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Verification of the compliance to planetary protection requirements is an important task of interplanetary mission 

design, aiming to reduce the risk of biological contamination of scientifically interesting celestial bodies. This kind 

of analysis requires efficient and reliable numerical tools to propagate uncertainties over times up to 100 years with 

high precision. This paper presents a plan to improve the techniques used for planetary protection analysis in the 

SNAPPshot numerical tool developed at the University of Southampton for an ESA study. The Line Sampling 

method is presented as an alternative Monte Carlo approach to sample more efficiently the initial uncertainties, 

reducing the computational effort to estimate the probability of impact between uncontrolled objects and a celestial 

body. Symplectic integration methods are introduced as a strategy to obtain a more accurate propagation of the 

spacecraft trajectory starting from the initial conditions, thanks to their formulation that includes the conservation 

of total energy. Preliminary results are included to show the advantages and the current limitations of the proposed 

approaches. 

I. INTRODUCTION 

I.I. Planetary protection 

At the injection from Earth of an interplanetary 

mission, the upper stage of the launcher that inserted the 

spacecraft into the transfer orbit also leaves the Earth’s 

sphere of influence. These artificial bodies then follow 

their trajectories without the possibility to be observed or 

controlled, with the chance of impacting other planets or 

moons. These events represent a risk for scientific research, 

as many celestial bodies in our Solar System are highly 

valued targets for biological studies, presenting 

environmental conditions that may support microbial life. 

An impact from a non-sterilized man-made object could 

lead to contamination with Earth-based microorganisms, 

thus making worthless any data that could be collected in 

the search for extra-terrestrial life. 

To protect other planets and moons from risks of 

contamination, each interplanetary mission must be 

compliant to planetary protection requirements, which set 

a maximum acceptable limit to the impact probability 

between debris from space missions with any celestial 

body [1]. These requirements do not only affect launchers, 

but also spacecraft at the end of their missions, or after they 

have become uncontrollable following a failure of a core 

subsystem.  

Planetary protection accounts for such random events, 

alongside the uncertainty over the initial orbital state of the 

launcher or spacecraft (due to measurements errors during 

observation, or to misfiring of the propulsion system 

during the initial manoeuvres). These uncertainties evolve 

over time, making difficult to predict the actual position of 

the launcher or debris over periods up to 100 years, and 

whether an impact with a sensitive target will occur or not 

[2][3]. For these reasons, planetary protection 

requirements must be verified during the design of the 

space mission, affecting the final results of the mission 

analysis phases. Past work at the University of 

Southampton has developed the SNAPPshot for 

verification of planetary protection analysis of ESA 

missions [4][5][6]. The software written in modern Fortran 

propagates a set of initial condition deriving from a 

distribution function for a given amount of time through a 

Monte Carlo approach and computes the probability of 

impact with target planets with a given level of confidence. 

The initial distribution can represent a failure in the 

propulsion system, a distribution in are-to-mass of the 

satellite, or the covariance matrix representative of the 

launcher injection error. 

Planetary protection verification requires precise, 

reliable and efficient numerical instruments and efficient 

techniques for uncertainty propagation. This paper presents 
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a strategy for improving the accuracy and the accuracy and 

the efficiency of the planetary protection analysis, acting in 

two different directions: one side is represented by the 

numerical integration, in order to understand how the 

errors in a single propagation affect the overall verification 

of the planetary protection requirements; on the other side, 

there is the sampling of the uncertainties, in order to 

analyse more efficient methods to sample the initial 

dispersion. 

I.II. Proposed approach 

The starting point for this research is the SNAPPshot 

tool suite for the verification of the compliance to planetary 

protection requirements developed at the University of 

Southampton in the framework of a study for the European 

Space Agency (ESA) [4][5][6]. The tool follows a Monte 

Carlo approach, where the initial uncertainty (over the state 

or other design parameters of the spacecraft or launcher) is 

sampled into many initial conditions, that are then 

propagated in order to estimate the probability of impact 

(or orbital resonance) with other celestial bodies. The 

propagations are carried out with the use of high-order 

Runge-Kutta methods, with different possible ways to 

adapt the time-step. Other functionalities are available for 

post-processing the trajectories, but are not treated in this 

work. 

This paper proposes a different approach to improve 

numerical propagation and probability sampling in 

planetary protection analysis. An improved accuracy of the 

numerical solution and a qualitative behaviour closer to the 

actual evolution of the dynamic system can be obtained by 

introducing symplectic integration methods [7]. These, 

which include conservation of prime integrals in their 

definition, and additional energy-preserving schemes, in 

order to counteract the accumulation of numerical error in 

long-term propagations that may make the representation 

of the spacecraft state unreliable, especially with strongly 

non-linear dynamics. Impact probability is instead 

estimated with the use of Line Sampling [8], by solving a 

lower number of one-dimensional integrals along a 

reference direction pointing toward the impact region of 

the uncertainty domain; this reduces the overall 

computational cost of standard Monte Carlo Simulation 

methods, which require a very high number of input 

samples to obtain robust estimation of impact probability. 

