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Integrated Deterministic and Probabilistic Safety Analysis (IDPSA) of dynamic systems calls for the development of efficient
methods for accidental scenarios generation. The necessary consideration of failure events timing and sequencing along the
scenarios requires the number of scenarios to be generated to increase with respect to conventional PSA. Consequently, their
postprocessing for retrieving safety relevant information regarding the system behavior is challenged because of the large amount
of generated scenarios that makes the computational cost for scenario postprocessing enormous and the retrieved information
difficult to interpret. In the context of IDPSA, the interpretation consists in the classification of the generated scenarios as safe,
failed, Near Misses (NMs), and Prime Implicants (PIs). To address this issue, in this paper we propose the use of an ensemble of
Semi-Supervised Self-Organizing Maps (SSSOMs) whose outcomes are combined by a locally weighted aggregation according to
two strategies: a locally weighted aggregation and a decision tree based aggregation. In the former, we resort to the Local Fusion (LF)
principle for accounting the classification reliability of the different SSSOM classifiers, whereas in the latter we build a classification
scheme to select the appropriate classifier (or ensemble of classifiers), for the type of scenario to be classified.The two strategies are
applied for the postprocessing of the accidental scenarios of a dynamic U-Tube Steam Generator (UTSG).

1. Introduction

The number of dynamic scenarios considered in an Inte-
grated Deterministic and Probabilistic Safety Analysis
(IDPSA) of dynamic systems increases with the number of
failure events that can occur and the consideration of their
timing and sequencing. This can make the computational
cost for scenario postprocessing enormous and the retrieved
information difficult to interpret [1–4]. The main goal of
postprocessing is the classification of the dynamic scenarios
generated as safe, failed, NearMisses (NM), and Prime Impli-
cants (PIs) clusters. Safe scenarios are those that, even if sev-
eral components failures are included, keep the system work-
ing in safe conditions. Failed scenarios, instead, result from a
combination of failure events that lead the system into a failed
condition. Among failed scenarios, PIs are those scenarios
containing events representing the minimal combinations of
component failure necessary for system failure [5] (i.e., the

dynamic systems equivalent of Minimal Cut Sets (MCSs)).
Among safe scenarios, NMs are dangerous sequences of
events that lead the system to a quasi-fault state [6].

Many methods have been proposed in literature for
the classification task. A first step could be distinguishing
failed scenarios from safe scenarios, for example, by a fuzzy-
𝑐-means (FCM) classifier [6], a Mean-Shift Methodology
(MSM) [7], or a decision tree [8]. Methods have been
proposed for the identification also of PIs and Near Misses.
For example, PIs identification has been performed with a
differential evolution-based method [9] or a visual interac-
tive method [10], where the number of components whose
behavior is specified in the accident sequence is selected as
most important feature for the PIs identification: the accident
sequences associated with the lowest literal cost are selected
and stored as PIs (most reduced sequences, i.e., with least
number of events, that cannot be covered by any other
implicant). Regarding the identification of the Near Misses
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sequences, an unsupervised clustering problem based on an
optimized wrapper algorithm and the 𝐾-means clustering
algorithm has been proposed (MacQueen, 1967) [4]. A
comprehensivemethod for accidental scenarios classification
can be provided by Self-OrganizingMaps (SOMs) [11], which
have been widely used in various engineering and physical
applications, including fault detection and diagnosis in com-
plex systems [12, 13]. SOMs capture nonlinear relationships
of high-dimensional data and visualize them on a low-
dimensional interface, normally a 2D structure of, so-called,
neurons. In this structure, data are assigned to the most
similar neuron called Best Matching Unit (BMU) (usually
by measuring the smallest Euclidean distance), so that the
available data are divided into regions with common char-
acteristics (i.e., data with high similarity to the same BMU
are mapped close to each other). Three kinds of SOM exist:
the Unsupervised SOM (USOM), the Semi-Supervised SOM
(SSSOM), and the Supervised SOM (SSOM).We have shown
in [14] a SSSOM performs best in identifying safe, failed,
NMs, and PIs groups of scenarios. In particular, assigning
the set of discrete variables (i.e., the failure sequences) to a
BMU, a SSSOM (implemented with a Manhattan distance as
similarity measure) is particularly suitable to properly treat
the MVL approximation needed for the representation of the
dynamic scenarios (the usual binary variables representation
used in Boolean Logic, in which the modeling is limited
only to the occurrence or not of certain events [2–4, 6,
9, 10, 15], is not sufficient). In this work, it will be shown
that the SSSOM performance in classifying different groups
of scenarios depends on the feature of the SSSOM that is
used as discriminating characteristics for choosing the BMU
(e.g., assigning the data to the cluster with the geometric
barycentermore similar to the input data or to the clusterwith
the maximum (minimum) neuron (i.e., with the maximum
(minimum) weights) more similar to the input data). The
results confirm that depending on this, some classifiers
overperform the stand-alone SSSOM for some classes and
vice versa. This suggests adopting an ensemble approach for
an improved classification of accidental scenarios.

The main objective of this work is to propose a postpro-
cessing tool for dynamic accidental scenarios, which exploits
an ensemble of classifiers. In fact, by doing so, it is possible to
leverage the classifiers complementary characteristics and to
boost overall classification accuracy (in terms of the multiob-
jective precision sensitivity and specificity) [16]. In general,
strategies for boosting diversity include (i) using different
types of classifiers (this is the technique we adopt for our
application); (ii) training individual classifiers with different
data sets; (iii) using different subsets of features. Various
methodologies exist for aggregation of the outcomes of indi-
vidual classifiers: majority vote [17], Borda count [18], thresh-
old voting [Ho 1994], weighted average [19], fuzzy integral
[20], fuzzy templates [21], and Dempster-Shafer theory [22].
Furthermore, methods have been developed to dynamically
select a classifier from the set of available ones, based on local
information [23]: different classifiers performbest in different
regions and this aggregation can lead to improving classifica-
tion results; in a supervised setting, the individual classifier
performance can be calibrated based on historical data with

known target values; each individual classifier performance
value reflects the degree to which we want each classifier to
contribute in the ensemble aggregation: the best performing
classifier for a given scenario type should contribute most
[16]. On these premises, we propose two alternative strategies
based on locally weighted aggregation of SSSOMs outcomes:
a locally weighted ensemble and a decision tree based on
an ensemble. For both strategies, we resort to the Local
Fusion (LF) principle [19] for building the ensemble outcome,
based on each classifier local performance, measured by the
classification accuracy on scenarios in the neighborhood of
(i.e., similar to) the test scenario considered.

In the locally weighted ensemble strategy, we ensemble
the classification outcomes of the SSSOMs whose assign-
ments to a BMU are given with respect to the different fea-
tures characterizing the SSSOM (e.g., the Mean Quantization
Error (MQE) based SSSOM, the barycenter based SSSOM,
the minimum neuron based SSSOM, the maximum neuron
based SSSOM, and the stand-alone SSSOM).

