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Learning an unknown 
transformation via a genetic 
approach
Nicolò Spagnolo1, Enrico Maiorino1, Chiara Vitelli1, Marco Bentivegna1, Andrea Crespi2,3, 
Roberta Ramponi   2,3, Paolo Mataloni1, Roberto Osellame   2,3 & Fabio Sciarrino1

Recent developments in integrated photonics technology are opening the way to the fabrication 
of complex linear optical interferometers. The application of this platform is ubiquitous in quantum 
information science, from quantum simulation to quantum metrology, including the quest for quantum 
supremacy via the boson sampling problem. Within these contexts, the capability to learn efficiently 
the unitary operation of the implemented interferometers becomes a crucial requirement. In this 
letter we develop a reconstruction algorithm based on a genetic approach, which can be adopted 
as a tool to characterize an unknown linear optical network. We report an experimental test of the 
described method by performing the reconstruction of a 7-mode interferometer implemented via the 
femtosecond laser writing technique. Further applications of genetic approaches can be found in other 
contexts, such as quantum metrology or learning unknown general Hamiltonian evolutions.

Linear optical networks have recently received increasing attention in the quantum regime thanks to the 
enhanced capability of building complex interferometers made possible by integrated photonics. This experimen-
tal achievement opened new perspectives in the adoption of linear optical networks for different quantum tasks, 
including quantum walks and quantum simulation1–10, quantum phase estimation11–13, as well as the experimental 
implementation of the Boson Sampling problem14–21. Within these contexts, it becomes crucial to learn the action 
of a linear process. On one side, the capability of efficiently reconstructing an unknown transformation provides 
an analysis tool for integrated devices. Indeed, it allows to verify the quality of the fabrication by checking the 
adherence of an implemented transformation with the desired one. Conversely, on the fundamental side precise 
knowledge of the unitary process is required to perform accurate tests on the experimental data. For instance, 
this holds in the case of Boson Sampling validation, where the adoption of statistical tests may require knowledge 
of the implemented unitary transformation19,20. Furthermore, the task of learning an unknown transformation 
can be in principle embedded into a larger class of problems, whose objective is to learn physical evolutions from 
training sets of data22–24.

While initial efforts have been dedicated to the characterization of generic quantum processes25–32, different 
methods have been specifically adopted and tested to reconstruct an unknown linear transformation  33–37. Most 
of these approaches rely on single-photon and two-photon measurements. Intuitively, single-photon states can be 
used to obtain information on the square moduli of the unitary matrix, while two-photon interference provides 
knowledge of the complex phases of the elements of  . Different data analysis approaches have been proposed 
and adopted to convert the raw measured data in an estimated unitary r , exploiting conventional numerical 
minimization techniques33 or by analytically inverting the relations between experimental data and the elements 
of  34. Other methods exploit classical light as input in the interferometer35. In this case, knowledge on the mod-
uli is obtained by sending classical light on a single input, while knowledge on the phases is obtained by sending 
light on pairs of input modes and by measuring the interference fringes as a function of the relative phase.

In this article we discuss and test experimentally an approach for the reconstruction of linear optical interfer-
ometers based on the class of genetic algorithms38–40. The latter is a general method that exploits the principles 
of natural selection in the evolution of a biological system, and has found application to find the solution to 
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optimization and search problems in several fields, including first applications in quantum information tasks41,42. 
In these papers, genetic approaches have been adopted to determine the unitary transformation solving a given 
computational problem41, and to optimize the digital implementation of a given Hamiltonian from a set of imper-
fect gates within a quantum simulation framework42. Furthermore, genetic approach have also found successful 
application for quantum control tasks43–45. We first discuss the general principles of operations of the broad class 
of genetic algorithms. Then, we show how to adapt these principles of operations to the specific case of linear opti-
cal networks tomography. Finally, we test experimentally the genetic algorithm by performing the reconstruction 
of a m = 7 modes integrated interferometer built by the femtosecond laser-writing technique46,47.

