versus ξ for fixed 2t t   and 3

2 4.27 10z z   ). Obviously, this maximum is 

the variance, which was shown (Figure 3(a) and (b)) to display a minimum at the front for the variable 

density case. The reduction in variance is now manifest (Figures 4(a) and (b)) in the observation that 

the peak displayed by '( , ) '( , )z zv z t v    at ξ = z is smaller than that of '( ) '( )st st
z zv z v  . A perhaps 

more interesting effect is the asymmetry introduced by variable density on the velocity covariance, 

which is symmetric and positive for constant density. In fact, '( , ) '( , )z zv z t v    and '( ) '( )st st
z zv z v   

tend to coincide for ξ > z; but '( , ) '( , )z zv z t v    becomes significantly smaller, even negative, than 

'( ) '( )st st
z zv z v   for ξ < z. As expected, '( , ) '( , )z zv z t v    and '( ) '( )st st

z zv z v   tend to coincide when 

Ng decrease (see Figure 4b). 

Negative values of the overall covariance '( , ) '( , )z zv z t v    for ξ < z are due to the effect of the 

dynamic and stationary velocity cross-covariances, '( , ) '( )dy st
z zv z t v   and '( ) '( , )st dy

z zv z v   , which 

are always negative. This result is consistent with (23) and with our discussion in Section 3 arguing 

that positive values of '( )st
zv   favor the solute to advance within the domain, thus originating negative 

dynamic velocity fluctuations, '( , )dy
zv z t , through positive density fluctuations, '( , )z t  . The 



same holds when '( )st
zv   is negative, which promotes positive values of '( , )dy

zv z t . We note that 

'( , ) '( )dy st
z zv z t v   attains its largest (absolute) value for ξ < z and '( ) '( , )st dy

z zv z v    for ξ > z. These 

findings suggest that the stabilizing dynamic fluctuation '( , ) '( )dy st
z zv z t v   arising at a given space-

time location (z, t) displays a strong negative correlation with the stationary velocity fluctuations (i.e., 

with variations of Y according to (22)), especially those occurring at points ξ < z. This is a result of 

(i) the coupling between flow and transport (as documented by the dependency of 'dy
zv  on '  in (22) 

and (23)), and (ii) the nature of the transport setting according to which density fluctuations are mainly 

dictated by the velocity perturbations which have been already experienced. This aspect is clearly 

highlighted by our semi-analytical solution (23) since the Green’s function (A.10) of the transport 

problem is non zero mainly in the range of space-time coordinates ( ; )z t   . As a consequence, 

fluctuations 'dy
zv , which are rooted in the coupled nature of flow and transport, are less correlated 

with the corresponding stationary flow perturbation, 'st
zv , which occur at forward (in space and time 

along the mean flow direction) locations. The term '( , ) '( )dy st
z zv z t v   depicted in Figure 4c-4d imbues 

information about the extent of the region within which the dynamic velocity field at a given location 

(in space-time) is influenced by variation of the stationary velocity field at all locations within the 

domain. At the same time, '( ) '( , )st dy
z zv z v    depicted in Figures 4e-4f can be seen as an indication 

of the extent in space and time of the region within which stationary velocity fluctuations promote 

dynamic perturbations of the flow, an effect which is mainly felt at spatial locations   > z. In other 

words, while Figures 4c-4d highlight the way density (or concentration) perturbations at a given 

location are affected by the heterogeneity spanning the entire domain, Figures 4e-4d highlight the 

way a local perturbation of the log permeability field contributes to the concentration variability 



across the full domain. Note also that a change in Ng induces a quasi-linear variation of the magnitude 

of '( ) '( , )st dy
z zv z v    and '( , ) '( )dy st

z zv z t v  , as also indicated by (26). 