These two approaches to planetary protection analysis 

will be explained, and applied to different cases to show 

their performance in terms of accuracy and computational 

cost. In the current development, these two parts are still 

addressed separately. Some study cases are chosen among 

the ones already considered in [4], to perform a comparison 

with some reference results. 

The paper is organised as follows: Section II is devoted 

to the explanation of the Line Sampling method, 

accompanied by some examples showing the advantages 

and limitations with respect to a standard Monte Carlo 

approach; Section III contains a review of the integration 

methods that were considered in this paper, tested in a 

reference propagation to show how symplectic methods 

work; Section IV presents the application of the numerical 

methods previously introduced to interplanetary missions 

that require an analysis of their compliance to planetary 

protection requirements; finally, Section V will summarise 

the main results and present some of the objectives for 

continuing this work in the future. 

II. SAMPLING TECHNIQUES 

II.I. Line Sampling 

The Line Sampling (LS) method was originally 

developed as a MC approach for the reliability analysis of 

complex structural systems with small failure probabilities 

[9]. It has been adapted for planetary protection analysis, 

and can be applied in general to the estimation of impact 

probability of small objects (asteroids or space debris) with 

major celestial bodies (regarding this topic, a comparison 

between the LS and Subset Simulation methods was made 

in [10]). The main feature of this method is the analytical 

estimation of the probability, obtained by reducing the 

multi-dimensional integration problem across the 

uncertainty domain to many one-dimensional problems 

along lines following a reference direction; this direction is 

determined so that it points toward the impact region of the 

domain, and, if this is properly chosen, the method can 

considerably reduce the number of required system 

simulations with respect to a standard MC. 

The LS method follows four steps: 1) the determination 

of the reference direction; 2) the mapping of random 

samples from the physical coordinate space into a 

normalised standard space; 3) the probing of the impact 

region along the lines following the reference direction α; 

4) the estimation of the impact probability. A summary of 

each step will be given to give a general overview of the 

LS technique, along with an introduction to the choices that 

were made in its numerical implementation. 

Determination of the reference direction 

There are different options to determine the reference 

direction [9]. For this work, it was chosen to determine it 
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as a normalised “centre of mass” of the impact subdomain. 

This region was approximated by applying the Metropolis-

Hastings algorithm to generate a Markov Chain lying 

entirely in the impact domain (Markov Chain Monte Carlo 

simulation is a method for generating samples conditional 

on a region satisfying a given condition, according to any 

given probability distribution), starting from an initial 

condition in the impact subdomain [9]. In the current 

implementation, this starting condition is found with an 

optimisation process aimed to minimise the minimum 

distance from the target body. The α direction is then 

computed in the standard normal space, as  

 
1

1 S
uN

u

us
N 

 
θ

α
θ

  (1) 

Where , 1, ...,
u

S
u Nθ represent the points of the 

Markov’s chain made of NS samples converted into the 

standard normal space. The choice of performing a 

Markov’s chain of course implies the need to perform 

additional simulations increasing the computational effort 

required by the method, but this ensures that a good 

coverage of the impact region is obtained. 

Mapping onto the standard normal space 

Once a reference direction is determined, a new set of 

NT random samples is generated, then mapped into the 

standard normal space. This transformation is a significant 

step, especially for problems with high-dimensionality, as 

each component , 1, ...,j j n   of the new parameter 

vector 
n

θ , to which 
n

x  is mapped, is associated 

with a standard normal distribution. The joint Probability 

Density Function (PDF) of those random parameters is, 

then 
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where ϕj indicates the PDF associated with the j-th 

component of θ: 
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This allow a simplification of the computation of the 

impact probability later in the procedure, as it reduces the 

problem to a series of one-dimensional computations, that 

can be carried out analytically. The direct and the inverse 

transformations, from the physical domain to the 

standardised one and vice versa respectively, preserve the 

Cumulative Distribution Function (CDF) between the two 

coordinate spaces, and are defined as: 

 ( ) F( ), 1, 2, ,
k k

T
k N  θ x   (4) 
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k k
 θ x   (5) 
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k k
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with Φ and F being the CDF of, respectively, the unit 

Gaussian distribution and the input uncertainty distribution 

of the problem. For this work, Rosenblatt’s transformation 

was applied [11]; in the case of a Gaussian distribution in 

the uncertainty parameters (as in the cases under study, see 

Section 0), both the direct and the inverse transformations 

(respectively equations (5) and (6) become linear [9][11]. 

Line Sampling 

Once the reference direction is defined, for every 

random sample , 1, ...,
k

T
k Nθ  a line parallel to α is 

defined in the standard normal space according to the 

parameter ck, such that 

 
k k k

c


 θ α θ   (7) 

 ,
k k k


 θ θ θ α α   (8) 

This reformulates the problem as a series of one-

dimensional problems associated with each sample, by 

exploiting the property that ck is also normally distributed 

in the standard space. The standard domain is then explored 

along each line following the α direction by evaluating a 

performance function for different values of ck, in order to 

identify the intersections between the line and the impact 

subdomain, with the corresponding values of ck. The 

minimum distance from the planet of interest during the 

propagation is chosen as a performance function in this 

work. Due to the nature of the problem under analysis, two 

intersections with the impact region are found when 

considering a single close approach in a given event 

window, with two limit values 
1 2

( , )
k k

c c . For this reason, 

and also due to the non-linear nature of the performance 

function, an iterative process (i.e. numerical Newton 

iterations) was used to identify both values, thus requiring 

more than one value of ck to be evaluated for each case, 

with a subsequent reduction of the efficiency of this 

method. 

