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Abstract

In this work, nanocrystalline diamond was deposited with a direct-current micro-plasma device 

on substrates with different carbon diffusivity. No substrate pre-treatment was performed and the 

same deposition conditions were adopted for all substrates, with the intention to investigate the 

first stages of growth. Samples were grown with increasing deposition time. Scanning electron 

microscopy and visible Raman spectroscopy were used to derive morphological and structural 

information. The growth dynamics was found to be the same on all substrates, with the deposition 

of a graphite layer prior to diamond growth. This layer was extensively characterized and a link 

between the structure and morphology of this layer and the subsequent features of the diamond 

grown on it was found. Moreover, diamond tens of micrometers thick was deposited in few hours, 

opening the possibility of producing diamond samples of practical interest. Particularly, the 

growth of nanocrystalline diamond on iron without substrate pre-treatment or interlayer 

deposition is reported, showing the feasibility of depositing diamond even on ferrous materials. 

1. Introduction 

Due to its outstanding properties, diamond possible applications broadened in many fields beyond 

the luxury industry [1–3]. This led to an increased global interest for diamond laboratory 

synthesis, with the aim to find out the main influencing parameters governing the deposition 

process and produce a valuable material. Chemical vapor deposition (CVD) techniques are 
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nowadays the main industrial processes exploited to obtain synthetic diamond [4–6], especially 

at a laboratory scale. In particular, plasma-enhanced chemical vapor deposition (PECVD) 

techniques attract great interest because of the high growth rate and chemical purity of the 

deposited material [7]. Both single-crystal and polycrystalline diamond films can be produced: 

particularly, polycrystalline films have several interesting properties and less requirements on 

technical aspects related to the deposition process with respect to the single-crystal one. 

Moreover, the possibility to produce diamond in the form of coating preserving bulk diamond 

properties pushed forward the research of diamond laboratory synthesis.

Nevertheless, many difficulties afflict diamond films synthesis. One of the main difficulties 

derives from the choice of the substrate material. The possibility to grow diamond films on 

different substrates would be of interest for several applications, e.g. high power electronic, high 

frequency devices, UV-Vis-IR windows, wear resistance coatings and solid state detectors. 

However, having a high surface energy with respect to other materials, growing diamond on 

substrates different from diamond itself is anything but trivial [8]. Substrate materials suitable for 

diamond growth can be organized into three main families, depending on carbon/surface 

interaction and carbon diffusivity, namely [9,10]: materials having a little or no solubility or 

reaction with C, e.g. copper, silver and gold, materials in which carbon easily diffuses or dissolves 

or with a weak carbide formation, e.g. platinum, palladium, rhodium, nickel and iron, and 

materials with strong carbide-formation tendency, e.g. titanium, molybdenum, tungsten and 

silicon. Moreover, it is widely believed that nucleation of diamond on non-diamond substrates 

usually occurs via an intermediate non-diamond based layer [11,12]. This layer may be the result 

of the interaction with the substrate during the deposition process, since carbon atoms from the 

plasma can diffuse in the substrate material, saturate it and then act as preferential nucleation 

sites. To date, diamond films have been grown on carbide layer [13,14], graphite [15,16], 

diamond-like amorphous carbon and carbon oil [17–19]. Even if the theory of diamond growth 

mechanism is nowadays widely agreed, several contrasting observations on what happens in the 

nucleation phase on substrates even of the same family can be found in literature. For instance, 

both graphite, amorphous carbon and carbide compounds have been identified as the main 

responsible for diamond nucleation on carbide-forming materials [17,20,21]. In addition, 

substrate pre-treatments such as scratching, biasing or substrate coating are often used in order to 

enhance diamond nucleation density, and to control the grown morphology, texture and quality 

of the diamond films [22–24]. 

In a previous work [25], the authors already showed how the deposition of nanocrystalline 

diamond with a peculiar PECVD technique, i.e. the direct-current micro-plasma device (DC-μP), 
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on carbide-forming substrates such as silicon (Si) and molybdenum (Mo), proceeds towards the 

formation of an intermediate graphite layer. An explanation of the diamond growth dynamics in 

the early stages of the deposition has been provided, in accordance to diamond growth 

mechanism. Considering these results, a natural development is to extend the investigation to 

other family of substrates where other mechanisms of growing could be invoked to explain the 

diamond growing. 