Figures 4g and 4h depict '( , ) '( , )dy dy
z zv z t v    versus   for z = z2, t = t2 and three values of τ when 

Ng = 1 and 0.1, respectively. This quantity represents the covariance between the dynamic velocity 

components, which is positive, as expected. It can then be noted that '( , ) '( , )dy dy
z zv z t v    exhibits a 

supra-linear dependence on Ng, with a power which is different from two (compare Figures 4g and 

4h) according to (26) and (F.6). Quantities '( , ) '( )dy st
z zv z t v  , '( ) '( , )st dy

z zv z v    and 

'( , ) '( , )dy dy
z zv z t v    display a behavior which is qualitatively similar to what illustrated above at all 

space-time locations investigated (details not shown). 

Figure 5 depicts results analogous to those of Figure 4 for 2 0.5Y  . For both Y variances, the 

semi-analytical solution captures remarkably the behavior of the Monte Carlo results. As mentioned 

earlier, '( ) '( )st st
z zv z v   is linearly proportional to 2

Y . Increasing the heterogeneity causes 

'( , ) '( , )z zv z t v    to increase. What is more interesting, we find that, for a given Ng, the dampening 

effect of the buoyancy term on velocity fluctuations tends to decrease as 2
Y  increases, i.e., 

'( , ) '( , )z zv z t v    is closer to '( ) '( )st st
z zv z v   in Figure 5a than in Figure 4a. This behavior is 

essentially due to the diminished capability of the negative cross-covariances '( , ) '( )dy st
z zv z t v   and 

'( ) '( , )st dy
z zv z v    to stabilize the flow, i.e., the absolute value of '( , ) '( )dy st

z zv z t v   and 

'( ) '( , )st dy
z zv z v    increases sub-linearly with 2

Y . To further clarify this aspect, we derive an 

analytical expression for '( ) '( , )st dy
z zv z v z t  based on the following set of rough approximations of 



(23): (i) the buoyancy term is neglected, and (ii) ( , ) /C      is approximated through a Gaussian 

function whose degree of spreading for the tracer case is governed by the macro-dispersion 

coefficient, 
mtD , (Gelhar and Axness, [25]). Multiplying (23) by '( )st

zv z  (as in (22)), taking spatial 

and ensemble expectation and making use of (12) leads to (after some manipulations): 
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 (27) 

which highlights a sublinear grow of the cross-covariance of vertical velocity with 2
Y , for a given 

Ng. Recalling (25) and (26), the sublinear dependence on 2
Y  of the cross-covariance between 

dynamic and stationary components, when viewed in the context of the linear scaling on 2
Y  of the 

stationary velocity covariance, suggests that the effect of stabilization of '( , ) '( )dy st
z zv z t v   and 

'( ) '( , )st dy
z zv z v    on the flow field, and therefore on the solute front, decreases as the heterogeneity 

of the porous medium increases. We emphasize that the purpose of (27) is not to provide an exact 

solution of '( ) '( , )st dy
z zv z v    but to help in clarifying the effects of 2

Y  on the dynamic and stationary 

velocity cross-covariance. 

4.2 Cross Covariance between Concentration and Permeability 

Figure 6 depicts the Monte Carlo based section-averaged cross-covariance between permeability 

and concentration, ( ) '( , )Y z C   , versus ξ when 2z z  (black curves) and versus z when 2 2z    

(red curves) at time 3

2 4.4 10t     for 2 0.1Y   when gN 1  (Figure 6a) or 0.1 (Figure 6b). 

Corresponding results for 2 0.5Y   and gN 1  or 0.1 are illustrated in Figures 6c and 6d. 

Corresponding semi-analytical results are in good agreement (details not shown for clarity). Results 



obtained for 2( ) '( , )Y z z C    (blues curves) and 2( ) '( , )Y z C     (green curves) when density 

is constant are also included. 

The analysis of ( ) '( , )Y z C    versus   allows highlighting the way permeability fluctuations, 

Y(z), are correlated with concentration fluctuation, '( , )C   , at space-time coordinates ( , )  . 