Estimation of the impact probability 

Once all 
1 2

( , )
k k

c c  are known, a conditional impact 

probability given by the unit Gaussian CDF is associated 

to each random initial condition as 
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The total impact probability and variance are then 

approximated by 
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III. NUMERICAL INTEGRATION 

III.I. Equations and constants of motion 

The integrations of the equations of motion are carried 

out using Cartesian coordinates in the J2000 reference 

frame centred in the solar system barycentre. Non-

dimensional variables are used, obtained by dividing, 

respectively, distance and time by 

 
3

, 2
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L AU t AU      (12) 

where 
Sun

  is the gravitational constant of the Sun. The 

trajectory is propagated under the effect of gravitational 

forces of the Sun and all the planetary systems considered 

with their barycentre, except for the Earth and the Moon, 

considered as separate bodies. No additional perturbations 

such as solar radiation pressure and relativistic effects were 

included. Cartesian coordinates allow a Hamiltonian 

formulation of the problem (see paragraph III.II). 

In the restricted N-body problem (RNBP), the overall 

gravitational acceleration is obtained from: 
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where rj represents the position vector of the j-th planet 

in barycentric coordinates (with j=0 indicating the Sun or, 

in general, the main attractor). Using Cartesian 

coordinates, a Hamiltonian formulation of the problem is 

possible, and the Hamiltonian function can be seen as the 

total energy of the two-body problem perturbed by the 

gravitational effects due to the N planets: 
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It must be said that the Hamiltonian is not a true 

constant of the dynamics, as it depends on time explicitly 

(that is, it is non-autonomous) so that 

H Hd dt t     . To obtain a true first integral of 

motion, the problem is reformulated in such a way the 

Hamiltonian does not explicitly depend on time: a new 

independent variable s is introduced to write the time t as 

an additional state coordinate ( )t s  with its own 

conjugate momentum u(s) [12]. The new Hamiltonian is 

thus written as 

 K( , , , ) H( , , )u t u  r v r v    (15) 

The new Hamiltonian is not time-dependent anymore; 

the equations describing the state of the system maintain 

the same form: 
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while two new equations are added: 
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Eq. (17)  do not affect the numerical integration, as the 

state of the system is independent from them, resulting in 
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This operation has two main advantages: first, a true 

constant of motion is defined, resulting that 

K( , , , ) H( , , ) H( ) 0u t t   r v r v ; second, the 

Hamiltonian form of the problem is recovered. 

III.II. Symplectic methods 

The evolution of an autonomous (time-independent) 

Hamiltonian system with n degrees of freedom can be 

described by the Hamiltonian function H( , )q p , where 

coordinates q and their conjugate momenta p are a set of 

canonical variables, thought the equations 

 
H H
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j j

q p j n
p q
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  (19) 

From these, the flow 
H

t
  can be defined over the domain 

Ω in the phase space such that 
H

t 0 0
( , ) ( , ) q p q p . The 

flow 
H

t
  is a symplectic transformation if it preserves the 

differential two-form   dp dq  over Ω, meaning that 

the sum of the oriented two-dimensional volumes over the 

phase space is conserved in time. Many properties of 

Hamiltonian systems derive from the symplectic nature of 

the dynamic flow [13]. One of these properties is the 
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conservation of autonomous Hamiltonian functions in 

time, that is    0 0H H, ,q p q p . 

A one-step numerical integrator is in general non-

symplectic, as its map 
H

h
  in the phase space only 

approximates the real flow of the dynamics while 

advancing from one time step 
n

t  to the next 
1n n

t t h

   

as 
H

h1 1( , ) ( , )n n n n   q p q p . However, this 

approximation can be symplectic if it maintains the 

canonical structure of the dynamics between successive 

iterations, and differs from the exact one up to an order r: 
H H 1

h h
O( )

r
h


    . In this case, the numerical method is 

said of r-th order, and preserves the value of the 

Hamiltonian function within that accuracy. 

In the following subsections, a general explanation of 

the methods that were selected for this work is presented. 

Table 1 reports a selection of integration methods that have 

been compared in different cases of orbital propagation. As 

the considered symplectic methods are all defined in a 

fixed-step formulation, the 8th order fixed-step RK scheme 

is used as a reference. The chosen methods are also tested 

with a regularisation of the time step according to the 

dynamics, following the approach already implemented in 

SNAPPshot (see Debatin et al. 1986 in [4]); in this case, 

the propagation is performed also using the adaptive step 

RK8(7) method [14].  