In this work, nanocrystalline diamond films have been grown on different substrate materials, 

with the same deposition apparatus and process conditions found in [25]. With the intention to 

deeply investigate the growth dynamics especially in the early stages of growth, materials with a 

diffusivity with carbon different from the case of Si and Mo were chosen. Tungsten (W), iron 

(Fe), nickel (Ni) and rhodium (Rh) were used in this work. W was chosen, because of its 

carburizing tendency as Mo and Si, but with a lower value of the Gibbs free energy of formation 

of the respective carbide [26]. Ni and Fe because of their high diffusivity with carbon. Moreover, 

even if both Ni and Fe have a carbide form, at the pressure and temperature deposition conditions 

used in [25], that are the same adopted for this work, no carbide compound should form [26]. 

Regarding Rh, the substrate used in this work is a 1 μm film of nanostructured columnar Rh grown 

with a pulsed laser deposition technique on Si [27]. Values of carbon diffusivity of the exploited 

substrates can be found in tab. 1, as derived from [7]. 

Substrate Si Mo W Fe Ni

Carbon diffusivity [cm2 s-1] 7 ∙ 10-15 10-11 10-13 8 ∙ 10-7 2 ∙ 10-8

Tab. 1: Value of carbon diffusivity in different substrate materials, calculated at 800°C. For Rh, no available data 
are found.

The investigation of diamond growth was pursued depositing different spots with increasing 

deposition time. A characterization procedure similar to [25] combining SEM and Raman 

spectroscopy was adopted, whose potentiality has already been shown. Particularly, in the 

previous work a multi-wavelength Raman analysis has been performed, addressing structural 

information in an original and complete way. Since the aim of this work is to focus on what 

happens in the early stages, this time only visible Raman spectroscopy was used for structural 

characterization, and scanning electron microscopy (SEM) was used to derive the main 

morphological information about the grown samples.

2. Experimental technique
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The deposition apparatus is schematically depicted in fig. 1. 

It consists of an in-house designed vacuum chamber of stainless steel, a plasma generating system 

and a gas supply system. The main feature of this experimental set-up is the stainless-steel column 

with 178 μm inner diameter capillary tube, acting as the micro-hollow cathode allowing the gas 

inlet used to create the flow-stabilized micro-plasma jet. All technical aspects related to such 

device and its configuration have already been addressed in [25]. The carbon source is methane 

gas mixed with hydrogen, with fluxes of 0.5 sccm and 100 sccm respectively. Substrates are 

previously cleaned with a sonic bath in hexane and deionized water, then placed under vacuum 

in the deposition chamber for several hours. No substrate pre-treatment is performed. Diamond 

was grown on all substrates increasing time from few minutes to hours. The deposition conditions 

are summarized in tab. 2 and tab. 3.

SEM micrographs are taken using a ZEISS Supra 40 scanning electron microscope with an 

accelerating voltage of 5 kV. Visible Raman spectroscopy is performed at room temperature by 

a Renishaw InVia micro-Raman spectrometer equipped with an Ar laser, using the blue line (457 

nm, 2.71 eV). The spectral resolution is about 3 cm−1.

Substrates Mo, Si, W, Ni, Fe, Rh

Temperature 960 °C

Pressure 200 torr

ΦCH4/ΦH2 0.005

Supply voltage 610 V

Plasma current 10-12 mA

Tab. 2: Range of operating conditions for diamond deposition with DC-μP.

Fig. 1: Schematic representation of the direct-current micro-plasma device.
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Substrates Deposition time

Mo 2.5 min, 5 min, 10 min, 15 min, 30 min

Si 7 min, 15 min, 30 min, 1 hour, 2 hours

W 5 min, 15 min, 30 min, 1 hour

Ni 5 min, 15 min, 30 min, 1 hour

Fe 5 min, 15 min, 30 min, 1 hour

Rh 5 min, 15 min, 30 min, 1 hour

Tab. 3: Substrates used for diamond deposition and deposition times.