Differently, the decision tree based classification scheme
chooses one single classifier (or ensemble of classifiers), based
on the local performance of the test scenario. In this way,
input scenarios with similar characteristics are treated by
the same classifier (or ensemble of classifiers) for which the
branch of the tree is most effective.

The feasibility of combining local information for post-
processing IDPSA scenarios for their classification into safe,
failed, NMs, and PIs, is demonstrated with respect to a
dynamicU-Tube SteamGenerator (UTSG) of aNPP [24]. For
IDPSA scenarios generation, a dynamic simulation model
has been implemented in SIMULINK and a multivalued
logic (MVL) scheme [4] has been adopted for describing the
different component operational states in the scenarios.

The paper is organized as follows. In Section 2, the UTSG
and its SIMULINK model are presented. In Section 3, the
SSSOMs are presented and different features are considered
as discriminating characteristics for the classification; also
the LF process for ensembling is outlined. In Section 4, the
locally weighted ensemble of SSSOMs and the decision tree
based ensemble of SSSOMs are presented, and the results on
the case study considered are reported. In Section 5, some
conclusions and final remarks are given.

2. Case Study

We consider the dynamic scenarios of a UTSG used in
nuclear power plants for scenarios generation. A SIMULINK
model has been used to describe the UTSG response at
different power levels 𝑃0 [4]. The component failures con-
sidered for UTSG are as follows (Figure 1): the steam valve
failure, the safety relief valve failure, the interruption of
the communication between the sensor that monitors the
water level (governed by the balance between the incoming
and exiting feed water) and the Proportional Integrative
Derivative (PID) controller, and the PID failure. A mission
time (𝑇miss) of 4000 (s) has been considered for allowing com-
plete development also of slow dynamic accident scenarios
occurring at early/medium times.The component failures are
considered occurring at any continuous time instant, with
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Figure 1: Sketch of the failures that can be injected into the system.

any order in the sequence and magnitude. Assumptions on
the failure occurrence process have been made in order to (i)
favor the occurrence of multiple failures in the scenarios, (ii)
capture the dynamic influence of all factors of interest, and
(iii) treat a comprehensive (but still manageable) problem for
which scenarios postprocessing is required for a robust risk
quantification.

For the tractability of the problem, we resort to a mul-
tivalued logic (MVL) computational framework in which the
components can fail at discrete times andmagnitudes [9].The
discretization consists in the following:

(i) Time: for each component, the mission time (𝑇miss) is
divided into four intervals, labeled 𝑡 = 1 for a failure
in [0, 1000] (s), 𝑡 = 2 in [1000, 2000] (s), 𝑡 = 3 in
[2000, 3000], and 𝑡 = 4 in [3000, 4000]. If 𝑡 = 0 the
component does not fail in 𝑇miss.

(ii) Component failure magnitudes:

(a) the steam valve failure magnitude is indicated
as 1, 2, or 3 for failure states corresponding to
stuck at 0%, at 50%, and at 150% of the 𝑄𝑒
value that should be provided at power level
𝑃𝑜, respectively; if the steam valve magnitude is
indicated as 0, the component does not fail in
𝑇miss;

(b) the safety relief valve failure magnitude is indi-
cated as 1, 2, 3, and 4, if it is stuck between
[0.5, 12.6] (kg/s), [12.6, 25.27] (kg/s), [25.27,
37.91] (kg/s), and [37.91, 50.5] (kg/s), respect-
ively; if the safety relief valve magnitude is indi-
cated as 0, the component does not fail in 𝑇miss;

(c) the communication between the sensor mea-
suring the water level and the PID controller is
labeledwith 0 if the communicationworks, with
1 otherwise;

(d) the PID controller failure magnitude is dis-
cretized into 8 equally spaced magnitude inter-
vals, labeled from 1 to 8, representative of failure
states corresponding to discrete intervals of
output value belonging to [−18, 18]% of the 𝑄𝑒
value that should be provided at 𝑃𝑜; if the PID
controller magnitude is labeled as 0, the com-
ponent does not fail in 𝑇miss.

Each scenario is represented by a set of values of the multi-
valued variables of time, magnitude, and order of occurrence,
which are resumed into a sequence vector: each sequence is,
thus, an MVL vector 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑑], of length 𝑑 =12. For example, [2, 3, 1, 3, 1, 3, 2, 1, 2, 4, 6, 4] corresponds to
a scenario where

(i) the steam valve fails stuck at its maximum allowable
value (3) at a time (2) in [1001, 2000] (s) and it is the
first (1) event occurring along the sequence;

(ii) the safety relief valve fails third (3) in the time interval
(3) equal to [2001, 3000] (s), with a magnitude (1)
belonging to [0.5, 12.6] (kg/s);

(iii) the communication between the sensor measuring
the water level and the PID controller is the second
(3) failure event (1) in the sequence, and it occurs in
the time interval (2) of [1001, 2000] [1001, 2000] (s);

(iv) the PID controller fails stuck as fourth (4) in the time
interval (4) of [3001, 4000] (s), with a magnitude (6)
belonging to [6, 10]% of the 𝑄𝑒 value that should be
provided at 𝑃𝑜.

All possible combinations of multiple component failures,
each represented by a MVL vector of time, magnitude, and
order of occurrence, lead to a total of𝑁 = 100509 accidental
MVL scenarios to be treated for the quantification of the risk
related to the UTSG operation.

3. The Ensemble

Thedesign of a successful ensemble consists of two important
parts [25, 26]: (1) the design of the individual classifiers
(Section 3.1); (2) the design of the aggregation mechanism
(Section 3.2) [27].

3.1. Design of Classifiers. For postprocessing the𝑁 = 100509
multivalued dynamic scenarios of the UTSG, we resort to
a Semi-Supervised Self-Organizing Map (SSSOM) based on
the Manhattan distance (shown in Figure 2(c)). This SSSOM
has been shown in [14] to be efficient for grouping the scenar-
ios in four distinct regions of the map and retrieving safety
relevant information, and it is hereafter shown to be capable
of further improvement when trained to classify new data
based on different features of this same SSSOM to be used as
BMUs and, then, their outcomes are ensembled into the final
classification: we shall see that certain classifiers overperform
the others for certain classes and vice versa. Specifically, we
build 𝐾 = 5 classifiers the stand-alone SSSOM, the MQE
based SSSOM, the barycenter based SSSOM, the minimum
neuron based SSSOM, and the maximum neuron based
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Figure 2: The stand-alone SSSOM (c): different shades of color indicate different classes, circles are the geometric barycenters of the classes,
triangles are the minimum neurons of the classes, and rectangles are the maximum neurons of the classes. (a) PDF of the MQE for failed
scenarios; (b) PDF of the MQE for NMs scenarios; (d) PDF of the MQE for PIs scenarios; (e) PDF of the MQE for safe scenarios.

SSSOM and show how, for different classes, none of these
is the best and all would mutually benefit from each other,
namely.