Explicit and implicit Runge-Kutta methods 

One-step RK schemes with s stages can become 

symplectic when applied to Hamiltonian dynamics if the 

coefficients of the Butcher’s tableau ( , , )A b c  satisfy the 

symmetric relation [15]: 

0 , 1,...,
ij i ij j ji i j

m b a b a b b i j s     
  (20) 

In this way, the value of the Hamiltonian function will 

remain bounded during the integration, instead of 

presenting fictitious energy dissipation. However, the 

relation in Eq. (20) implies that explicit schemes cannot be 

symplectic without having all b coefficients equal to zero. 

A class of symplectic implicit RK methods is 

represented by collocation methods. In particular, those 

derived from Gauss-Legendre quadrature coefficients 

(indicated as GLRK in Table 1) were selected for this 

work. These schemes are particularly efficient for orbital 

propagation, since they are A-stable at all orders, thus 

allowing larger time steps with lower error, and GLRK 

methods using s stages yield a solution of order p=2s [16]. 

However, implicit methods require the resolution at every 

step of a system of non-linear implicit equations, which can 

be done with the use of Newton or fixed-point iterations 

[16], with the consequence that the accuracy of this 

iterative process will affect also the accuracy of the 

propagation. The first option was chosen in the 

implementation of the method for this work.  

Runge-Kutta-Nyström methods 

RKN schemes are Partitioned RK methods, which are 

formulated to be applied to problems presenting a 

separable Hamiltonian function in the form [17]  
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T
  r v v r v v v   (21) 

where the potential contribution V is function of the 

coordinate variables r (Cartesian position vector) only and 

the kinetic contribution T is function of the associated 

momenta v (Cartesian velocity vector) only, with the 

equations of motion taking the form 
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This kind of methods use two different sets of 

coefficients to integrate separately the coordinates and the 

momenta. For the integration step of length h 
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with a Butcher’s tableau ( , , , )A b d c , where b are the 

coefficients used for the coordinates, and d the coefficients 

for the momenta. 

In the case of RKN methods, also explicit schemes can 

be symplectic, and embedded adaptive schemes are 

possible [18]. To be symplectic, an s-stage explicit scheme 

with Butcher’s tableau ( , , , )A b d c  must satisfy the 

relations [17]  

 
(1 ), 1, ...,

( ) ( ), , 1, ...,

i i i

i j ij j i ji

b d c i s

d b a d b a i j s

  
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Methods derived from Hamiltonian formulation 

Some numerical integration methods can be obtained 

directly from the Hamiltonian formulation of the problem, 

through subsequent canonical transformations. The 

methods so derived are symplectic, meaning that the 
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truncation error in the total energy has no secular 

component, thus conserving the total energy exactly up to 

a certain order of accuracy [19]. These are, however, fixed-

step methods, and any kind of variation of the step size 

during the integration generally breaks down the 

conservation properties. 

In this work, the Yoshida integrator presented in [20] in 

the separable Hamiltonian was considered (SY in Table 1). 

Given the initial state 
0 0 0

( , )x r v  at time t0, the n-th 

order solution at time t0+h is given as a product of 

elementary symplectic mappings of lower order: 

 0

1
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k

i T i V

i

h c hD d hD
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
 
  
x x   (25) 

where DT and DV are differential operators associated with 

the kinetic and potential terms of the Hamiltonian. The map 

in Eq. (25) gives a succession of k explicit mappings: 
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with ( , )
k k k
x r v  being the solution at time step t0+h. 

III.III. Other numerical techniques 

Step regularisation 

As for the integrators already implemented in 

SNAPPshot [4], in this work a possible way to control the 

step size was implemented following Debatin’s approach 

[21], which rescales the step according to the Jacobian 

matrix of the equations of motion, approximated through 

its maximum eigenvalue. However, one should consider 

that symplectic methods with a fixed-step formulation 

suffer from any variation of the time step for a symplectic 

method, losing their conservation properties and showing 

drift in the first integrals of motion. 

Projection methods 

Projection methods are numerical techniques that 

correct the solution obtained with other integrators to 

minimize the integration error on a given first integral of 

the dynamics (e.g. the total energy of the system). In this 

way, a solution closer to the physical behaviour of the 

system is obtained [7]. 

Given an arbitrary one-step method 
h

  such that 

1 h
( )

n n
 x x , where x represents the state vector, and 

given a quantity I( )x   that conserves during the 

propagation, generally the solution given by the method do 

not satisfies the relation 
1

I( ) I( )
n n

x x . A new solution 

1n
x  such that 

1
I( ) I( )

n n
x x  can be obtained by solving a 

constrained minimisation problem considering the 

Lagrange function 
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with 
0

g( ) I( ) I( ) x x x  being the constraint vector 

function, and λ a vector of Lagrange multipliers. This leads 

to a simplified expression 

 
1 1 1

1

g( )

g( ) 0

T

n n y n

n


  



  



x x x

x
   

 (28) 

The second relation is a non-linear system of algebraic 

equations with λ unknown, which can be easily solved via 

Newton iterations: 

   
1

1 1 1 1

1

'( ) '( ) '( )
T T

i n n n n i

i i i

g g g g 

  



   



   

  

x x x x
  (29) 

Fly-by detection 

Symplectic methods can achieve conservation of the 

total energy (as value of the Hamiltonian function) over 

long integration times. This is true in those cases when the 

dynamics is regular and non-chaotic during the 

propagation. However, close approaches with planets, 

especially very close fly-bys, represent conditions when 

the non-linearity of the dynamics drastically increases the 

numerical error on the solution, visible as a steep growth 

of position and velocity errors from the reference values, 

and of the total energy from the initial value. This generally 

affects any numerical fixed- or variable-step method. 