Otherwise, graphs of ( ) '( , )Y z C    versus z reveal how concentration fluctuations '( , )C    (at a 

given location) are affected by permeability fluctuations at a set of z spatial coordinates. It can be 

noted that: (a) peaks of ( ) '( , )Y z C t  do not occur at the selected reference locations 2  or 2z ; (b) 

values of 2( ) '( , )Y z C t  at 2z   are larger than those at 2z  , thus implying that permeability 

fluctuations influence '( , )C t  at downstream (i.e., when 2z  ) locations along the direction of the 

mean flow more strongly than they do at 2z  . Consistent with this mechanism, 2'( , )C t  is highly 

correlated with ( )Y z  when 2z   (see red curve in Figure 6). In summary, Figure 6 suggests that (a) 

permeability at a given location highly influences concentration at downstream positions, and (b) 

concentration are highly correlated with permeability at upstream locations. These results also imply 

that permeability data are expected to be beneficial (on average) to reduce uncertainty on solute 

transport prediction at downstream (along the mean flow direction) locations, concentration 

measurements conveying relevant information to infer permeability within upstream zones. 

One can note that values of 2( ) '( , )Y z C t  for a given z are larger for the constant density than in 

a variable density scenario (compare green and red curves in Figure 6). The mechanism associated 

with the reduction of 2( ) '( , )Y z C t  for the variable density scenario is elucidated by our semi-

analytical solution (E.5). It is linked to the last term on the right hand side of (E.5), which depends 

linearly on gN  and vanishes in the uniform density case. From a physical point of view, the emerging 

behavior is due to the capability of the stabilizing buoyant effects of smoothing the perturbation in 



the solute concentration profiles induced by the spatial variability of permeability. As a consequence, 

an increase of buoyancy effects in a heterogeneous domain results in concentration profiles that are 

characterized by a regular shape, which is akin to the one observed in homogeneous media. Values 

of ( ) '( , )Y z C    in density-driven flows tend to coincide with those associated with uniform density 

scenarios for increasing 2
Y  and/or decreasing gN , because the effect of the stabilizing buoyancy 

terms decreases. 

Comparison of Figures 4 and 6 reveals that the shape of '( , ) '( )dy st
z zv z t v   and '( ) '( , )st dy

z zv z v    

is respectively similar to that of '( , ) ( )C z t Y   and ( ) '( , )Y z C   . This numerical result is in 

agreement with (D.8)-(D.9), according to which g'( , ) '( ) N '( , ) ( ) /dy st
z zv z t v C z t Y     and 

g'( ) '( , ) N ( ) '( , ) /st dy
z zv z v Y z C      . We remark that our analysis of the cross-covariance 

between permeability and concentration leads to conclusions which are consistent with those 

stemming from our discussion about velocity covariances because for the scenario here investigated 

the characteristics of Y mainly dictate the behavior of 'st
zv , 'C  being clearly linked to 'dy

zv . 

4.3 Ensemble Dispersive Flux and Concentration Variance 

Here, we analyze the ensemble dispersive flux, ' 'zv C  introduced in (24)-(25). We recall (25)-

(26) and remark that ' 'zv C  depends non-linearly on the mean concentration gradient, /C z  . 

This observation is consistent with previous analytical and numerical results (see, e.g., [31, 32, 60]). 

The root of this non-linear dependency lies in the coupling between the flow and transport problems 

and in particular is due to the stabilizing buoyant term in the dynamic velocity fluctuations, which 

depends on the mean concentration gradient, as emphasized by (23). 