3.1.1. The Stand-Alone SSSOM. A SSSOM of𝑀 = 3025 neu-
rons 𝐶 = [𝑐1, 𝑐2, . . . , 𝑐𝑀], each of which is assigned a weight

vector 𝑤𝑚 = [𝑤1, 𝑤2, . . . , 𝑤𝑑], is trained on the 𝑁 =
100509 UTSG dynamic scenarios 𝑋 belonging to a 𝑑 = 12-
dimensional space, say 𝑋 = [𝑋1, 𝑋2, . . . , 𝑋𝑁], where the 𝑛th
sample is𝑋𝑛 = [𝑥1, 𝑥2, . . . , 𝑥𝑑]. For the sake of completeness,
the training algorithm is presented in the Appendix. In par-
ticular, this SSSOM is constructed by replacing the Euclidean
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distance as similarity measure between the generic scenario
in input𝑋𝑛 and the weight 𝑤𝑚 of the𝑀 neurons of the map,
with the Manhattan distance:

𝑑Manhattan (𝑋𝑛, 𝑤𝑚) =
𝑑

∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩𝑋𝑘 − 𝑤𝑘󵄩󵄩󵄩󵄩󵄩 , (1)

where ‖ ⋅ ‖ is the absolute value of the difference between the
two vectors along the𝑑-dimension [14]. By doing so, theMVL
formalism is accommodated within the similarity assessment
between data vector and neurons. The map of Figure 2(c)
has been built with 𝑡tot = 15 training epochs and a 𝜀(𝑡 =
0) = 0.01 factor (for the meaning of these parameters, see the
Appendix). Different shades of color represent the different
𝐺 = 4 classes 𝑡 = [1, 2, 3, 4] for safe, NMs, failed, and PIs,
respectively.

3.1.2. The MQE Based SSSOM. Let us consider a generic
scenario𝑋𝑛 and a generic neuron of the map 𝑤𝑖. As stated in
the Appendix (A.5), a commonly used quality measures that
can be used to determine the performance of the map is the
MQE and it can be defined as in the following equation.

MQE = 1𝑁
𝑁

∑
𝑛=1

󵄩󵄩󵄩󵄩󵄩𝑋𝑛 − 𝑤𝑖󵄩󵄩󵄩󵄩󵄩 , (2)

where 𝑤𝑖 are the weights associated with the BMU neuron 𝑐𝑖.
Basically, the lower the MQE of the BMU is, the more

the scenario features vector is similar to its weight vector
and, thus, the more the knowledge is learnt by the SSSOM.
Computing the MQE for each input data and grouping them
classwise, we can obtain the empirical probability density
functions (PDF) referring to the distribution of the MQE for
each class (Figures 2(b), 2(a), 2(e), and 2(d)). Equation (3)
shows an example of computation of the MQE for a generic
class 𝑔:

MQE𝑔 = 1
𝑁𝑔
𝑁𝑔

∑
𝑛=1

󵄩󵄩󵄩󵄩󵄩󵄩𝑋𝑛𝑔 − 𝑤𝑖
󵄩󵄩󵄩󵄩󵄩󵄩 , (3)

where 𝑁𝑔 is the number of scenarios belonging to the class
𝑔, 𝑋𝑛𝑔 is a generic scenario belonging to the class 𝑔, and 𝑤𝑖
is the weight vector of the BMU neuron in the map to which
𝑋𝑛𝑔 is assigned. The classification of a new input to a 𝑔 class
with the MQE based SSSOM proceeds as follows: its MQE𝑔
is calculated as in (2) and, then, it is assigned to the class with
the larger PDF value for the calculated MQE. The rationale
is that, for a particular value of MQE, the larger the PDF, the
more probable the value: if for a class 𝑔, the PDF associated
with aMQEvalue is larger than for the other classes, it ismore
probable that the scenario belongs to that class. For example,
if the MQE of an input is equal to 1.5, we assign it to the safe
class because the PDF of the safe class (Figure 2(e)) is larger
than the other classes, for this value of MQE. In general, we
can notice in Figure 2 that NMs and PIs classes have PDF
skewed towards low values of MQE, whereas failed and safe
classes have larger MQE values.

3.1.3. The Barycenter Based SSSOM. The same SSSOM
trained as in the Appendix and shown in Figure 2(c) is
exploited as an alternative classifier by using the geometric
barycenter of each cluster as a reference for the choice of
the BMU (circles in Figure 2). When a new 𝑋𝑛 is fed to this
SSSOM,we select the closest of the four barycenter neurons as
the most similar neuron, where similarity is quantified based
on the Manhattan distance:

𝑑Manhattan (𝑋𝑛, 𝑤𝑔bar) =
𝑑

∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩𝑋𝑘 − 𝑤𝑔bar󵄩󵄩󵄩󵄩󵄩 , (4)

where 𝑤𝑔bar is anyone of the four barycenters of the four
classes. The rationale is that the geometric barycenter is most
representative of the characteristics of the class.

3.1.4. The Minimum Neuron Based SSSOM. Considering
again the SSSOM trained as in the Appendix and shown in
Figure 2(c) for each cluster 𝑔we locate on themap the neuron
with the minimum weight 𝑤𝑔min (represented in the map
with a triangle in the map of Figure 2) and for the classifica-
tion we assign the new vector 𝑋𝑛 to the cluster with the
minimumneuronmost similar to the considered input, based
on the Manhattan distance:

𝑑Manhattan (𝑋𝑛, 𝑤𝑔min) =
𝑑

∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩𝑋𝑘 − 𝑤𝑔min
󵄩󵄩󵄩󵄩󵄩 . (5)

The rationale is that if the vector of the features of a scenario
is similar to that of neuron with the minimum weight of a
specific cluster, it will be assigned to this cluster because it is
very different to the neurons with minimum weight vectors
of the other classes.

3.1.5. The Maximum Neuron Based SSSOM. The maximum
neuron based SSSOM is complementary to the previous one
in that it is based on the neuron with the maximum weights
for each cluster 𝑤𝑔max represented by a rectangle in the map
of Figure 2(c).

3.1.6. Classification Performance. The four classifiers of Sec-
tions 3.1.2–3.1.5 are compared to the stand-alone SSSOM of
[14], on the UTSG scenario postprocessing task. The perfor-
mances of the classifiers are quantified by the calculation of
[28]:

(i) Precision: the larger, the better the capability of the
𝑘th classifier to not include samples of other classes
in the considered 𝑔th class:

Pr𝑔 = 𝑛𝑔𝑔𝑛󸀠𝑔 , (6)

where 𝑛󸀠𝑔 is the total number of scenarios assigned
to the 𝑔th class and 𝑛𝑔𝑔 is the number of scenarios
belonging to class 𝑔 and correctly assigned to class
𝑔.
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Table 1: MQE based SSSOM performances: precision, sensitivity,
and specificity for each class.

MQE based Safe Failed NMs PIs
Precision 0.674 0.3803 0.0406 0.0083
Sensitivity 0.4699 0.475 0.491 0.6333
Specificity 0.6006 0.5674 0.9616 0.9326

Table 2: Barycenter based SSSOM performances: precision, sensi-
tivity, and specificity for each class.

