A reduced nonlinear model for the simulation of
two phase flow in a horizontal pipe
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Abstract In the last 10 years many 3D numerical schemes have beenogedel
for the study the flow of a mixture of liquid and gas in a pipelii2, 3, 5, 9], but
although they offer a very good accuracy, they are rarelyofitniodeling a long
pipe, due to the high computational costs. Then one is yslelto consider 1D
models, see.g. the works of Issa and his group [6]. Such models offer muctefas
simulations than 3D schemes, on the other hand they almagpletely miss the
dynamics in the transversal direction. Here we present aehadile of representing
the full 3D dynamics, but with the computational cost typioh1D simulation.
The main feature of our model consists in describing the ohyoal variables in the
direction transversal to the pipe by means of a family of fioms depending on a
set of parameters. The model is then solved by a standarel ¥iolitme scheme.

1 Introduction

A common starting point for the simulation of the flow of a twbase fluid in a
pipeline is provided by the Reynolds averaged Navier-&aguations (RANS)
[4, 8], which for thek-th phase read:

17}
E(pkak) + 0 (pkaxUx) =0, (1)
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3t (PxaUi) +0- (pranU @ Uy) +0- (akRE") = —oOpk+ pxakg+ My, (2)
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wherek denotes the phasé & g,1), ak is the fraction of volume occupied by
the phase such thaty + o) = 1, Uy is the velocity, pg is the pressureRﬁff =
—pkvk (DUk+ (DUk) ) is the strain tensor, which takes into account both viscous
and turbolent effectsgk = W+ Wk is the effective viscosity, anlllx describes the
exchange of momentum between the phases.

Our main purpose is to build a fast numerical scheme that icanlate a full 3D
flow.

2 Equation reduction

We partition the length of the pipeline= [0, L] in N uniform cells and we set, i =
1,...,N to be the centers of the cells. Consider a #éllithat is a cylinder bounded
by the disks,, o and the wall?’. Assuming constant densities, integrating
equations (1)-(2) i and using Gauss’ theorem we get:

17}
= / Pk0k+/ pxakUk -n =0, (3)
ot Jy Joy

17}
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whered? = @i, U oo U enis the normal vector to the surface.

We assume that the transversal components of the veloeigeao Uy = (ux,0,0)T,

whereug = uk(X,y, z), and constant densities. Thih = (Mg, 0,0). We enforce the

Bo-slip boundary condition on the walk |, = 0, so that the conservation equations
ecome:

out

& o[ o]

Jd [ . eff (9Uk - [0 %% dpk eff 19uk " Mk
dt/yakuk—’_{/ ak”k U 20V } - /1/pk ax /’k"k on T e

(6)
where([,, Y] = = Jote W= S -
Our model COI’]SIStS in descnbmg the transverse profile@titknown variableay

andug at each point in space through given functions dependingporegparame-
ters which in turn vary in the longitudinal direction. Ourcite for ag(x,y, z) is as
follows:

0 y<BX),
as(x.92) = 50 B <y < B9+ 500 @
1 Y2+,

wheref(x) is related to the level of the liquid ardi{x) is the width of the interface.
Concerning the velocity profiles we choose a parabolic @rafiz:
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Ry 2

Uk(X, Y, 2) = Uk(X, y)Wa (8)

whereR is the constant radius of the pipe, then we choose a linea@ndigmce oy

for the liquid phase:

y+R
B(X)+R

and quadratic for the gas phase:

U (Xv y) = V(X), y< B(X) + 6(X) ) %)

y—R
B -R

The graphs of the center line profiles of the variables arerteg in Fig.1.

Ug(x,y) = {(X)(y=R)(B(X) —y) +y(X) y=B(X). (10)
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Fig. 1 Left: graph ofay, right: graph ofUy. In solid line, the graphs relative to the liquid phase,
in broken line, the graphs relative to the gas phase. The p&aae:3 = 0.2, = 0.3,y =1,
{=5.

We assume that the pressure of the gas is constant in th@draakdirections,
while the liquid is subject to the hydrostatic pressure:

pi(XY,2) =P(X)+pg(B+5/2-y), (11)

which leads to a term proportional to the slope of the freéased (8 + 0/2)/dx

in the momentum equation of the liquid phase. We adopt a eguation model for
the computation of the turbolent viscosity [1], thatvg= URL'k, whereUy is the

maximum phase velocityy is a geometric length scale alﬁ%< = 1000 is a free
parameter.

pQ(X’ Y, Z) = P(X)v
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3 Numerical integration

We assume that all the unknowns are constant in the cell araddd in the cen-
ters of the cells. Hence, all integrals in (5-6) can be comgexplicitly, obtaining
functions of the parametef} J, y e . We set the following notation:

H(p.0):= [ a.  Hy(p.8):= [ a. 12)

VE1(B.0) = [ o, CFgi(B.0)+VFg2(B.0) = [ ogy,  (13)

gy = [ aw,  CoB.oyvl)= [ and. (14)
0 0

ey = [ afl. Wypey= [ a8 @)

Time is discretized with explicit Euler method. Equatiohr@ads (subscripts denote
the cells, superscripts denote time):

/V antt = /y/ al + At u@{ oo g~ /% a{}rl/zu{‘ﬂ/z} . (16)

The width of the interface should be dictated by some cloelnpunation,5{“rl =
B(B",a", v, "), but our current choice is to keep it constant. We found amut
value atd = 102 mm. We remark that the width of the interface affects the drag
between the phases.