3. Results and discussion

All samples were grown with increasing deposition time, from few minutes to hours. SEM and 

Raman measurements were performed for all deposition times, and many similarities were found 

on all substrates, as in the previous work [25]: small and isolated agglomerates with different 

geometrical shapes are found in the first minutes, that grow both in dimensions and numbers as 

the deposition time increases, until coalescence in a nearly homogeneous deposition. Raman 

spectra change shape as the deposition time increases, showing a predominant graphitic signal for 

the early minutes of growth that disappears as the agglomerates coalesce in a continuous deposit, 

and at this point typical features on nanocrystalline diamond are found. In the following, only 

samples grown at 5 minutes and 30 minutes are shown. Particularly, 5 minutes were chosen 

because illustrative of the early stages of growth. 30 minutes were chosen since, as shown in the 

following, at this time a nearly homogeneous deposit was found on almost all substrates. 

SEM images of the depositions on Mo, Si, W, Ni, Fe and Rh are shown in fig. 2, for the same 

process conditions. The deposition time was 5 minutes (with the only exception of Si, for which 

time was set at 7 minutes, since below this time nothing was found within SEM resolution). 

Results regarding Mo and Si substrates are referred to a previous work [25], but since one of the 

intention is to show what happens on substrate materials with different carbon diffusivity and 

belonging to different “families”, they will be recalled in the following together with results 

deriving from the new substrate materials.
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Fig. 2: SEM images of diamond deposited for few minutes on different substrates. 

On all substrates, few and isolated agglomerates can be seen, with a well-faceted morphology but 

different dimensions, namely around 2 – 3 μm on Mo and W, slightly smaller and around 1 μm 

on Ni, Fe and Rh, and around 100 – 200 nm on Si. Raman spectra of these samples are shown in 

fig. 3.

Fig. 3: Raman spectra of diamond deposited for few minutes on several substrates.

No diamond signal is detected at this grown time, even if the resolution of the instrument used 

allowed to take measurements directly on the agglomerates shown with SEM images: this result 

can be a combined effect of the scarce amount of diamond phase and the laser wavelength used 

to excite (since sp3 has a resonant behaviour with the UV laser wavelength). Additionally, all 

spectra show typical features of graphitic films with a G peak at 1582 cm-1 and a D peak, related 

to disorder, at 1370 cm-1 (as expected using excitation at λ = 457 nm), except for Ni substrate 
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where no D peak is found. From the analysis of this peaks it is possible to characterize defectivity 

of the layers in graphitic materials [28], see below. The third Raman feature found at about 2740 

cm-1 is the graphite second order peak, known as 2D peak, whose properties are related to the 

number and the stacking order of graphitic layers [29–31]. For instance, for the peculiar case of 

monolayer graphene, the 2D peak presents a single-Lorentzian shape at 2720 cm-1 (when using is 

λ = 457 nm), about 24 cm-1 wide and with higher intensity than the G peak. Increasing the number 

of layers, the 2D peak undergoes modifications relative to shape, position, width and intensity, 

depending on the stacking order among the layers. The split in two distinct components is the 

signature of crystalline graphite with Bernal stacking order (i.e. ABA stacking of layers), while 

for turbostratic graphite, in which the layers are randomly oriented, the 2D peak still has a single-

Lorentzian shape, as in the case of monolayer graphene, but with a reduced intensity and a large 

width (up to 100 cm−1). In any case a quantitative analysis is necessary to determine the number 

of layers [29–31], where the accepted nomenclature [32] refers to Few-Layer Graphene or FLG 

when the number of layers is between 2 and 5, Multi-Layer Graphene or MLG up to 10 layers, 

graphite for more than 10 layers. However, the nature of the graphitic film appears to be different 

from substrate to substrate. Qualitatively, for the case of Ni and Fe a double 2D peak reveals a 

Bernal stacking order, while a single Lorentzian 2D peak for all the other substrates suggests a 

misoriented stacking of graphitic layers [29]. In addition, in tab. 4 we report quantitative fitting 

data (position and width of the peak and relevant intensity ratio of peaks, calculated using the area 

of the fitting curves) that allow to better analyse the properties of the films. 