Results
Genetic reconstruction algorithm for unitary transformations.  Genetic algorithms are a broad class 
of algorithms inspired by the natural evolution of biological systems, which evolve following the principle of nat-
ural selection38–40. This principle can be briefly described as follows: within an ecosystem, individuals struggling 
for survival coexist within the same population. Genetically fittest individuals, e.g. those with highest adaption 
to environmental variables, are more likely to survive and reproduce. The fitness of an individual is determined 
by its genetic signature, the DNA, which is composed by a set of genes representing its fundamental units. The 
set of genes belonging to all the individuals of a given population is called genetic pool. Two individuals generate 
the offspring that inherits a combination of the genes belonging to both the parents by means of reproduction. 
Thus, a single gene is or is not inherited but cannot be partially inherited. If the combination of inherited genes 
determines a better fitness than the parents’ one, the son will have higher survival probability. Since weaker indi-
viduals are more unlikely to survive, fittest genes are more likely to spread over the population and, consequently, 
a gradual improvement of the average fitness of the population is expected. The described evolution, however, 
would be destined to reach a local maximum since the evolved genetic pool would be composed of just a subset 
of the initial one. Indeed, the mechanism of reproduction does not allow the creation of new genes. This would 
imply that the maximum possible fitness reached within the population would strongly depend on the initial 
state. Hence, it is crucial to consider in this model also the mechanism of mutation38–40, a rare event that manifests 
when an inherited gene changes in a random fashion. This mutated gene would likely not be present in any of 
the parents’ DNA and could possibly provide new advantageous features, causing the increase of the individual’s 
probability of survival. This will allow the mutated gene to spread over the population by reproduction, increasing 
the maximum fitness achievable within the given genetic pool and thus rendering the evolution no longer limited 
by the initial conditions.

The principles of genetic algorithms can be applied to learning an unknown linear transformation   (Fig. 1a). 
The goal is to find the unitary matrix r whose action best describes a set of experimental data. The training set is 
composed of single-photon probabilities i j, , describing the transition from input i to output j (Fig. 1b), and 
Hong-Ou-Mandel48 visibilities, describing two-photon interference from inputs (i, j) to outputs (p, q) (Fig. 1c). 
Hong-Ou-Mandel visibilities are defined as V P P P= −( )/ij pq ij pq ij pq ij pq, ,

d
,

q
,

d . Here ij pq,
d  is the probability for two 

Figure 1.  (a) Learning an unknown linear unitary transformation via a genetic approach. The training set, 
measured from the unknown transformation, is processed by an algorithm based on the principles of biological 
systems. The unitary transformation is decomposed in elementary units, i.e. the genes Gk

l composing its DNA: 
beam-splitters (BSs) with transmittivity tk

l and phase-shifts (PSs) αk
l, βk

l. Crossover and mutation mechanisms 
rule the evolution for each step of the algorithm. (b) Schematic view of single-photon measurements 
corresponding to data set ∼i j, . (c) Schematic view of two-photon measurements corresponding to data set ∼ij pq, . 
(d) Internal structure of the implemented m = 7 integrated linear interferometer. Blue regions indicate 
directional couplers, that is, integrated versions of beam-splitters, while cyan regions indicate phase shifts (4 
layers L1–L4), introduced by modifying the optical path of the waveguides (W1–W7).
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distinguishable particles, obtained for a relative delay Δτ much larger than the coherence time, and ij pq,
q  is the 

probability for two indistinguishable photons (Δτ = 0). These quantities are related to the matrix elements of   
as P U=i j j i, ,