Figures 7a and 7b respectively depict ' 'zv C  and the concentration variance, 
2 2'c C  , versus 

z at three selected times, for 2 0.1Y   and constant density (blue curves), or Ng = 0.1 (red curves), 



and 1 (black curves) computed via Monte Carlo simulations. The semi-analytical solutions of (25), 

for ' 'zv C , and (F.6), for 2
c , are also depicted. Corresponding results for 2 0.5Y   are depicted in 

Figures 7c and 7d. One can note from Figure 7 that our semi-analytical solutions capture the behavior 

of the Monte Carlo numerical results. Values of ' 'zv C  and 2
c  decrease in time and/or for 

increasing gN  suggesting that ( , )C z t  can be considered as a good approximation of (random) 

concentrations ( , )C z t  and ( , , )C y z t  (a) at late times when the solute front has sampled the overall 

log-permeability variability and concentration fluctuations along the transverse direction tend to be 

smoothed out due to mixing, and/or (b) for large values of gN , because the solute front in 

heterogeneous domains tends to resemble the pattern documented in homogenous media. An increase 

of the heterogeneity of the permeability field causes both ' 'zv C  and 2
c  to increase and the 

regularizing ability of the stabilizing buoyancy effects to decrease for a given gN . These findings 

are in agreement with the experimental results of Landman et al. [32]-[33]. Our semi-analytical 

solutions overestimate the MC based peaks of the dispersive flux and of the concentration variance. 

This type of behavior has already been detected in second-order analytical and semi-analytical 

methods developed for constant density scenarios (see, e.g., [28, 41, 42]) and it has been attributed to 

the observation that such approaches neglect third order moments (involving velocity and 

concentration fluctuations) that can play a significant role as aquifer heterogeneity, time and Péclet 

number increase. 

The decrease of ' 'zv C  and 2
c  with Ng is described by our semi-analytical solution (25)-(26) 

and (F.1) and is linked to the negative cross-covariances, '( , ) '( )dy st
z zv z t v   and '( ) '( , )st dy

z zv z v  

analyzed in Section 4.1. Our results embedded in Figures 4 and 5 suggest that the main contribution 

to the reduction of ' 'zv C  and 2
c  in a stable variable density setting stems from '( , ) '( )dy st

z zv z t v 



. An interpretation of this result can be offered by considering the nature of the problem and noting 

that the evolution of mean concentration at (z, t) is affected by the perturbations that the velocity field 

have already experienced, i.e., at times t   and locations z  . These effects are encapsulated in 

the Green’s function ( , ; , )T
zG z t    in (25) and (F.1). Note that '( , ) '( )dy st

z zv z t v   in Figures 4c-4d and 

5c-5d exhibits long negative tails for z  . The effect of such tails is opposite to the one given by 

'( ) '( , )st st
z zv z v   . One can see that the convolution between ( , ; , )T

zG z t    and '( , ) '( )dy st
z zv z t v   in 

(25) yields a net reduction of the memory of concentration perturbation on the experienced velocity 

field due to the stabilizing effects of the density-driven scenario. 

5 Conclusions  

We analyze the reduction of solute spreading in randomly heterogeneous porous media driven by 

density variations in a stable flow setting. A key finding of this study is that the reduction of spreading 

and contraction of concentration profiles are due to a spatial reorganization of the velocity field, as 

compared to a constant density scenario. We observe that the velocity variance and the spatial extent 

of velocity correlation tend to decrease when density effects are considered. This reduction of 

variance and correlation scale of velocity causes a corresponding reduction of the strength of the 

dispersive flux. 

We quantify the reduction of the velocity fluctuations variance and of solute spreading/dispersion 

for density-driven flows by decomposing the flow field fluctuations into a stationary component, 'st
zv

, associated with the solution of the flow problem for a constant density fluid, and a dynamic 

component, 'dy
zv , which takes into account the coupling between transport and flow phenomena 

introduced by density variations. This decomposition enables us to highlight the interplay between 

permeability, velocity, and concentration, which is what triggers the reduction of spreading we 

observe when comparing constant and variable density settings. 