Barycenter based Safe Failed NMs PIs
Precision 0.6459 0.4816 0.0097 0.0014
Sensitivity 0.2975 0.3859 0.5934 0.3444
Specificity 0.7134 0.7678 0.7996 0.7827

Table 3: Minimum neuron based SSSOM performances: precision,
sensitivity, and specificity for each class.

Minimum neuron based Safe Failed NMs PIs
Precision 0.7437 0.5418 0.0325 0.0025
Sensitivity 0.7145 0.427 0.0994 0.2667
Specificity 0.5666 0.7981 0.9902 0.9054

(ii) Sensitivity: the larger, the better the capability of the
𝑘th classifier to correctly recognize samples belonging
to the 𝑔th class:

Sn𝑔 = 𝑛𝑔𝑔𝑛𝑔 , (7)

where 𝑛𝑔 is the total number of scenarios belonging
to the 𝑔th class.

(iii) Specificity: the larger, the better the capability of each
𝑔th class of the 𝑘th classifier to reject the samples of
all the others:

Sp𝑔 =
∑𝐺𝑘=1 (𝑛󸀠𝑘 − 𝑛𝑔𝑘)

𝑁 − 𝑛𝑔 for 𝑘 ̸= 𝑔, (8)

where 𝑛󸀠𝑘 is the total number of samples assigned to
the 𝑘th class:

𝑛󸀠𝑘 =
𝐺

∑
𝑔=1

𝑛𝑔𝑘. (9)

In Tables 1–5, the performances for the MQE based, the
barycenter based, theminimumneuron based, themaximum
neuron based, and the stand-alone SSSOMs, for each class,
are reported.

For failed and PIs scenarios, the parameters of the stand-
alone SSSOM (precision of 0.83 and 0.016, sensitivity of 0.773
and 0.911, and specificity of 0.911 and 0.949, respectively)
are larger than for all the other classifiers. For example, for
the minimum neuron based SSSOM, the precision for failed
scenarios is equal to 0.5418, which is much lower than the
precision obtained with the stand-alone SSSOM. It is worth

Table 4: Maximum neuron based SSSOM performances: precision,
sensitivity, and specificity for each class.

Maximum neuron based Safe Failed NMs PIs
Precision 0.833 0.3864 0.0066 0.002
Sensitivity 0.1278 0.3514 0.5813 0.6222
Specificity 0.955 0.6881 0.7084 0.7167

Table 5: Stand-alone SSSOM performances: precision, sensitivity,
and specificity for each class.

SSSOM [14] Safe Failed NMs PIs
Precision 0.949 0.83 0.034 0.016
Sensitivity 0.78 0.773 0.957 0.911
Specificity 0.927 0.911 0.911 0.949

noticing that this is always true for all the parameters values
when dealing with failed and PIs scenarios. On the contrary,
looking at the NMs and safe scenarios, we see that the other
classifiers overcome the stand-alone SSSOM performances.
For example, the specificity in classifying safe scenarios is
higher for the maximum neuron based SSSOM than for the
stand-alone SSSOM (0.955 versus 0.927), and the precision
in classifying NMs is higher for the MQE based SSSOM than
for the stand-alone SSSOM (0.0406 versus 0.034), and also
the specificity in classifying NMs for both the MQE based
SSSSOM (0.9616) and the minimum neuron based SSSOM
(0.9902) is higher than the stand-alone SSSOM (0.911).

In Figure 3, a 3D representation of the performance
parameters values of Tables 1–5 is given for each implemented
SSSOM and each scenario class: stars indicate the MQE
based SSSOM values, circles the barycenter based SSSOM
values, squares the minimum neuron based SSSOM values,
diamonds the maximum neuron based SSSOM, and crosses
the stand-alone SSSOM values.

Figure 3(a) confirms that the stand-alone SSSOM, on
average, overperforms the other classifiers, except for safe and
NMs classes: for these scenarios in Figures 3(b) and 3(d),
respectively, a Pareto front can be identified and highlighted
with a solid line for the suboptimal solutions of classifiers that
do not dominate all the others with respect to all the three
performance objectives. For example, we can see that the
precision in classifying the NMs is higher for the MQE based
SSSOM(0.0406) than for the stand-alone SSSOM(0.034) and
so is the specificity in classifying NMs (0.9616 versus 0.911),
but the sensitivity for the same class is higher for the stand-
alone SSSOM (0.957 versus 0.491).

These results suggest the possibility of developing a gen-
eral method for aggregating the multiple classifiers outputs
considered as an ensemble, whose aggregation mechanism
(as proposed in the following sections) would consider the
local performances of the different classifiers in dealing with
the different types of scenarios and automatically selecting
the classifier to be used.

As a last remark, it is worth clarifying that the proposed
ensemble method is designed such that it could be applied to
other cases than the UTSG here presented.Therefore, even if,
under this circumstances, one might argue it would be more
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Figure 3: 3D representation of the performance parameters. Red refers to PIs, black to NMs, blue to failed, and green to safe scenarios.

convenient to rely on the stand-alone SSSOM only when
dealing with failed and PIs scenarios and on the ensemble for
the other classes of scenarios because (i) it is always true that
the stand-alone SSSOM overcomes the other classifiers when
dealing with failed and PIs scenarios and (ii) it is not when
dealing with NMs and safe scenarios, not to limit the general-
ity of the proposed ensemblemethod, we proceed by devising
an automatic aggregationmechanism, rather than case based.

3.2. Design of the AggregationMechanism:The LocallyWeight-
ed Fusion. Let 𝑤𝑘𝑄 be the weight that classifier 𝑘 carries in
assigning scenario 𝑋𝑛 to a class of a dataset of 𝑁 scenarios
to be classified:

𝑤𝑘
𝑋𝑛
= 1
me𝑘
𝑋𝑛

, (10)

where the Mean Error (ME) me𝑘
𝑋𝑛

is the error that classifier 𝑘
makes in classifying the scenario𝑋𝑛, defined as

me𝑘
𝑋𝑛
= ∑
𝑁
𝑛=1 𝑒𝑘𝑛
𝑁 (11)

and 𝑒𝑘𝑛 is the error that the classifier 𝑘 commits in classifying
the 𝑛th scenario whose real class is 𝑡𝑛 (with 𝑛 = 1, . . . , 𝑁).
In this work, the error 𝑒𝑘𝑛 is computed in two different ways:
being 𝑦𝑘𝑛 = 1, . . . , 𝐺 the class the 𝑘th classifier assigns to
𝑋𝑛; the first way for computing 𝑒𝑘𝑛(1) is given in the following
equation:

𝑒𝑘𝑛(1) =
{
{{
𝑓 (𝑥) = {{{

0, if 𝑦𝑘𝑛 = 𝑡𝑛
1, if 𝑦𝑘𝑛 ̸= 𝑡𝑛,

(12)
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where the error is null if the estimated class 𝑦𝑘𝑛 is the same
as the real class 𝑡𝑛 (where 𝑦𝑘𝑛 = 1 and 𝑡𝑛 = 1 means that the
estimated and real class of the scenario are safe, respectively,
𝑦𝑘𝑛 = 𝑡𝑛 = 2means failed, 𝑦𝑘𝑛 = 𝑡𝑛 = 3means NMs, and 𝑦𝑘𝑛 =𝑡𝑛 = 4meansPIs), whereas in the secondway 𝑒𝑘𝑛(2) is calculated
as theManhattan distance between the real and the predicted
class by the following equation:

𝑒𝑘𝑛(2) = 󵄩󵄩󵄩󵄩󵄩𝑦𝑘𝑛 − 𝑡𝑛󵄩󵄩󵄩󵄩󵄩 . (13)

Usually the error is computed by relying on a subset of 𝑁,
called neighbor set of scenarios to 𝑋𝑛 and defined as in (10):

𝑃 (𝑋𝑛) = {𝑢𝑗 | 𝑢𝑗 ∈ 𝑁(𝑋𝑛)} , (14)

where 𝑢𝑗 = ⟨𝑥1,𝑗, 𝑥2,𝑗, . . . , 𝑥𝑑,𝑗⟩ is a set of 𝑑-dimensional
scenarios, 𝑁(𝑋𝑛) is the neighborhood of 𝑋𝑛 that is in this
work defined as a set of𝑁𝑋𝑛 = 100 scenarios (i.e., a subset of𝑁 scenarios) whoseManhattan distance for the instance to be
classified is lower than 10 (i.e., being 𝑑 = 12, a threshold value
equal to 10 means𝑋𝑛 and its neighbors have not to differ too
much), and, thus, 𝑗 = 1, . . . , 100.

distManhattan (𝑋𝑛, 𝑢𝑗) =
𝑑

∑
𝑙=1

󵄩󵄩󵄩󵄩󵄩𝑋𝑛𝑙 − 𝑢𝑙󵄩󵄩󵄩󵄩󵄩 . (15)

In this way, the 𝑘th classifier performance is expected to
be similar to the one that would be obtained with a new
(unknown) scenario. A weight 𝑤𝑘

𝑋𝑛
can, thus, be associated

with each of the individual 𝑘 classifiers of the ensemble
depending on its performance, as it will be shown in the next
section.

4. The Proposed Ensemble Strategies

In the following, we describe the details of the implemented
ensemble strategies, namely, the locally weighted ensemble
of SSSOMs and the decision tree based on an ensemble
of SSSOMs. These approaches rely on the five classifiers
introduced in Sections 3.1.1–3.1.5 (the stand-alone SSSOM,
the MQE based SSSOM, the barycenter based SSSOM, the
minimum neuron based SSSOM, and the maximum neuron
based SSSOM, respectively), whose classification outcomes
are combined into two different ways, as we shall see in what
follows.

4.1. Locally Weighted Ensemble of SSSOMs. For the locally
weighted ensemble of SSSOMs, we directly apply the algo-
rithm of the neighborhood based approach, as described
in Section 3.2 to the 𝑁 = 100509 dynamic scenarios. For
each scenario to be classified we retrieve the 100 neighbors
based on the considerations made before: relying on the
neighborhood of each scenario we compute the classification
errors (with both (12) and (13)) and, through the errors,
also the weights associated. The classification outcomes of
the five different trained SSSOMs are ensembled and the
assignment to a class is given accounting for the different
performances of these classifiers when assigning the weight

Table 6: Locally weighted ensemble classification results: method
using (12) and (13).

Approach Correctly assigned
Total NMs PIs

Locally weighted ensemble by
using (12) 84141 104 66

Locally weighted ensemble by
using (13) 81512 308 77

Table 7: Stand-alone SSSOM classification results.

Approach Correctly assigned
Total NMs PIs

Stand-alone SSSOM 78288 318 82

(the larger the number of neighbors of the input scenario
correctly classified, the lower the error, and the larger the
weight and the reliability for the 𝑘th classifier). For the
computation of the weight associated with each classifier 𝑘
for each scenario, thus, we resort (10) and (11) where, for the
𝑛th generic scenario and the 𝑘th classifier, we calculate

𝑤𝑘
𝑋𝑛
= 1
me𝑘
𝑋𝑛

, (16)

where𝑋𝑛 is one of the𝑁 = 100509 dynamic scenarios,𝑤𝑘
𝑋𝑛

is
the weight associated with this scenario, and me𝑘

𝑋𝑛
is the ME

associated with this scenario and computed as in (13):

me𝑘
𝑋𝑛
= ∑
𝑁𝑋𝑛
𝑗=1 𝑒𝑘𝑗
𝑁𝑋𝑛

, (17)

where 𝑁𝑋𝑛 = 100 and 𝑒𝑘𝑗 is the classification error. Once the
weights are computed for all the 𝐾 = 5 classifier, the input
data 𝑋𝑛 is assigned to the class with the larger weight 𝑘 =
arg((max𝑘(𝑤𝑘𝑋𝑛))), because this is the most reliable classifier
for the 𝑛th vector.

4.1.1. Training of the Locally Weighted Ensemble of SSSOMs.
Table 6 shows the classification results for all scenarios and
for those of NMs and PIs classes. The rows of the table
report the results obtained when (12) and (13) are used
for computing the classification error. We can see that, in
both cases, the total number of correctly assigned scenarios
(irrespectively of being safe, failed, NMs, and PIs) exploiting
the locally weighted ensemble of SSSOMs increases with
respect to the stand-alone SSSOM(whose results are reported
in Table 7): this latter, in fact, scores a total amount of
78288 rightly assigned scenarios [14], while with the locally
weighted ensemble of SSSOMs, we achieve 84141 overall
correct assignments when the error is given by (12) and 81512
overall correct assignments when we resort to theManhattan
distance of (13) for computing the error.

If we, instead, focus on NMs and PIs classes, both ensem-
bles are penalized with respect to NMs and PIs classification
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Table 8: Locally weighted ensemble percentage classification result
using (12) and (13).

Approach Correctly assigned
Total NMs PIs

Locally weighted ensemble by
using (12) 83.71% 31.33% 73.33%

Locally weighted ensemble by
using (13) 81.1% 92.77% 85.56%

Table 9: Locally weighted ensemble performance parameters using
(12).

Ensemble (1) Safe Failed NMs PIs
Precision 0.9443 0.8162 0.0338 0.0186
Sensitivity 0.8453 0.8277 0.3133 0.7333
Specificity 0.9124 0.8958 0.9704 0.9653

Table 10: Locally weighted ensemble performance parameters using
(13).