2
, P U U U U= +ij pq p i q j q i p j,

d
, ,

2
, ,

2
 and = +ij pq p i q j q i p j,

q
, , , ,

2
P U U U U . The training set is thus com-

posed by the measured values ∼i j,  and ∼ij pq, , with associated gaussian 1σ experimental errors ∆
∼

i j,  and ∆
∼

ij pq, .
Let us now describe how to adapt the principles of genetic evolution to develop the actual algorithm (described 

in Supplementary Note 1). In this scenario, the group of individuals is a set of unitary transformations. At the 
initial step, the population Φ is composed of N randomly-chosen individuals El: Φ = {E1, …, EN}. Every individual 
El has to be completely determined by a set of real parameters, that represent its DNA. It is thus necessary to iden-
tify a suitable choice to decompose a unitary transformation in a set of elementary blocks. At a first glance, one 
could consider the elements of the unitary transformation (moduli and phases) to compose the DNA of the indi-
viduals. However, this is not an appropriate choice since the generation of new offsprings from a random recom-
bination of the parents according to this mechanism can lead to a non-unitary matrix. A better approach is 
obtained by exploiting the result by Reck et al.49, which showed that it is possible to decompose any linear trans-
formation in a network composed of phase shifters (PS) and beam splitters (BS) (see Fig. 1a). A single gene 

α β=G t( , , )k
l

k
l

k
l

k
l  of the unitary’s DNA is composed of a PS-PS-BS set, defined by the transmittivity ∈t [0, 1)k

l , 
and by the phases α β π∈, [0, ]k

l
k
l . The DNA of an individual is thus represented by an ordered vector 

= …E G G G{ , , , }l
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M
l

1 2 , where = ∑ = −=
−M g m m( 1)/2g

m
1
1 . The global unitary El

 of the individual El can be 
obtained by multiplying the set of unitary matrices  k

l  describing the action of the k-th gene Gk
l. With such a par-

ametrization, unitariety of the overall transformation is naturally guaranteed. Note that this decomposition does 
not necessarily represent the actual internal structure of the system, which may be in general unknown. Indeed, 
it represents a mathematical tool to parametrize a unitary matrix as the combination of independent genes.

Once defined the decomposition of a unitary transformation in elementary units, it is necessary to implement 
the mechanism of genetic evolution. The first ingredient is the fitness function ∈ ∞f E( ) : [0, ), which quantifies 
the survival probability of a given individual. In our case f(E) is chosen to be inversely proportional to the distance 
between the training set and theoretical predictions. Assuming  i j

E
,
l  and  ij pq

E
,
l  to be one-photon and two-photon 

predictions calculated from El
 , we define the fitness function as f(El) = 1/χ2, where P Vχ χ χ= +2 2 2 is the 

chi-square function composed by two terms
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In other words, the fitness f(El) represents the quality of the solution El. At the beginning of each step of the evo-
lution, the individuals are sorted in decreasing order according to their fitnesses. The second half of the popula-
tion corresponding to the lowest fitness is removed, and replaced with a new set of individuals according to the 
crossover function. The latter governs the reproduction mechanism within the population. Two individuals EA and 
EB generate one child EC whose DNA is composed of half genes from parent EA and the other half from parent EB, 
chosen randomly. In the crossover mechanism, the position of the genes to be inherited from EA or EB occupy the 
same place in the child’s DNA sequence. Finally, the third ingredient is the mutation process. For any iteration of 
the algorithm any gene Gk

l has a probability γ (called mutation rate) of being replaced by a new random triple 
α β


t̃{ , , }k
l

k
l

k
l . One of the main advantages of genetic algorithms38–40 with respect to other methods is their capability 

of performing an exhaustive search in the parameters space. This is achieved by controlling the mutation rate, and 
by including a meaningful sampling probability for the DNA elements to avoid exploring sparser regions of the 
parameters space. Furthermore, genetic algorithms are particularly suitable to be implemented using parallel 
computation strategies, thus enabling to exploit this approach to significantly reduce the computational time. The 
price to pay with respect to other methods is the reduction of the system governability, since the evolution is not 
deterministic.