The origin of the solute dispersion reduction is linked, both from a mathematical and a physical 

point of view, to the emergence of negative cross-covariances between stationary and dynamic 

velocity fluctuations, ' 'dy st
z zv v . These cross-covariances describe the interplay between 

permeability-induced stationary fluctuations (which promote solute spreading) and stabilizing 

buoyancy-induced dynamic fluctuations (which hinder solute spreading). We analyze the way these 

cross-covariances vary with the intensity of the ratio between buoyancy and viscous forces (as 

expressed by Ng) and with the heterogeneity of the permeability field (as quantified by 2
Y ). The 

absolute values of ' 'dy st
z zv v  scale approximately linearly with Ng (i.e., with permeability and density 

contrast) and sub-linearly with 2
Y . This is in contrast with the well-known linear scaling in 2

Y  

exhibited by the stationary (i.e., constant density) cross-covariance, ' 'st st
z zv v . Therefore, the relative 

importance of the stabilizing components induced by density variations tends to decrease as the 

heterogeneity of the porous medium increases. The reduction of the strength of the dispersive flux as 

well as of the concentration variance which is observed for stable density-driven flow (in comparison 

with the constant density setting) tends to be stronger for increasing values of Ng and decreasing 

values of 2
Y . 

Our study allows investigating the factors controlling the dispersive flux, which is typically 

interpreted as an upscaled parameter to be estimated through model calibration in field scale density 

driven problems. A key result of our study is that such a parameter does not depend solely on the 

aquifer properties (such as permeability) but also on flow and transport variables (such as velocity 

and solute concentration). As such, dispersion coefficients used in a variable density flow and 

transport models should vary not only in space but also in time to properly represent flow and 

transport processes. Investigation of processes underpinning the spreading in unstable density-driven 

flows as well as applications of the developed approaches to estimate the upscaled dispersive flux in 

field scale scenarios are envisioned to be the focus of future studies. 
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Appendix A. Section averaged concentration and effective dispersive flux 

Substituting (16)-(17) in (15), applying the spatial mean operator (13) and making use of the first of 

(14), leads to the following equation 
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satisfied by the spatially-averaged concentration, ( , )C z t , for the problem set up depicted in Figure 

1. Here, 
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Applying (13) to the first of (14) and considering decomposition (16) yields 
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i.e., the spatial mean of the vertical velocity is constant and coincides with the prescribed vertical 

velocity at z = H. A numerical analysis allows recognizing that it is possible to neglect the last term 

of (A.1) (details not shown). Moreover, making use of (A.2) and (A.3), zzD  can be approximated as 

1/Pe. This leads to 
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where ' 'zv C  is the single realization dispersive flux discussed in Section 3.1. Closure of (A.4) is 

obtained upon writing ' 'zv C  as a function of C , as detailed in the following. Subtracting (A.4) from 

(15) and neglecting terms involving the product of fluctuations yields 
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Numerical simulations show that  ' 'C C    v D  (details not shown) so that (A.5) simplifies 

as 

2' '
' '

Pe
z

C C
C v C

t z z

   
   

  
, (A.6) 



subject to the following (homogeneous) boundary and initial conditions 
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Solution of (A.6) can be expressed in terms of 
T

G  , i.e., the Green’s function that satisfies (A.6)-

(A.7) with the source term replaced by ( ) ( ) ( )y z t        , where   is the Dirac’ delta function, 

as 
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Multiplying (A.8) by '( , , )zv y z t  and applying (13) leads to the following expression for the single 

realization dispersive flux 
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with 
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We further simplify our analysis and follow Bolster et al. [5], [6] by considering a one-dimensional 

(1D) problem (along the vertical z-direction) within a semi-infinite domain, [0, )z  . Under this 

setting, a closed-form analytical expression for 
T

G  is (see [33]) 
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Making use of (A.10), (A.9a) simplifies as 
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with 
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Note that η = y by virtue of (A.10), so that only the product of velocity fluctuations along the same 

vertical locations is retained in (A.11a) and (A.11.b). 