Ensemble (2) Safe Failed NMs PIs
Precision 0.9488 0.8359 0.0437 0.0195
Sensitivity 0.8266 0.782 0.9277 0.8556
Specificity 0.9216 0.9142 0.9327 0.9615

(second and third column): the stand-alone SSSOM correctly
assigns 318 out of 332NMs and 82 out of 90 PIs (as reported in
Table 7). It is worth pointing out that, even if the ensembles
do not correctly classify all NMs and PIs scenarios, we can
consider these results satisfactory for the operational risk
quantification which the classification is aiming at contribut-
ing to (i.e., the consequences of the scenario occurring and to
its probability of occurrence): as already said, PIs normally
are made of many component failures but because of this
also have low probability of occurrence and, thus, the risk
that is not accounted for due to the misclassification of PI is
very low, whereas for the NMs those scenarios that are not
correctly classified are classified as either safe (with no extra
risk quantification being both safe and NMs leading to safe
states) or failed scenarios (with a conservative overestimation
of the system operational risk).

Table 8 reports the same results in terms of percentage of
correct assignment.

Looking at the two locally weighted ensembles, we can
say that the one based on the Manhattan distance is more
effective in the assignment of NMs and PIs than the other:
we see in fact that the percentage of correctly assigned NMs
is 31.33% when (12) is used and 92.77% when (13) is used,
whereas for PIs the percentage increases from 73.33% to
85.56% when the Manhattan distance is used. Even if (12)
is used, the percentage of correct assignment is larger than
when the Manhattan distance is used (83.71% versus 81.1%),
since NMs and PIs are the most safety relevant classes and,
thus, are those we have to guarantee to be better classified
during the postprocessing of dynamic scenarios.

Furthermore, Tables 9 and 10 list the precision, sensitivity,
and specificity values for the two ensembles for all the four

Table 11: Ensemble classification results.

Approach Correctly assigned
Total NMs PIs

Locally weighted ensemble by
using (12) 1673 2 9

Locally weighted ensemble by
using (13) 1599 8 11

classes. The best performances are obtained by using (13):
the precision is larger using (13) than (12) for all the four
classes and what we gain in terms of sensitivity in classifying
NMs and PIs scenarios and specificity in classifying safe and
failed scenarios justifies a negligible loss in terms of sensitivity
in classifying safe and failed scenarios and specificity in
classifying NMs and PIs scenarios. In fact,

(i) the specificity for NMs and PIs decreases (from
0.9704 to 0.9327 and from 0.9653 to 0.9615, respec-
tively);

(ii) the sensitivity for safe and failed scenarios decreases
(from 0.8453 to 0.8266 and from 0.8277 to 0.782,
respectively).

Using (13), we gain a consistent benefit; namely,

(i) the sensitivity for NMs and PIs increases (from 0.3133
to 0.9277 and from 0.7333 to 0.8556, respectively);

(ii) the specificity for safe and failed scenarios increases
(from 0.9124 to 0.9216 and from 0.8958 to 0.9142,
respectively).

In conclusion, it is possible to assert that the approach based
on (13) leads to superior results of classification.

4.1.2. Test of the Locally Weighted Ensemble of SSSOMs. We
test the locally weighted ensemble of SSSOMs approach
with a set of scenarios in which the time is not discretized
anymore, but it is continuous. A new set of input data 𝑋test
of 2000 scenarios have been generated, in which components
can fail randomly between 0 and themission time of 4000 (s).
Then, the trained classifiers are used to classify 𝑋test. In
Table 11, the results of the test conducted on the locally
weighted ensemble of SSSOMs are reported.

Within the set of the 2000 input data, there are 8 NMs
and 11 PIs. We can see in Table 11 that the test classification
results confirm the considerations made for the training.The
ensemble based on theManhattan distance ismore efficient in
the assignment ofNMs andPIs than the other, even if the total
correct assignment is larger for (12) than for (13): using (9) all
the NMs and PIs scenarios are correctly classified, whereas
only 2 NMs and 9 PIs are assigned to the right class, if (12) is
used.

4.2. Decision Tree Based on an Ensemble of SSSOMs. The
decision tree based classification scheme chooses one clas-
sifier (or ensemble of classifiers), depending on its local
performance of the test scenario considered (see Figure 4). In
this way, a test scenario with similar characteristics is treated
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Figure 4: Decision tree based classifier.

with the same classifier (or ensemble of classifiers) for which
the branch is most effective. A decision tree [29] is defined
as a classification procedure that recursively partitions the
scenarios into smaller subdivisions on the basis of a set of
rules defined at each branch. The tree is composed of a
root node (formed from all the input scenarios), a set of
internal nodes (splits), and a set of terminal nodes (leaves),
in which the scenarios are divided per groups with common
characteristics. In this framework, the scenarios are classified
by sequentially subdividing them according to the decision
framework defined by the tree, and a class label is assigned
to each scenario according to the leaf node into which the
scenario falls.

In the following, we describe the decision rules used for
the construction of the tree structure:

(i) If the stand-alone SSSOM classifies the scenario as
failed or PI, then we accept such classification. The
rationale is that as shownbefore in Figure 3 andTables
1–5, the stand-alone SSSOM is the best classifier of
failed and PI scenarios.

If the stand-alone SSSOM classifies the scenario as safe or
NM, we consider multiple classifiers, as the three objectives
(precision, sensitivity, and specificity) show a Pareto front
where two (or three) classifiers can provide equally plausible
classification results (see Tables 1–5). In this case, we aggre-
gate the classification outcomes of the classifiers on the Pareto
front, weighting them proportionally to the inverse distance
between the point in the space of the three objectives for the
specific classifier and the optimum, represented by the point
[1, 1, 1] in the same space: the lower the distance, the larger
the associated weight.

If the stand-alone SSSOM classifies the scenario as safe or
NM

(i) the scenario is assigned to the class given by the stand-
alone SSSOM with a distance < 0.1;

(ii) if the stand-alone distance is larger than 0.1, we
resort to the locally weighted ensemble of SSSOMs
(Section 4.1).

Table 12: Decision tree classification result using (12) and (13).

Approach Correctly assigned
Total NMs PIs

Decision tree using (12) 82520 104 82
Decision tree using (13) 80192 306 82

It is worth mentioning that the threshold distance is chosen
equal to 0.1 (i.e., a reasonably low error), because in such way
we would rely on the stand-alone SSSOM (for safe or NMs)
only if the assignment can be donewith large confidence (oth-
erwise, we resort to the locallyweighted ensemble of SSSOM).

4.2.1. Training of Decision Tree Based on an Ensemble of
SSSOMs. Table 12 shows the classification results for all
scenarios and for those of NMs and PIs classes. As for the
locally weighted ensemble of SSSOMs, we focus, in particular,
on these two classes, because these are the two more relevant
for quantifying the operational risk of the system. Both the
decision trees based on (12) and (13) overperform the classifi-
cation of the stand-alone SSSOM (whose results are reported
in Table 7): the approach that uses (12) scores 82520 correctly
assigned scenarios, whereas the approach based on (13)
scores 80192 correct assignments. As for the locally weighted
ensemble, both classifications are penalized with respect to
NMs if compared with the stand-alone SSSOM, because the
first approach based on (12) correctly classifies 104 NMs,
whereas the approach that uses (13) correctly classifies 306
NMs. The number of correctly classified PIs corresponds
to the number of the stand-alone SSSOM classified rightly,
because in the classification algorithmof the decision tree, the
classification of the PIs leans on the stand-alone SSSOM only.