This kind of problem has been addressed before by 

many authors, who devised different approaches to 

overcome or bypass the numerical effects of the fly-bys, by 

applying ad hoc numerical techniques only during a close 

approach (e.g. switching the primary body of the 

propagation from the main attractor to the approaching 

planet [22], or applying the projection technique in order 

to impose the conservation of energy). 

Any solution, however, requires a correct identification 

of the close approach or fly-by conditions to counteract the 

increase of numerical errors in an effective way, following 

criteria that should be evaluated automatically during the 

integration. Again, different are the possible solution to 

accomplish this task (e.g. setting a limit distance from the 

approaching planet). In this work, another approach is 
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proposed, which considers the behaviour of the dynamics 

as criterion to define a close approach. 

Given the equations of motion, the Jacobian matrix is 

defined as 

  
d

d
 

 
 
 

0 If
J

G 0x
   (30) 

where x is the state vector, containing position and velocity 

vectors r and v), I is the identity matrix and G results from 

the derivation of the gravitational terms defined in equation  

(13): 

 
0

N

j

j



  


 
 
 
  


r

G G
r

  (31) 

where the index j=0 corresponds to the main attractor of 

the system. The set of eigenvalues of the complete Jacobian 

are given by 

 
2

det( ) det( )     GI I G I    (32) 

with Λ being the eigenvalue with the maximum absolute 

value. In this case, only the contributions to the Jacobian 

given by each planet alone are considered: 

 2
det( ), 1, ...,j j j N   G I    (33) 

with λj
2 being the set of eigenvalues given by the 

contribution of j-th planet, and Λj the maximum eigenvalue 

of such set (it is clear that 
2 2

jj
  ). It can be found that 

 
3

2
j

j

j


 

r r

     (34) 

As a first criterion, the value of the eigenvalue 

contributions given by the single planets are compared with 

the one given by the main attractor (the Sun in the case of 

an interplanetary trajectory), with the fly-by event being 

identified when the ratio between the two reaches a given 

threshold, as shown in Fig. 1a. This definition of close 

approach is similar to the definition of SOI, as it considers 

the ratio between the accelerations of the approaching 

planet and the Sun. Fig. 1b also shows that the value of the 

eigenvalue defined in (34) presents a very high rate of 

variation during the fly-by, which starts increasing 

significantly earlier in time. For this reason, not only the 

value of the eigenvalue is considered, but also its time 

derivative, defined as 

 
   

5

3
2

T

j j

j j

j


 

 



r r v v

r r
   (35) 

A second criterion is thus defined, which also considers the 

ratio between the time derivatives of the eigenvalues of the 

single planets over the one of the main attractor. In this 

way, also the information of the approach speed is used in 

defining when a close approach occurs. 

To summarise, two criteria have been considered to 

identify the fly-by condition during the integration: 

 
0 1

0 2

j

j





  

  
     (36) 

These can be evaluated separately or combined. 

 

 

Method Order Stages Type Time step Property Reference 

RK 

4 

8 

4 

13 
Explicit Fixed step   Dormand and Prince, 1978 [23] 

Dormand and Prince, 1980 [24] 

Prince and Dormand, 1981 [25] 
5(4) 

8(7) 

7 

13 
Explicit Adaptive step  

GLRK 

4 

6 

8 

2 

3 

4 

Implicit Fixed step Symplectic 

Jones et al., 2012 [16] 

Aristoff et al., 2012 [26] 

Butcher, 1964 [27] 

RKN 
6 

8 

6 

26 
Explicit Fixed step Symplectic 

Calvo et al., 1993 [17] 

Dormand et al., 1987 [18] 

SY 

4 

6 

8 

4 

8 

16 

Explicit Fixed step Symplectic, canonical 
Yoshida et al., 1990 [20] 

Neri, 1988 [28] 

Table 1 - Selection of integration methods that were studied and implemented. 
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a)  

b)  

Fig. 1- Variation in time of the eigenvalues 

corresponding to the single contribution of the 

Earth and of the Sun during the propagation of 

Apophis from 1989 to 2039: a) values of the 

eigenvalues according to eq. (34); b) time variation 

of the eigenvalues according to eq. (35). 

 

IV. RESULTS 

IV.I. Application of LS 

Three cases are considered to show a preliminary 

application of Line Sampling for the estimation of impact 

probability in a short time window: the launcher upper 

stage of Solo (which is analysed in detail in subsection 

IV.III), asteroid 2010 RF12 and asteroid Apophis (which 

are treated in this subsection). These three examples were 

chosen purposely to show how LS performs when different 

levels of impact probability are expected. 