Tab. 4: Peak properties of the Raman spectra of Fig. 3. For the case of Fe and Ni, where the 2D peak clearly 
presents two contributions, the I2D/IG ratio is not meaningful. In the last column, a summary of the type of graphitic 
material found on the substrates is reported (see text), where MLG, FLG, TG and G stand for multilayer graphene, 

few layer graphene, turbostratic graphite and graphite respectively.

Substrates
Pos G 

(cm-1)

FWHM G 

(cm-1)

Pos D 

(cm-1)

FWHM D 

(cm-1)

Pos 2D 

(cm-1)

FWHM 2D 

(cm-1)
ID / IG I2D / IG Summary

Mo 1588.5 28.6 1372.2 38.4 2745.3 56 0.64 1.38 MLG

Si 1595.3 22.4 1368.4 61.6 2718.2 56.7 0.58 0.74 TG

W 1586.6 21.2 1372.1 28.5 2749.4 51.9 0.41 1.96 FLG

Rh 1585.6 29.5 1366.4 35.5 2739.9 57.5 0.46 1.45 MLG

Fe 1586.1 15.8 1374.5 35.1 2725.3 / 
2765.5

52.3 / 34.7 0.24 - G

Ni 1587.5 18.3 0 0 2730.7 / 
2767.5

56.7 / 37.7 0 - G
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First, analysing G and D peaks, information about the quality of the graphitic layers can be 

inferred. A general observation regards the position of the G peak, for all cases slightly higher 

than the expected 1582 cm-1, probably due to interaction with the substrate (stress, induced 

doping). Further the G width is slightly broaden indicating the presence of some amount of 

disorder, except on Fe and Ni substrates, where values close to crystalline graphite are found, see 

fig. 4. The intensity ratio ID / IG, also reported in fig. 4, largely used in the carbon community to 

evaluate the defectivity of the layers [27], confirms this trend, being very small or zero for Fe and 

Ni substrates. Additionally, for these two substrates we observe a double 2D peak, as expected 

for Bernal stacked graphite. In the end, it appears that on substrates such as Ni and Fe the grown 

graphitic material shows a better crystallinity with respect to the other investigated substrates, all 

belonging to the “carburizing family” (i.e. Mo, Si and W). For them the previous observation of 

misoriented stacking of graphitic layers can be completed by the quantitative analysis of the single 

Lorentzian 2D peak, namely of its width and intensity ratio with the G peak, both reported in fig. 

5. From the indication in the literature concerning these two parameters [28-30], we may conclude 

that on W a FLG is formed, on Mo and Rh a MLG, while several layers are present on Si. 

Moreover, on Rh, which is the only substrate with a columnar nanostructure, the multilayer 

system appears to be disordered than in the case of Mo, and this can be linked to the peculiar 

structure of the substrate.

Fig. 4: ID/IG values and FWHM of the G peak derived from the fit of the spectra in fig. 3.
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Fig. 5: I2D/IG values and FWHM of the 2D peak derived from the fit of the spectra in fig. 3, only for single Lorentzian 
2D peak, which explains the absence of Fe and Ni. A different sequence of substrates is adopted with respect to the 

fig. 4.

From the spectra in fig. 3 we conclude that there is always a graphitic layer prior to diamond 

growth on all the investigated substrates, despite the carburizing or non-carburizing tendency. 

The diamond growth model is the one already theorized by Piekarczyk [33–37] based on three 

reaction steps that, with an appropriate thermodynamic formulation applied for diamond 

deposition with the DC-μP [38], appears to be suitable for justifying the formation of this graphitic 

layer. The main interesting result is how this model appears to stand for every kind of substrate 

used, despite the interaction channels that are supposed to happen depending on the carbon – 

substrate interaction.

SEM images and Raman spectra of diamond deposited on all these substrates for 30 minutes are 

shown in fig. 6 and fig. 7, respectively.
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Fig. 6: SEM images of diamond deposited for 30 minutes on different substrates. For the case of Fe, in the inset is 
shown a deposit of 1 hour.

Fig. 7: Raman spectra of diamond deposited for 30 minutes on several substrates.