Appendix B. Ensemble mean of section-averaged concentration and ensemble dispersive flux 

Applying the ensemble mean operator to (A.4) yields 
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where ' 'zv C  is the ensemble dispersive flux discussed in Section 3.2. This term can be evaluated 

applying the ensemble averaging operator to (A.11a) and neglecting terms involving products of 

fluctuations of order higher than two, as 
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Equation (B.2) clearly elucidates that the ensemble dispersive flux is a non-local quantity in time and 

space, as it depends on velocity cross-covariances and concentration gradients evaluated across the 

whole domain at all times   t. A (partial) localization of (B.2) is offered by 
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Appendix C. Velocity and pressure Fluctuations  

A first order approximation of velocity fluctuation components '( , , )yv y z t  and '( , , )zv y z t  defined in 

(16) are derived by subtracting the spatial mean of velocity from the second of (14), approximating 

the permeability fluctuation as '( , ) exp( ( , )) 1 ( , )k y z Y y z Y y z    and disregarding terms involving 

the product of fluctuations, as 
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Note that (20) and (A.3) enable us to write 
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Recalling the stationary and dynamic decomposition introduced in (20) and (C.3) allows rewriting 

(C.1)-(C.2) as 
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where '( , )stp y z  and '( , , )dyp y z t  respectively are stationary and dynamic pressure fluctuations. 

Using (C.4) and (C.5) and noting that st
v is divergence-free yields 
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Note that (C.6) coincides with the first order approximation of the equation of constant density flow 

through heterogeneous media. Considering the set-up of Figure 1, equation (C.6) is subject to the 

following boundary conditions 
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Solution of (C.6)-(C.7) is 
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where ( , ; , )
F

G y z    is a Green’s function, i.e., it satisfies (C.6)-(C.7) with the source term replaced 

by ( ) ( )y z     . 

A similar procedure yields the following equation satisfied by pressure perturbations 
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Subtracting (C.6) from (C.9) and making use of (17) yields the following equation satisfied by the 

dynamic pressure fluctuation 
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subject to the boundary and initial conditions 
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Solution of (C.10)-(C.11) is given by  
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Appendix D. Covariance of Vertical Velocity 

Making use of (20), the horizontal spatial mean of the covariance of vertical velocity components can 

be written as 
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Considering (C.5) and (17), enables us to write '( ) '( , )st dy
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Recalling (C.12), the first term on right hand side of (D.2) can be computed as 
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We then approximate ˆˆ( , ; , )
F
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 (D.4b) 

Here, 0I  and 0K  respectively are the modified Bessel function of first and second kind and 

/n n H  . Making use of (D.4a), (D.3) becomes 
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A similar procedure yields the following expressions for the remaining terms of (D.2) 
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Substituting (D.5)-(D.7) into (D.2) leads to 
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Equation (D.8) indicates that '( ) '( , )st dy
z zv z v    depends sub-linearly on gN /  and is a function of 

the cross-covariance ( ) '( , )Y z C   . 

Following a similar procedure, one can then write '( , ) '( )dy st
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Equation (D.10) shows that '( , ) '( , )dy dy
z zv z t v    depends sub-linearly on  

2

gN /  and is a function 

of '( , ) '( , )C z t C   , i.e., the horizontal spatial mean of concentration covariance. It is also seen that 

'( ) '( )st st
z zv z v   is a function of the covariance of Y. 

We now introduce the following notation 
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where operators  A ,  B  ,  C ,  D  are respectively defined by the terms in parenthesis 

appearing at the right hand side of (D.11), (D.8), (D.9) and (D.10). As highlighted by (D.12), one 

needs to derive the equations satisfied by the cross-covariances '( , ) ( )C z t Y   and '( , ) '( , )C z t C    

to determine ' ( , ) ' ( , )z zv z t v   . These expressions are respectively derived in Appendices E and F. 