2010 RF12 is a small Near Earth Asteroid (NEA) that 

currently has the highest probability of hitting the Earth 

(around 6%) during a close fly-by in 2095; this event was 

chosen a test case due to the high expected impact 

probability, but the crossing of Low Earth Orbit (LEO, 

                                                           

 
1http://newton.dm.unipi.it/neodys 

considered under 2000 km from Earth’s surface) was 

considered instead of a surface impact for computational 

reasons. The last case studies well-known asteroid 

Apophis, whose orbit may impact with Earth in 2036 

depending on the uncertainty given by the observations in 

2009; this event was chosen as a test case as more 

challenging for the application of LS, however the crossing 

of the geostationary (GEO) region was considered for 

computational reasons. In both cases, initial conditions 

were expressed in equinoctial parameters, with initial 

uncertainties in the form of diagonal covariance matrices, 

and then transformed into Cartesian coordinates for the 

propagation. These data were obtained by accessing the 

Near Earth Object Dynamic Site1. 

The comparison between the standard Monte Carlo 

method and LS is performed by analysing the following 

parameters: the number of initial random samples NS  

(equal to the number of lines in the LS); the total number 

of orbital propagations NP  (larger than NS for LS due to the 

iterative procedure that was used, and the preliminary 

propagations for the Markov Chain); the impact probability 

estimate ˆ( )P I ; the sample standard deviation ̂  of ˆ( )P I

; the coefficient of variation δ of the probability estimate, 

defined as the ratio of ̂  over ˆ( )P I ; the Figure of Merit 

(FOM) of the method, defined as 
2

ˆ1 ( )
P

N  . The 

computational time was not considered due to the nature of 

the numerical integration and of the machine, and the 

number of simulations was preferred instead as reference 

parameter. The standard deviation and the coefficient of 

variation are used as indicators of the accuracy of the 

result, with lower values corresponding to lower variability 

of the result, while the FOM represents the efficiency of 

the method, with high desirable values [9]. 

http://newton.dm.unipi.it/neodys
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a)  

b)  

Fig. 2 - Visualisation of the initial dispersion in the 

uncertainty space (δa,δl)  in the case of asteroid 

2010 RF12: a) subdomain for LEO crossing found 

via standard MC, b) boudaries of the subdomain 

identified via LS. 

 MCS LS (σMC) LS (NP
MC) LS (NS

MC) 

NS 1e4 1e3 1.6e3 1e4 

NP 1e4 ~6e3 ~1e4 ~6e4 

P̂(I)  7.07e-2 7.29e-2 7.28e-2 7.23e-2 

σ̂  2.56e-3 1.13e-3 8.24e-4 2.79e-4 

δ 2.76e1 1.56e-2 1.13e-2 3.87e-3 

FOM 15.22 122.7 147.64 212.52 

Table 2 - Application of Line Sampling to the case of 

asteroid 2010RF12 against the standard Monte 

Carlo Simulation. 

Fig. 2 and Fig. 3 show the dispersions of the initial 

conditions obtained by random sampling from the given 

distributions in the three cases. In every plot, grey dots 

represent the initial conditions that don’t lead to an impact 

with the considered body, red dots the starting conditions 

that evolve in an impact identified through standard MC, 

while green dots represent the initial conditions at along the 

boundaries of the impact regions resulting from the LS 

application. In both figures, the dispersion is represented in 

terms of deviation of semi-major axis and equinoctial 

longitude from the nominal initial conditions. 

All the propagations were carried out in dimensionless 

units (see ref. (12)  paragraph III.I) using the adaptive 

Prince-Dormand RK8(7), with a relative tolerance of 10-12. 

Table 2 and Table 3 reports the results obtained in the 

cases of the asteroids with standard MC and LS, which in 

these cases was evaluated in three conditions, shown in the 

last three columns of the tables: in the first case a number 

the number of initial conditions was chosen in order to have 

comparable confidence levels (as values of ̂ ) between 

the two methods; in the second case the evaluation of the 

lines was stopped once the same number of orbital 

propagations NP as the MC was reached; in the last case the 

same number of initial conditions and lines NS was used 

across the two methods. The results show that, for both of 

the analysed examples, LS can be more efficient than the 

standard MC in estimating impact probability for the same 

confidence level (with fewer orbital propagations), and 

more accurate for the same number of initial samples (a 

lower value of variance), with generally lower values of δ 

and high values of the FOM, thanks to the analytical 

evaluations along each line (see expression (9)) which can 

compensate the use of extra evaluations employed by the 

LS in the iterative process. Moreover, by comparing the 

numerical results in the two tables one can observe that in 

the case of Apophis the FOM is much higher, confirming 

that LS becomes more convenient as the probability level 

decreases [9]. 