We use the mass conservation equation of the liquid phagedimte the free surface
level B:

Hi (B, 8™ = Hi (B, o) + % [Villl/zFl (Bin—l/Zvéln—l/Z) - Vi1+1/2FI (5in+1/2v5|n+1/2)] - (A7)

that is a nonlinear equation iﬁ”“ which is solved in every cell with standard
Newton method. The conservation of the gas phase is useddim@mn equation for
the pressure. To compute the interface valy{§§/2, B", 12 anda" | /2 We have to

interpolate. Since we are considering only positive véiesiwe chose thapwind
interpolation é.9.: Bi’ll/z =B" ).

We discretize the equation for the conservation of momerfaurthe liquid phase
as follows:

A(yFi (B,
%/ymw :Ax%(mﬂ(ﬁi,d)) :AXW’ a8
out
U%/ avf| =GBz 8172 M1/2) ~Gi(B 12,8 1/2:%-1/2)» (19)

1o9p
P Ox

_/ ) op :_'/V Z: ZI; /Valga(BJr(S/Z)

1/5& Ix :—AXHI(Biya)<

o(B+0/2)
).

(20)
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The gradient of the pressure will be discussed later, wihige dlope of the free
surface is handled with a centered scheme. Since the \igdssionstant in the
section of the tube, we have:

0
[ avE St = v (8., )

The drag force between the phases is computed with [4, 8]:

Cob, Pg
d

3
M = -0 g (Cﬂ

C
2 + 0y D.g p|> [ur| ur, (22)

dg

whered, anddy are the typical diameters of the drops/bubbles of the phases
ug— U is the relative velocity an@p |, Cp g are coefficients computed with Schiller-
Naumann formula. Sincejag # 0 only at the interfac@ <y < 8+ J, we have:

M pro [ /R AX
o S = iy & V5 6Gi) - 2

The integrals are computed with a quadrature scheme. We wtentipe diffusion
term using the average velocities:

_Jyau  Fi(B,9)

YT a T VEB.o)

approximatingdu, /dx with du; /dx (i.e. a term that does not depend pandz).
Then we define:

. — 7 out — out
U 20, vfﬂ ﬂ} ~ {Zﬂ vlerf oq}
o ox in ox o in (24)

= [D1(Bii1/2: 812 Yirr2) = D1 (Bio1/2: G172, ¥i-12)) |-

Finally, the momentum equation for the liquid phase reads:

A |IF i s
Axw + [Gi(Bis1/2:841/2 Yir1/2) — Gi(Bi-1/2: 6-1/2, ¥i-1/2))]

— DBz, Gi1j2: Yv1y2) = Di(Bi-12: 6172, ¥i-1/2))] =

i) (12F] o202 202) ) @)

Pl OX ox

A
+ vﬁfw.(ﬁi,a,v.)+HXM|(Bi,a,y.,zi),
which is a linear equation for the unknovyiﬁ”. The gas phase is handled similarly,

leading to a linear equation for the unknoﬁ{ﬁ”.
The equations are integrated according to the followingseh

1. Mass conservation The free surface is updated solving (17) for each cell.
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2. Velocity predictor: The auxiliar valuey* and* are computed with an explicit
Euler iteration of the momentum equations.

3. Pressure correction to compute the pressure correcti%ﬁh" we enforce the
continuity equation.

4. Velocity correction: Once4t | is known, we can computg** e (™.

4 Results

Figure 2 represents some results of our simulations. Theirgion the left dis-
plays some snapshots of the free surface in slug flow at diffénstants in time;
the curves are represented each 0.2 sec and are shiftaderétaeach other with
respect to time. The liquid superficial velocityliSV = 0.7 m/s and the gas super-
ficial velocity isGSV = 6 m/s, in a pipeline with 4 cm of diameter and 10 m long.
We can clearly observe that our model can reproduce themtants generation of
slug in the pipe.

The picture on the right compares our results for differegimes to the bench-
mark given by the flow map provided in [7]. We observe that oodei is able to
reproduce a good transitions between the elongated bubbdi¢ha slug regimes,
whereas the exact transition between the stratified/wavedtwd the slug flow is
more difficult to be captured. Moreover, we cannot distisguihe stratified from
the wave regime. Nevertheless, the comparison with therimpatal data show
that our model is able to predict the flow map with an acceptabturacy.
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Fig. 2 Shapshots (left) and flow map (right).
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5 Conclusions

These are the main features of the scheme that we introduced:

e The numerical algorithm is very fast, it is comparable withsthemes.

e The results are in quantitative and qualitative accord wiperimental data.

e The model is very flexible. The transversal profiles can begbd, while keep-
ing the basic structure of the model and its numerical imgletation.

e The numerical algorithm is stable, it does not pose any prokih the slug re-
gions.

e The model has been implemented for horizontal pipelinesoltid be easily
adapted to moderate slopes, but it requires serious mddfisato handle verti-
cal pipelines.

In conclusion, we proved the feasibility of a reduction sokefor two phase flu-
idodynamics in a pipeline, consisting in choosing a spestiigpe for the dynamic
variables in the transversal directions depending on petrens
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