From SEM images, a nearly continuous deposition was found on all substrates, with a diameter 

around 200 – 300 μm, with exception of Fe, where few, isolated aggregates are visible. However, 

for 1 hour of deposition a continuous deposit with ballas-like morphology was found even on Fe 

and no delamination occurred after substrate cooling. This observation is significant for the 

specific case of iron, since Fe-based materials are extensively considered non-ideal substrates for 

direct coating of diamond without the deposition of an appropriate interfacial layer with the aim 

of increasing diamond adhesion and preventing its peeling off after cooling; Fe has indeed a 

catalytic behaviour with respect to sp2 formation, and this is worsened by the high diffusivity that 

carbon has in this material, leading the formation of cluster of critical size for diamond nucleation 

difficult and long-time [39–43]. In the literature some positive results have been conversely 
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reported on stainless steel, where problems in diamond growth on ferrous materials such as the 

surface graphitization, long incubation time, substrate softening and poor adhesion were 

overcome without the need of interfacial layer but with a low temperature deposition process [44]. 

Considerably, in this work no interlayer deposition is intentionally performed on Fe previously to 

diamond deposition, and the process temperature used is in the usually employed range for 

diamond deposition with PECVD. Therefore, the spontaneous formation of a graphitic interlayer 

during our process, common to all substrates, is crucial for diamond growth on Fe. On Rh, 

diamond was grown for the first time and with a nucleation density and kinetics not far from that 

of the carburizing materials. In the Raman spectra (see fig. 7), typical nanocrystalline diamond 

features are found on all substrates. The diamond peak at 1332 cm-1 confirms the presence of sp3 

crystalline phase, whereas the D and G features are related to the disordered sp2 content, always 

present at the grain boundaries. Also, peaks assigned to nanocrystalline diamond are found, i.e. 

ν1 and ν3, due to the trans-polyacetylene content that characterizes nanocrystalline diamond grain 

boundaries. This results agree with the ball-shape morphology highlighted by SEM 

characterization (see fig. 6). For the case of Fe, which is the only one at 30 minutes where the 

diamond agglomerates still are not coalescent, Raman measurement directly on the substrate 

around the agglomerates was possible: the result is the blue spectrum (see fig. 7), that again 

confirms the presence of the graphitic system under the diamond agglomerates. The evident 

difference in morphology between the well-faceted agglomerates of the first minutes of growth 

and the nanocrystalline diamond obtained for prolonged deposition time, can be attributed to a 

change in the growth mechanism as diamond particles reach a certain critical size, i.e. from a 

layer-by-layer growth to a normal growth [45].

In order to characterize diamond deposited at 30 minutes on all substrates, Raman spectra of fig. 

7 were all fitted, following a precise procedure that has already been extensively justified in [25]: 

a single Lorentzian function were used for the diamond peak, while four Gaussians were used to 

fit the v1, v3, D and G peaks. Consequently, information regarding the diamond peak position and 

FWHM were acquired: the values of these features are strongly linked to diamond stress state and 

crystallinity, respectively. Moreover, a qualitative evaluation of sp3/sp2 content was performed, 

using the experimental coefficient f already described in [25]. The diamond peak position and 

FWHM values are reported in tab. 8, together with the trend of the coefficient f.

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649



Fig. 8: Values of the d peak position, FWHM and of the f coefficient as derived from the fitting of Raman spectra of 
fig. 7.

The slight shift in the diamond peak with respect to its theoretical position is symptomatic of 

stress states probably due to the substrate-diamond lattice mismatch, whereas the FWHM values 

are likely to be in the range of values of diamond with small grain sizes. Being the f coefficient 

linked to the sp3/sp2 content, a low value of this coefficient is symptomatic of diamond with a 

smaller grain size, since the sp2 is located mainly at the grain boundaries. Considering this, some 

observations can be derived. On Rh coated silicon, the d peak position is centred in its theoretical 

value, and thus a relaxation of the interface stresses can be deduced. At the same time, the high 

value of FWHM signifies a diamond with a very small grain size and low crystallinity, which is 

in accordance with the low value of the f coefficient. It is interesting to note that the sub-

micrometric Rh film despite its small thickness determines the features of the growing diamond 

like the other bulk metal substrates. Additionally, the nanocrystalline phase of the deposited 

diamond is probably influenced by the nanostructured columnar nature of the Rh film. On Fe and 