Before applying the developed algorithm, it is necessary to determine in a training stage the optimal combi-
nation of hyperparameters, that cannot be derived a priori and may depend on the dimension m of the network. 
It is thus possible to evaluate the convergence of the algorithm by tuning the hyperparameters with numeri-
cally simulated data (see Supplementary Note 2 and Supplementary Fig. 1). Indeed, an inappropriate choice of 
the hyperparameters can prevent the algorithm to reach the desired global minimum. The two most important 
hyperparameters are mutation rate and population size. The former is a crucial parameter, since its incorrect set-
ting may lead the algorithm to avoid convergence to the global minimum. Indeed, an exceedingly high mutation 
frequency would reduce the search process to a random walk in the space of solutions, while an extremely small 
value would prevent the algorithm to reach the global maximum of f(E). Population size has to be adjusted to 
avoid an unnecessary large population, which contains redundant elements and may significantly increase the 
number of iterations to reach convergence, or a too small population, not allowing to explore a sufficient set of 
gene combinations. Other less crucial hyperparameters involve: the number of iterations to wait until packing is 
performed, and the number N1 of unitaries to pick from the analytic algorithm (only if they are included in the 
initial population).

The convergence of the algorithm once determined the correct set of hyperparameters has been tested with 
numerically simulated data, showing that the algorithm is able to reach a value of the χ2 close to its expectation 
value (equal to the number of degree of freedom ν, see Supplementary Note 2 and Supplementary Fig. 1). More 
specifically, we observe that a single set of hyperparameters can be employed for all unitary matrices at fixed m, 
while it is likely that by further increasing the interferometer dimension m, the set of hyperparameters has to be 
tuned to optimize and guarantee convergence of the algorithm.
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Experimental results.  We tested the genetic algorithm by reconstructing the transformation induced by a 
7-mode integrated interferometer, fabricated in a borosilicate glass substrate by means of the femtosecond laser wave-
guide writing46,47 technique. This approach exploits the permanent and localized increase in the refraction index 
obtained by nonlinear absorption of focused femtosecond pulses, thus directly writing waveguides in the material. The 
internal structure of the implemented interferometer is shown in Fig. 1d, and is composed by a network of symmetric 
50–50 directional couplers and a phase pattern. We observe that the internal structure of the interferometer is different 
from the triangular structure adopted in the genetic algorithm, being the latter only a mathematical tool.

Single-photon and two-photon input states, necessary to measure the data set of the algorithm, were pre-
pared by a spontaneous parametric down conversion source. The 750 mW pump beam at λP = 392.5 nm is 
obtained by second-harmonic generation of a λ = 785 nm pulsed Ti:Sa laser source, with 76 MHz repetition 
rate and Δτ = 250 fs pulse duration. The photon source is a type-II, 2 mm length BBO crystal (Beta-Barium 
Borate), which generates pairs of photons with opposite polarization. Photons after generation are spectrally 
selected by 3 nm interference filters, analyzed in polarization, collected in single-mode fibers, and then propa-
gated through two independent delay lines to adjust the time difference Δτ between the input particles. Then, 
after fiber polarization compensation, the generated photons are injected in the input modes of the interferometer 
through a single-mode fiber array, and are then collected by a multi-mode fiber array before detection with a 
set of single-photon avalanche photodiodes (APD). Output single photon counts and two-fold coincidences are 
collected by an electronic acquisition system. The overall apparatus (source, interferometer and detectors) does 
not require phase stabilization. Indeed, due to the integrated implementation of the unitary transformation, the 
interferometer is intrinsically stable with respect to internal phases. Furthermore, injection and detection of Fock 
states renders the system insensitive to fluctuating phases at the input and at the output of the device, differently 
from other methods relying on classical light35.

The learning method based on the genetic approach has been applied to the 7-mode chip. The complete set of 
experimental measurements consists of d1 = 49 = m2 single-photon transition probabilities ∼i j,  and 
d2 = 441 = m2(m − 1)2/4 two-photon Hong-Ou-Mandel visibilities ∼ij pq, , corresponding to an overall amount of 
d = d1 + d2 = 490 data. The complete set of collected experimental data is reported in Fig. 2. The two-photon vis-
ibilities ∼ij pq, , insensitive to photon losses, are estimated by recording the input-output two-fold coincidences 
 τ∆
∼ ( )ij pq,  as a function of the relative delay Δτ between the input photons. The resulting pattern is analyzed by 
performing a best fit according to the function P Vτ∆ = +

∼∼ σ τ τ− −( )C e( ) 1ij pq ij pq, ,
( )2

0
2

, where σ τ
∼( )C, , ,ij pq, 0  are 

free-parameters and τ is the independent variable. Experimental errors on the single-photon probabilities ∆
∼

i j,  
and on the two-photon coincidences τ∆

∼ ( )ij pq,  are due to the Poissonian statistics of the measured events, while 
errors on the visibilities ∼ij pq,  are obtained from the fitting procedure.