Table 13 reports the classification result of the decision
tree in terms of percentages.

Looking at the two decision trees, the one based on the
Manhattan distance is more effective in the classification
of NMs than the other: we see in fact that the percentage
of correctly assigned NMs is 31.33% when (12) is used and
92.17% when (13) is used. The PIs have the same percentage
of correctly classified scenarios because they are assigned
with the same classifier (the stand-alone SSSOM). Using (12),
the percentage of correct assignment is larger than when the
Manhattan distance is used (82.1% versus 79.79%), but we
know that NMs and PIs are the most safety relevant classes
and, thus, are those we have to guarantee to be better classify
during the postprocessing of dynamic scenarios.

Tables 14 and 15 list the precision, sensitivity, and speci-
ficity values for the two decision trees for all the four
classes.The best performances are obtained by using (13): the
precision is larger using (13) than (12) for all the four classes
and, as for the locally weighted ensembles, what we lose in
terms of sensitivity in classifying safe and failed scenarios
and specificity in classifying NMs is justified by the growth
in terms of sensitivity in classifying NMs and specificity in
classifying safe and failed scenarios. In fact,

(i) the specificity for NMs decreases (from 0.9707 to
0.934);
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Table 13: Decision tree percentage classification results using (12)
and (13).

Approach Correctly assigned
Total NMs PIs

Decision tree using (12) 82.1% 31.33% 91.11%
Decision tree using (13) 79.79% 92.17% 91.11%

Table 14: Decision tree performance parameters using (12).

Decision tree (1) Safe Failed NMs PIs
Precision 0.9473 0.8087 0.0343 0.0158
Sensitivity 0.8216 0.8275 0.3133 0.911
Specificity 0.9197 0.891 0.9707 0.9492

Table 15: Decision tree performance parameters using (13).

Decision tree (2) Safe Failed NMs PIs
Precision 0.9498 0.8266 0.0442 0.0159
Sensitivity 0.8058 0.7824 0.9217 0.911
Specificity 0.9251 0.9083 0.934 0.9496

Table 16: Decision tree classification results.

Approach Correctly assigned
Total NMs PIs

Decision tree using (12) 1544 8 11
Decision tree using (13) 1537 8 11

(ii) the sensitivity for safe and failed scenarios decreases
(from 0.8216 to 0.8058 and from 0.8275 to 0.7824,
respectively).

Using (13),

(i) sensitivity for the NMs increases (from 0.3133 to
0.9217),

(ii) specificity for the safe and failed scenarios increases
(from 0.9197 to 0.9251 and from 0.891 to 0.9083,
respectively).

Also in this case we can say that the Manhattan approach
for the computation of the classification error (as in (13)) is
preferable.

4.2.2. Test of Decision Tree Based on an Ensemble of SSSOMs.
We test the decision tree based on an ensemble of SSSOMs
approach with the same set of scenarios in which the time
is continuous, as in Section 4.1.2. Table 16 shows the class-
ification results.

In this case, the two approaches (using (12) and (13))
lead to the same results of classification of NMs (as regards
PIs, it is obvious that the classification leads to the same
number of correctly classified scenarios, because only the
stand-alone SSSOM is used for the class assignment): this
can be due to the small number of scenarios used for the
test phase, if compared with the total number of scenarios

(𝑁 = 100509). Similarly to other cases, the total number
of correctly classified vectors is greater using (12) that scores
1544 correctly classified scenarios, than using (13) which
obtains 1537 right classifications. But since the NMs and the
PIs are the two classes for which we need to guarantee a good
classification for the quantification of the operational risk of
the system and considering the results of the training phase,
we can say that the approach that uses (13) is better than the
approach based on (12).

Both the locally weighted ensemble of SSSOMs and the
decision tree based on an ensemble of SSSOMs show better
performances when the classification error is computed with
(13), rather than with (12). This is due to the fact that (12)
smooths down the large errors of the classifier (e.g., using
(12) an error computed for a safe scenario (labeled with 1)
misclassified as NMs (labeled with 2) is equal to an error
computed for a safe scenario (labeled with 1) assigned to PIs
class (labeled with 4)).

In conclusion, we can assert that, between the decision
tree based on an ensemble of SSSOMs and the locally
weighted ensemble of SSSOMs (both based on (13)), the best
compromise choice falls on the former approach: indeed, it
can guarantee a very large overall correct assignment rate
(80192 out of 100509), a large number of NMs correctly
classified (306 out of 332 real NMs), and the largest number of
PIs assigned to the right class (82 out of 90 real PIs), whereas
the weighted ensemble of SSSOMs correctly classifies only 77
real PIs.

5. Conclusions

The postprocessing of IDPSA accidental scenarios of a
dynamic system is a fundamental task for retrieving safety
relevant information for the system operation and main-
tenance. In practice the task can be challenged by the
combinatorial explosion of the scenarios generated due to the
dynamic dependence of components failure events and the
consideration of timing and magnitudes of failure events in
the accidental scenarios generation.

In this paper, for UTSG scenario generation, a
SIMULINK dynamic simulation model has been used,
within aMVL scheme that describes the different component
operational states, and has presented two alternatives
strategies of scenario classification (i.e., the locally weighed
ensemble of SSSOMs and the decision tree based on an
ensemble of SSSOMs)with the twofold purpose of (1) leverag-
ing the classifiers complementary characteristics and (2)
boosting overall classification accuracy. In general terms, it
has been shown (in Section 3.1.6) that ensemble approach
can benefit from each independent classifier by capitalizing
(within either a locally weighted strategy or a decision tree
based strategy) their complementary characteristics. The
methodology highlights the need of taking into account
different classifiers to recover information that would have
been lost if neglected. Examples have been provided with
respect to the capability of the ensemble of SSSOMto improve
the classification of NMs and PIs, especially, accepting that
safe scenarios that do not cause a negative contribution to
system operational risk quantificationmight bemisclassified.
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Despite this, the overall classification accuracy improve-
ment has been demonstrated (from 78288 correct assign-
ments of the stand-alone SSSOM[14] tomore than 80000 cor-
rect assignments with the proposed SSSOM ensemble based
classification methods).