 

 MCS LS (σMC) LS (NP
MC) LS (NS

MC) 

NS 1e6 1e4 1e5 1.5e5* 

NP 1e6 ~1e5 ~1e6 ~1.5e6 

P̂(I)  4.70e-5 5.38e-2 5.32e-5 5.33e-5 

σ̂  6.86e-6 1.18e-6 3.45e-7 2.87e-7 

δ 6.85e0 2.18e-2 6.48e-3 5.39e-3 

FOM 2.13e4 7.21e6 8.46e6 8.13e6 

Table 3 -  Application of Line Sampling to the case of 

asteroid Apophis against the standard Monte Carlo 

Simulation. 
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a)  

b)  

Fig. 3 - Visualisation of the initial dispersion in the 

uncertainty space (δa,δl)  in the case of asteroid 

Apophis: a) subdomain for GEO crossing found via 

standard MC, b) boundaries of the subdomain 

identified via LS. 

IV.II. Comparison of different integration methods 

A series of tests were carried out to show how the 

considered symplectic and non-symplectic 8th order 

methods perform for the integration of the n-body 

equations of motion expressed in Eq. (13). The case in 

exam is the propagation of asteroid Apophis between 1989 

and 2039, with the ephemerides for every planet obtained 

from the JPL SPICE model. Following the option already 

available in SNAPPshot [4], the initial step was determined 

for all the fixed-step and regularised step methods via a 

single-step run of RK8(7) using a relative tolerance of 10-

12. The value of the Hamiltonian function shown in Fig. 4 

to Fig. 6 is the one introduced in Eq. (15): the expected 

value is thus analytically zero during the whole 

propagation, with variations only due to numerical errors. 

Different cases are shown, to differentiate between regular 

and non-regular dynamics (the latter one represented by a 

fly-by during the propagation). 

a)  

b)  

Fig. 4 - Comparison among the different fixed-step 

integration methods for the propagation of asteroid 

Apophis from 1989 to 2029, a) Value of the 

Hamiltonian function in time, b) position and 

velocity errors in time with respect to the reference 

ephemerides. 

Fig. 4a shows the value of the Hamiltonian function for 

the propagation of Apophis from 1989 to 2029 (before the 

predicted fly-by with Earth) using a fixed step size. One 

can observe that, when the dynamics is regular, the 

symplectic methods (GLRK, RKN and SY, respectively 

the red, yellow and purple lines) preserve the value of the 

Hamiltonian as expected, with bounded oscillations but no 

secular drift, while the non-symplectic RK method (blue 

line) shows a small linear variation; in Fig. 4b, the implicit 

RK method shows a comparable level of error over the 

state (position and velocity) of Apophis as the non-

symplectic RK method. 
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a)  

b)  

Fig. 5 - Comparison among the different regularised-

step integration methods for the propagation of 

asteroid Apophis from 1989 to 2029, a) Value of the 

Hamiltonian function in time, b) position and 

velocity errors in time with respect to the reference 

ephemerides. 

The same time interval was considered in the 

propagation shown in Fig. 5, with the use in this case of 

step regularisation for all the integration schemes. Here 

also the non-symplectic adaptive method RK8(7) was used 

as a reference. In this case, as expected, the value of the 

Hamiltonian shows a secular drift also for symplectic 

methods due to the variation of the timestep. The Yoshida 

method (SY), however, shows a better behaviour in terms 

of error over the state. 

a)  

b)  

Fig. 6 - Comparison among the different regularised-

step integration methods for the propagation of 

asteroid Apophis from 1989 to 2039, a) Value of the 

Hamiltonian function in time, b) position and 

velocity errors in time with respect to the reference 

ephemerides. 

The long-term behaviour seen in Fig. 4 and Fig. 5, 

however, changes when a flyby occurs during the 

propagation. Fig. 6 also shows the propagation of Apophis, 

in this case in the window 1989-2039 in order to include 

also the 2029 fly-by with Earth. The increase of non-

linearity of the dynamics during the fly-by can be 

visualised in the jump of several orders of magnitude that 

the total energy and the state error undergo at the epoch of 

the flyby, affecting in similar ways all the integration 

schemes and hiding the approximation errors of the 

integrations. Similar jumps can also be observed in Fig. 4 

and Fig. 5, again due to close approaches with Earth. In 

these cases, however, the variation in the total energy is 

much more contained than in the case of a deep fly-by, due 

to the larger distance from the planet. 
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Fig. 7 shows the performance of the integration 

methods both in terms of accuracy and in terms of 

efficiency: the maximum errors (energy, position and 

velocity) are related to the computational time to perform 

one integration step; the energy error is defined in terms of 

maximum value of the Hamiltonian function (that is, 

deviation from the zero initial value) as 

max 0
H max H( ) H max H( )t t     , while the position 

and velocity errors are defined as maximum deviation from 

the JPL SPICE ephemerids used as reference. From the 

results presented here it can be observed that the 

symplectic implicit Runge-Kutta (GLRK) and the Yoshida 

method (SY) are the most accurate in terms of position 

error in time among the ones taken into exam, respectively 

with a fixed-step and a regularised step. However, the 

GLRK in both cases shows a better conservation of energy 

in time, also when close approaches are present. The higher 

computational time with respect to the other integration 

methods is due to the fixed-point iterations to solve the 

implicit problem at every step. For this reason, a focus on 

better methods to solve implicit systems of non-linear 

equations could improve the efficiency of the integrator. 