Appendix E. Cross covariance between permeability and concentration 

Here we derive the horizontal spatial mean of the cross-covariance between the log-permeability and 

concentration, i.e., ( ) '( , )Y z C   . Multiplying (A.8) by ( , )Y y z , applying (13) and the ensemble 



averaging operator, making use of (A.10) and disregarding products of fluctuations larger than two 

yields 
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Recalling (C.5), equation (E.1) becomes 
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A numerically analysis of (E.2) (details not shown) allows recognizing that it is possible to disregard 

the last term on the right hand side of (E.2) for the test cases considered in this work. Introducing the 

operator  F  defined as 
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Equation (E.4) provides the link amongst ( ) '( , )Y z C    and (i) the covariance of Y, i.e., ( ) ( )Y z Y 

, and (ii) the cross-covariance between stationary pressure and permeability, i.e. ( ) '( )stY z p  . 

Introducing the dimensionless hydraulic head /st
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dimensionless gravity), allows rewriting (E.4) as 

   gN
ˆ ˆ ˆ ˆ( ) '( , ) ( ) ( ) ( ) '( ) ( ) '( , )

ˆ
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 

 
   

 
F F F ,     (E.5) 

where ˆ( ) '( )Y z h   is the cross-covariance between log-permeability and hydraulic head for the 

constant density case. The last term on right hand side of (E.5) embeds the stabilizing buoyancy 

effects which reduce the correlation between permeability and concentration. 



Appendix F. Concentration Covariance 

Here we derive the equation satisfied by the horizontal spatial mean of concentration covariance, 

'( , ) '( , )C z t C   . Multiplying (A.8) by '( , , )C    , taking the ensemble mean operator, making use 

of (A.10) and neglecting terms involving power of fluctuations larger than two yields 

0 0

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ'( , , ) '( , , ) '( , , ) '( , , ( , ) ( , , , )
ˆ

H t
T
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


  


  . (F.1) 

The term '( , ) '( , )C z t C    is defined as 

0

1
'( , ) '( , ) '( , , ) '( , , )

W

C z t C C y C z y t dy
W

      . (F.2) 

Recalling (C.5), (F.2) becomes 

0 0

g

ˆ ˆˆ ˆ'( , ) '( , ) ( , ) ( , , , )
ˆ
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. (F.3) 

A numerically analysis of (F.3) (details not shown) allows recognizing that it is possible to disregard 

the last term on the right hand side of (F.3) for the test cases considered in this work. Introducing the 

operator  H  defined as 

 
0 0

ˆ ˆˆ ˆ( , ; , ) ( , ; , ) ( , , , ) ( , )
ˆ

t H
T
zz t z t G C d d           




   


 H , (F.4) 

allows rewriting (F.3) as 

   gN1ˆ ˆ ˆ ˆ'( , ) '( , ) ( ) '( , ) '( , ) '( ) '( , ) '( , )
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H H H  (F.5) 

The last term in (F.5) represents the impact of the stabilizing buoyancy effects and leads to a reduction 

in the concentration variance as discussed in Section 4.3. Finally, making use of (C.8) allows 

rewriting (F.5) as 

 

 

g
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N
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. (F.6) 
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Fig. 1. (a) Flow and transport problem set-up and colorized image of the permeability field for 3 

2 0.5Y  . Sample contour plots of normalized concentration for (b) constant density, (c) Ng = 1 and 4 

(d) Ng =10, with * * * * *

gN / ( )BCk g v   . Magnification at solute front of the spatial variance of (e) 5 

vertical velocity, i.e., 
2

zv , and (f) of concentration, i.e., 
2
C .  6 
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 18 