Appendix

The SSSOM Training

The SSSOM is a powerful visualization tool for high-dimen-
sional data, which are orderlymapped into a low-dimensional
structure that usually consists of a 2D regular grid of hexag-
onal nodes (neurons) that can vary from a few dozen up to
several thousand [30]. The SOM concentrates all the infor-
mation contained in a set of 𝑁 input samples 𝑋 belonging
to a 𝑑-dimensional space, say 𝑋 = [𝑋1, 𝑋2, . . . , 𝑋𝑁], where
the 𝑛th sample is 𝑋𝑛 = [𝑥1, 𝑥2, . . . , 𝑥𝑑], utilizing a set of𝑀
neurons, 𝐶 = [𝑐1, 𝑐2, . . . , 𝑐𝑀] (where𝑀 < 𝑁), each of which
is associated with a weight vector 𝑤𝑚 = [𝑤1, 𝑤2, . . . , 𝑤𝑑]
(also called “prototypes” or “codebook” vectors) [31, 32]. The
weights of each neuron 𝑤𝑚 are usually randomly initialized
between 0 and 1; then, their values are adjusted during a
training phase, so as to be able to optimally represent𝑋 and its
structure.The unsupervised SOM training mainly consists in
three phases: competition, cooperation, and adaptation [33].
Briefly the training phase entails a stimulus (i.e., any of the
input samples 𝑋𝑛 from 𝑋) to be presented to the network
and the neurons competition so as to identify which is the
Best Matching Unit (BMU) that is the most similar to 𝑋𝑛
in terms of its weight values. Then, a subset of the neigh-
borhood neurons to the BMU are modified by a neighbor-
hood function. Figuratively, the region around the BMU is
stretched towards the stimulus. As a result, the neurons on
the grid become ordered: neighboring neurons tend to have
similar weight vectors.

Competitive Process. The SOM is trained iteratively: for each
training step 𝑡, one sample vector 𝑋𝑛 is chosen randomly
from the 𝑁 available input data set 𝑋 and the distance
between it and all the weight vectors of the SOM is calculated
using some distance measure. The neuron 𝑐𝑖 whose weight
vector 𝑤𝑖 is closest to the input vector 𝑋𝑛 is called Best
Matching Unit (BMU):

𝑐𝑖 = arg {min {󵄩󵄩󵄩󵄩󵄩𝑋𝑛 − 𝑤𝑚󵄩󵄩󵄩󵄩󵄩}} with 𝑚 = 1, . . . ,𝑀, (A.1)

where 𝑐𝑖 is the BMU and ‖⋅‖ is the distancemeasure (typically
Euclidean, but also Binary [Appiah et al., 2009] or, as original
in this work, Manhattan).

Cooperation Process. Once 𝑐𝑖 is found, its weights vector 𝑤𝑖 is
updated proportionally to the difference between 𝑤𝑖 and the
values of 𝑋𝑛, accounting also for the characteristics of the
neighborhing neurons of the BMU (i.e., BMU and neighbors
tightly cooperate to form a specific pattern on the lattice)
[11, 34].

Adaptation Process. The tuning function that updates 𝑤𝑖 is
𝑤𝑖 (𝑡 + 1)
= 𝑤𝑖 (𝑡)
+ 𝛼 (𝑡) (1 − 𝑑𝑚𝑖

𝑑max + 1) [𝑋𝑛 (𝑡) − 𝑤𝑖 (𝑡)] ,
(A.2)

where 𝛼 is the learning rate, 𝑑max is the size of the neigh-
borhood radius, which decreases during the training phase,
and 𝑑𝑚𝑖 is the topological distance defined as the number
of neurons that separates the considered 𝑚th neuron and
the winning neuron 𝑐𝑖. The learning rate changes during the
training phase, as in the following equation [31]:

𝛼 (𝑡) = (𝛼start − 𝛼final) (1 − 𝑡
𝑡tot) + 𝛼

final, (A.3)

where 𝑡tot is the total number of training epochs and 𝛼start
and 𝛼final are the learning rate at the beginning and end of
the training, usually in [0.1, 0.9] and in [0, 𝛼start], respectively
[31]. The training is usually performed in two phases: in
the first phase, relatively large initial learning rate 𝛼start and
neighborhood radius 𝑑max are used; in the second phase both
learning rate and neighborhood radius are small right from
the beginning.This procedure corresponds to first tuning the
SOM approximately to the same space as the input data and,
then, fine-tuning the map.

An additional input parameter to be set is the number of
neurons𝑀 composing the map: this is usually set equal to

𝑀 = 5 ⋅ √𝑁. (A.4)

Since different parameters and initializations give rise to
different maps, it is important to know whether the map has
properly adapted itself to the training data [35]. Two com-
monly used quality measures that can be used to determine
the quality of the map and help choosing suitable learning
parameters and map sizes are the MQE and the Topographic
Error (TE).

MQE is a measure of how good the map can fit the
input data, and the best map is expected to yield the smallest
average quantization error between theBMU𝑤𝑖 and the input
data𝑋𝑛. MQE is calculated with the following equation:

MQE = 1𝑁
𝑁

∑
𝑛=1

󵄩󵄩󵄩󵄩󵄩𝑋𝑛 − 𝑤𝑖󵄩󵄩󵄩󵄩󵄩 , (A.5)

where𝑁 is the number of the input data used to train themap.
Practically, the lower the MQE, the better the map.

TE measures how well the topology is preserved by the
map. Unlike the MQE, it considers the structure of the map.
For each input data, the distance of the BMU and the second
BMU (the second weight vector closer to the input data)
on the map is considered; if the nodes are not neighbors,
then, the topology is not preserved. TE is computed with the
following equation:

TE = 1𝑁∑
𝑘=1

𝑁 ⋅ 𝑢 (𝑋𝑘) , (A.6)
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where 𝑁 is the number of input data used to train the map
and 𝑢(𝑋𝑘) is 1 if the first and second BMUof𝑋𝑘 are not direct
neighbors of each other, or 𝑢(𝑋𝑘) is 0, otherwise.

In supervised training we consider again a set of𝑁 input
data 𝑋 = [𝑋1, 𝑋2, . . . , 𝑋𝑁],𝑀 neurons 𝐶 = [𝑐1, 𝑐2, . . . , 𝑐𝑀],
and weight vectors 𝑤𝑚 = [𝑤1, 𝑤2, . . . , 𝑤𝑑] associated with
them. This time we add in input 𝑌 = [𝑦1, 𝑦2, . . . , 𝑦𝑁], called
class vector and representing the 𝐺 classes of each 𝑛th
input data. The training is still based on the three phases of
competition, cooperation, and adaptation but in SSSOM the
algorithm differs from the USOM one, since the fused sim-
ilarity measure is based on weighted combination distances
between an object (vector) 𝑋𝑛 and all units in the 𝑋 map
(𝑆(𝑋,𝑋map)) and the distances between the corresponding
output object 𝑦𝑛 and the units in the 𝑌 map (𝑆(𝑌, 𝑌map)).
By 𝑆Fused(𝑛,𝑚) a common winning unit for both maps is
determined:

𝑆Fused (𝑛,𝑚) = 𝜀 (𝑡) 𝑆 (𝑋𝑛, 𝑋map𝑚)
+ (1 − 𝜀 (𝑡)) 𝑆 (𝑌𝑛, 𝑌map𝑚) .

(A.7)

The location of the minimum of the above function is the
commonwinning unit 𝑐𝑖 and 𝜀(𝑡) regulates the relative weight
between similarities in the 𝑋 and 𝑌 maps, and it is still
dependent on the number of training epochs, decreasing
linearly during the training.
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