Ni, that show similar values of all diamond features, the f factor is the higher among the analysed 

substrates: this can find an explanation in the fact that on both substrates a crystalline graphite if 

found in the early stages of growth. Indeed, nucleation of diamond on graphite precursors is 

supposed to happen easily, supported by both experimental and theoretical observations 

[15,16,20]: this implies that when the precursor is a well-ordered graphite rather than a systems 

composed by randomly oriented multilayer, diamond tends to grow easily, and with a higher 

content with sp3 phase with respect to sp2, and thus a higher grain size. On Mo, Si and W instead, 

where a multilayer system is found in the early stages of growth, diamond still grow but with a 

lower grain size (low sp3/sp2 content); at the same time, the crystallinity of this grain size is better 

(see FWHM values) than on the other substrates. In summary, the increasing in sp3/sp2 content 

(and thus in the grain dimension) we observed is linked to the crystallinity of the early stages 
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graphite, and this is clearly shown in fig. 9., where the dependence of the f factor of diamond on 

the ID/IG ratio of graphite is reported.

Fig. 9: sp3/sp2 content (and grain dimension) of diamond as a function of the graphite crystallinity.

Finally, exploiting the extreme smoothness and flatness of Si substrate, thickness and deposition 

area of samples grown for 90 minutes, 3 hours and 5 hours were measured and are listed in tab 5. 

As an example, SEM cross-section and top view of the sample deposited at 90 minutes are shown 

in fig. 10.

Fig. 10 Diamond grown on Si for 90 minutes: a) a cross-section of the sample, b) a magnification of the cross-section 
in the centre of the deposit and c) a top view of the deposit.
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The deposit shows a circular shape (see fig. 9.c), and a Gaussian-like profile (see fig. 9.a), with 

the density of agglomerates decreasing from the centre to the periphery region of the deposition. 

Nevertheless, it is worth noticing that, for higher thickness, the deposition results homogeneous 

over the whole area, and a higher covering is achieved, even if the plasma plume dimension is 

fixed at 178 μm. From cross-section view (see fig. 9.b), we clearly appreciate a columnar growth 

with diamond agglomerates starting coalescence after a thickness of few microns. From data 

reported in tab. 5, we note that the thickness is almost linear with deposition time, with a growth 

rate of about 16 μm/h.

4. Conclusions 

In this work, nanocrystalline diamond was deposited on several substrate materials without 

substrate pre-treatment and with the same deposition conditions. Basing on the results, this work 

demonstrates definitively the extreme versatility of the direct-current micro-plasma device 

regarding the successful deposition of nanocrystalline diamond on various substrate materials. Of 

practical interest is the case on Fe, since diamond deposition on Fe-based materials has always 

been an arduous task. In this work, nanocrystalline diamond with good crystalline quality and 

high sp3/sp2 content was successfully deposited on Fe, opening the possibility of exploiting the 

DC-μP device for diamond deposition on stainless steel. Additionally, important similarities can 

be found in the dynamics of growth on all substrates, suggesting that the formation of a graphitic 

layer at the diamond-substrate interface is the driving force through diamond deposition with this 

peculiar technique. A detailed analysis shows that this graphitic layer can have different nature, 

depending on the substrate materials, ranging from few-layers graphene to graphite or turbostratic 

graphite. The initial graphitic layer is then responsible for the growth of nanocrystalline diamond 

with different features regarding the sp3/sp2 content and the grain crystallinity. Finally, samples 

grown on silicon for prolonged deposition time, together with the possibility to exploit the 

translating apparatus for dynamic depositions that equips the DC-μP device [25], show the 

Growth time 90 min 3 hours 5 hours

Area [mm2] ≈ 0,19 ≈ 0,22 ≈ 0,28

Thickness [μm] 20 40 90

Tab. 5: Superficial areas and thicknesses of diamond deposited on Si with 
increasing deposition time
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feasibility of tuning the dimension and thickness of the deposition to produce films of practical 

interest.
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