 

 

a)  b)  c)  

d)  e)  f)  

Fig. 7 – Plots showing the efficiency and the accuracy of the methods in terms of computational time per step (x 

axes) and maximum error (y axes): a) and d) show the maximum energy error; b) and e) the maximum position 

error; c) and f) the maximum velocity error; the top three plots refer to fixed-step propagations, the bottom 

ones to propagation with step regularisation.  

IV.III. Mission case: Launcher upper stage of Solo 

Solo (Solar Orbiter) is a planned Sun-observing 

satellite, under development by ESA. The case under study 

refers to the launch option in October 2018, presenting a 

fly-by of Venus during the first year after leaving Earth’s 

orbit [29]. In this case, the planetary protection analysis is 

focused on the Atlas V upper stage, as it also follows a 

trajectory that will bring it close to Venus. Although this 

planet has no explicit planetary protection requirements, 

the Venus fly-by represents an interesting case to test the 

new technique. Initial data are taken from [4], with initial 

conditions and covariance matrix expressed in Cartesian 

coordinates. 

 

 

 MC LS (σMC) 

NS 54114 ~54000 

NP 54114 ~250000 

P̂(I)  4.20e-2 4.28e-2 

σ̂  8.60e-4 5.40e-4 

Δ 2.06e-2 1.26e-2 

FOM 25.06 13.45 

Table 4 - Results of the application of the LS for the 

launcher of Solo during its first fly-by of Venus, 

against the standard Monte Carlo method; LS was 

evaluated in order to obtain a confidence level 

comparable with MC. 
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Fig. 8 - Impact region inside the initial velocity 

dispersion for the launcher of Solo spacecraft: the 

initial conditions leading to an impact with Venus 

are shown in red, while in green are shown the 

borders of the impact region as found by the Line 

Sampling. Blue lines represent the reference 

direction α (thick line) and the sampling lines (thin 

lines). 

 

Fig. 8 shows the dispersion of the MC runs in terms of 

the deviation from the initial nominal velocity:  Δvr, the 

deviation in the radial direction, Δva, the deviation in the 

along-track direction, and Δvn, the deviation in the 

direction normal to the instantaneous orbital plane, for the 

relative velocity with respect to the Earth. The colours in 

the plots have the same meaning of the plots for the 

asteroids. 

In the case of Solo, while the LS can well identify the 

boundary of the impact subdomain (see Fig. 8), the results 

in Error! Reference source not found. show that the 

method can only obtain a comparable level of accuracy 

with a comparable number of initial samples, which results 

in a higher number of propagations and thus computational 

time. The visible difference between the performance of 

the LS in the case of Solo and of the asteroids is caused by 

two main reasons: the high value of the impact probability, 

which makes the method less efficient in terms of number 

of initial random samples that have to be generated and 

propagated; the shape and size of the impact region, which 

is distributed across the uncertainty domain in the case of 

Apophis and 2010 RF12, with almost every line crossing it 

during the sampling, while confined in the case of Solo, 

causing many lines to miss it, reducing the efficiency of the 

method with a waste of orbital propagations. This 

phenomenon can be seen in Fig. 8, where some of the blue 

lines used for the sampling do not intersect the impact 

region. Another factor that affects the performance of the 

LS method is the accuracy of the iterative process that 

identifies the intersections of the lines with the impact 

subdomain. 

V. CONCLUSIONS 

This paper presented a plan to improve the verification 

of compliance to planetary protection requirements for 

interplanetary missions, by introducing alternative 

numerical techniques to obtain a higher accuracy in the 

orbital propagation and a higher efficiency in the sampling 

of the initial conditions. Two main strategies were 

introduced: the Line Sampling method proved to be more 

competitive than the standard Monte Carlo sampling in the 

estimation of impact probability by requiring a lower 

computational effort to reach similar confidence levels, 

especially in cases where the expected probability is very 

low; symplectic methods demonstrated that the solution of 

the integration can be made closer to the actual physical 

behaviour of the dynamics, by preserving the total energy 

of the system on the long term, although numerical issues 

are encountered when the orbital propagation includes 

close fly-by with celestial bodies. 

The final goal of the work presented here will be the 

combined application of the two strategies introduced in 

this paper (on the numerical integration side, and on the 

sampling side) in order to improve the available tools for 

planetary protection analysis. This will require to solve the 

current limitations of the two approaches and to improve 

each of them and make them more effective. 

On the integration side, the analysis of the already 

available symplectic and non-symplectic methods will 

continue, alongside an examination of alternative 

formulations of the dynamics. 

On the side of uncertainty sampling, we aim at 

improving the identification of the roots of the objective 

functions along the lines, and to improve the general 

efficiency of the Line Sampling, in particular by devising 

an analytical expression of the confidence interval given by 

this method, allowing to identify the minimum number of 

initial samples (lines) necessary to reach a given 

confidence level. 
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