Fig. 2. Examples of (a) 'st
v , (b) 'dy

v  and (c) 'v  for the variable density flow problem. The underlying 19 

k  field is also depicted. Velocity, v , and concentration, C  (depicted as color scale), for (d) variable 20 

and (e) constant density. Vertical distribution of (f) variance of vertical velocity, 
2

zv , and (g) single 21 

realization dispersive flux (19), i.e., ' 'zv C , for the tracer (red curve) and variable density (black 22 

curve) case. All of the results have been evaluated at t = 664. 23 
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 25 

 26 

Fig. 3. Section-averaged vertical velocity variance, 2'zv , and (negative) gradient of ensemble 27 

concentration ( /C z  ) for (a), (c) 2 0.1Y   and gN 1 ; (b), (d) 
2 0.1Y   and gN 0.1 ; (e), (g) 28 

2 0.5Y   and gN 1 ; (f), (h) 
2 0.5Y   and gN 0.1 . Results are evaluated at dimensionless times 29 

1 2 3t t t  . 30 
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 31 

 32 

Fig. 4. Section-averaged vertical velocity covariance components for 3

2 4.27 10z z   : (a, b) 33 

' ( , ) ' ( , )z zv z t v    (red curve) and '( ) '( )st st
z zv z v   (black curve); (c, d) '( , ) '( )dy st

z zv z t v   (insets 34 

show the entire vertical domain); (e, f) '( ) '( , )st dy
z zv z v   ; (g, h) '( , ) '( , )dy dy

z zv z t v    versus   for 35 

2 0.1Y   and gN 1  (left column) or gN 0.1  (right column). In (a)-(d) and (g)-(h) 3

2 4.4 10t t  36 

; in (e)-(h) 3

1 4.4 10   , 3

2 3.9 10   , 3

3 3.3 10   . Numerical Monte Carlo and semi-analytical 37 

solutions are depicted as solid and dashed curves, respectively. 38 

  39 
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 40 

 41 

Fig. 5. Section-averaged vertical velocity covariance components for 3

2 4.27 10z z   : (a, b) 42 

' ( , ) ' ( , )z zv z t v    (red curve) and, '( ) '( )st st
z zv z v   (black curve); (c, d) '( , ) '( )dy st

z zv z t v   (insets 43 

show the entire vertical domain); (e, f) '( ) '( , )st dy
z zv z v   ; (g, h) '( , ) '( , )dy dy

z zv z t v    versus   for 44 

2 0.5Y   and gN 1  (left column) or gN 0.1  (right column). ). In (a)-(d) and (g)-(h) 45 

3

2 4.4 10t t   ; in (e)-(h) 3

1 4.4 10   , 3

2 3.9 10   , 3

3 3.3 10   . Numerical Monte Carlo and 46 

semi-analytical solutions are depicted as solid and dashed curves, respectively. 47 

  48 



6 

 

 49 

 50 

 51 

Fig. 6. Section-averaged log-permeability and concentration cross-covariance, ( ) '( , )Y z C   , versus 52 

ξ when 2

34.27 10z z    (black curves) or versus z when 3

2 4.27 10     (red curves) at time 53 

3

2 4.4 10t     for 2 0.1Y  , 0.5 and (a,c) gN 1 , or (b,d) gN 0.1 . The results obtained for the 54 

tracer case (i.e., cost  ) are also depicted for 2( ) '( , )Y z C    (blues curves) and 2( ) '( , )Y z C    55 

(green curves). 56 
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 58 

 59 

Fig. 7. Section-averaged ensemble dispersive flux, '( , ) '( , )zv z t C z t , and concentration variance, 60 

2 2( , ) '( , )c z t C z t  , for gN 1 , (black curves), gN 0.1 , (red curves), cost  , (blue curves), 61 

(a)-(b) for 2 0.1Y   and (c)- (d) for 2 0.5Y  . Numerical Monte Carlo and semi-analytical solutions 62 

of (25) (for ' 'zv C  ) and (F.6) (for 
2( , )c z t ) are depicted as solid and dashed curves, respectively. 63 

Results are evaluated at dimensionless times 1 2 3t t t  . 64 
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