The genetic algorithm maximizes the fitness function f(El) [Eq. (1)] between the training set and the predic-
tions  i j

E
,
l  and ij pq

E
,
l  obtained from the unitary El

  belonging to the population of the genetic algorithm. The 
starting point of the protocol is a random population of N = 100 unitaries. In Fig. 3 we report the evolution of the 
best χ2 in the genetic pool during the running time of the algorithm. We observe that an almost stable value of the 
χ2 is obtained after ∼N 60000iter  iterations. The genetic approach can be improved by modifying the starting 
point. At the initial step, a subset of N1 unitaries can be chosen starting from the algorithm of ref.34. With that 
method, a minimal set of two-photon data is exploited to retrieve analytically the elements of the unitary matrix. 
This approach can be extended by considering that m2 independent estimates of   can be obtained by recording 
the full set of single- and two-photon measurements, and by appropriately permuting the mode indexes17 to select 
m2 independent minimal data sets. For the genetic algorithm, we then choose the N1 = 20 unitaries (among the 
m2 = 49 possible matrices) presenting the lower values of χ2 (higher fitnesses). This provides a reasonable starting 
point for the genetic pool. Finally, the remaining subset of N2 = 80 are randomly generated from the Haar meas-
ure. In such a way, the algorithm reaches convergence after a smaller number of iterations ∼N 40000iter , corre-

Figure 2.  (a) Measured single-photon probabilities ∼i j, . (b) Measured two-photon Hong-Ou-Mandel visibilities ∼
ij pq, . Shaded regions correspond to the experimental errors.
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sponding to a computational time of t~1 h on a laptop (see Fig. 3). The convergence of the genetic algorithm is 
confirmed by the decrease of χ2 from the starting value  χ ∼min 2550002

r
a( ) , obtained from the best unitary  r

a( ) 
of the analytic approach, to a final value of χ ∼ 17096r g,( )

2 , leading to an improvement of one order of magnitude. 
Given the number of degrees of freedoms ν for this problem size ν = + − − =( )m m

n m m3 ( 1)/2 4272 2
, the 

final result corresponds to a value of the reduced χ χ ν= ∼ν / 402 2 . This value of the reduced χν
2 indicates that the 

adopted model for the unitary transformation and for the input photons needs to be improved. Indeed, the algo-
rithm employs as internal structure the general decomposition given by Reck’s lemma49, and does not take into 
account the actual layout of the device. In particular, internal and output losses can lead to non-unitary behavior 
and are not taken into account by the present model. Furthermore, the input photons for two-photon measure-
ments are not perfectly indistiguishable. The value of the reduced χν

2 can be thus improved by including these 
features in the fitness evaluation. For instance, partial photon indistinguishability can be included as an additional 
parameter p in the χ2 that reduces the value of the two-photon visibilities. By adding it only in the final calculation 
of the χ2, the latter diminishes from χ ∼ 170962  to χ ∼ 140672 , corresponding to a reduced value χ ∼ν 332  (for 
a value of p = 0.95 pre-characterized with an Hong-Ou-Mandel interference measurement). Improved results are 
expected if this parameter is included directly in the fitness evaluation.

As an additional figure of merit, we consider the similarities Sr
a( ) between the experimental two-photon visibili-

ties and the predictions obtained from the analytic unitaries  r
a( ), according to the definition 

 = − ∑ −
∼S d1 /(2 )r

a
i j p q ij pq ij pq

r a( )
, , , , ,

,( )
2  (and analogous definition for the genetic approach). The similarity Sr

g( ) 

obtained for the output unitary r
g( )  from the genetic algorithm, equal to = . ± .S 0 957 0 001r

g( ) , clearly outperforms 
the maximum value obtained from the analytic algorithm: = . ± .Smax 0 920 0 001r

a( )
r
a( ) . This suggests that, while 

a direct analitic inversion34 from ij pq,  to   permits to obtain m2 independent estimates each requiring a smaller 
amount of data (≈2 m2), the adoption of a larger training set and the capability of taking into account experimental 
errors (in the χ2) in the genetic approach permits to increase the robustness with respect to experimental noise.

Finally, we observe that the decrease of χ2 occurs with two different trends (see inset of Fig. 3). Smooth variations 
are due to the crossover mechanism between members of the population, converging to the best possible unitary 
within the available genetic pool. Conversely, fast jumps in χ2 are due to random mutations in the genetic pool.

The results for the obtained transformation are reported in Fig. 4 and in Supplementary Note 3, where the 
output unitary of the genetic algorithm  r

g( ) is compared with the theoretical one  . The latter is calculated from 
fabrication parameters according to the layout of Fig. 1d. This comparison indicates how close the implemented 
interferometer is with respect to the ideal one. A quantitative parameter is the gate fidelity between   and r

g( ) , 
defined as  = †F mTr[ ] /r

g
r
g( ) ( ) . The value obtained for the implemented interferometer is = . ± .F 0 975 0 013r

g( ) , 
thus showing the quality of the fabrication process. The error on the gate fidelity Fr

g( ) has been estimated by a 
M = 10000 Monte-Carlo simulation of unitary reconstructions with the analytic method.

Further optimizations of the protocol can be envisaged. The χ2 function in the fitness may be replaced with a 
weighted function P Vχ χ χ= + −w w(1 )w

2 2 2. We then performed the reconstruction method for different values of 
the weight w, observing that for the present data the best choice is obtained for the symmetric case w = 0.5. The optimal 
weight w can nevertheless vary with the dimension m of the network. Additionally, the number of unitaries N1 taken at 
the initial step from the analytic algorithm can be optimized depending on the problem size. Room for optimization 
can be also found by checking the possibility of adding childs with random permutations in the location of the genes. 
Finally, as previously discussed the reported method can be modified to exploit knowledge on the internal structure of 
the device, including internal losses due to propagation and to the directional couplers. In the experimental case shown 
above, the universal structure can be replaced by the actual structure of the interferometer, thus redefining its DNA.

Figure 3.  Evolution of the minimum χ2 in the genetic pool through the running time of the algorithm, as a 
function of the number of iterations. Dark yellow dashed lines: the starting point is provided by a random set of 
individuals. Green solid lines: the initial population includes the best N1 = 20 unitaries obtained with the 
analytic method. Horizontal blue dotted lines: best χ2 obtained with the analytic method. Inset: highlight for 
Niter ∈ [0; 6600] of the green curve. The χ2 values achieved during the algorithm iterations correspond to a range 

χ< <ν
 

40 5852  for the reduced χν
2.
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Conclusions
In this article we have described an approach to learn an unknown linear optical process   by exploiting a specif-
ically tailored genetic algorithm. We have then tested this approach for the reconstruction of an unknown 7 × 7 
integrated linear optical interferometer built by the femtosecond laser-writing technique. The experimental 
results show that this methodology is suitable for the characterization of linear optical networks. The involved 
resources (number of parameters for the DNA and size of the data set) scale polynomially with the size m of the 
network. Furthermore, the evaluation of the fitness functions requires resources scaling polynomially as m4. Thus, 
this approach could be suitable to be employed on systems with increasing number of modes, with applications in 
different contexts such as quantum simulation and quantum interferometry. Several perspectives can be envis-
aged by applying these genetic approaches in the context of learning unknown patterns50 or general Hamiltonian 
evolutions23. The algorithmic approach itself may be adapted to progressively change the parameters of its evolu-
tion or the measured data set sequence depending on the results of the previous steps.
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