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Abstract In the last 10 years many 3D numerical schemes have been developed
for the study the flow of a mixture of liquid and gas in a pipeline [2, 3, 5, 9], but
although they offer a very good accuracy, they are rarely fit for modeling a long
pipe, due to the high computational costs. Then one is usually led to consider 1D
models, seee.g. the works of Issa and his group [6]. Such models offer much faster
simulations than 3D schemes, on the other hand they almost completely miss the
dynamics in the transversal direction. Here we present a model able of representing
the full 3D dynamics, but with the computational cost typical of 1D simulation.
The main feature of our model consists in describing the dynamical variables in the
direction transversal to the pipe by means of a family of functions depending on a
set of parameters. The model is then solved by a standard finite volume scheme.

1 Introduction

A common starting point for the simulation of the flow of a two phase fluid in a
pipeline is provided by the Reynolds averaged Navier-Stokes equations (RANS)
[4,8], which for thek-th phase read:

∂
∂ t

(ρkαk)+∇ · (ρkαkUk) = 0, (1)

∂
∂ t

(ρkαkUk)+∇ · (ρkαkUk ⊗Uk)+∇ · (αkR
eff
k ) = −αk∇pk +ρkαkg+M k , (2)
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where k denotes the phase (k = g, l), αk is the fraction of volume occupied by
the phase such thatαg + αl = 1, Uk is the velocity, pk is the pressure,Reff

k =

−ρkνeff
k

(

∇Uk +(∇Uk)
T
)

is the strain tensor, which takes into account both viscous

and turbolent effects,νeff
k = νk +νt,k is the effective viscosity, andM k describes the

exchange of momentum between the phases.
Our main purpose is to build a fast numerical scheme that can simulate a full 3D
flow.

2 Equation reduction

We partition the length of the pipelinex = [0,L] in N uniform cells and we setxi, i =
1, . . . ,N to be the centers of the cells. Consider a cellV , that is a cylinder bounded
by the disksAin,Aout and the wallW . Assuming constant densities, integrating
equations (1)-(2) inV and using Gauss’ theorem we get:

∂
∂ t

∫

V

ρkαk +
∫

∂V

ρkαkUk ·n = 0, (3)

∂
∂ t

∫

V

ρkαkUk +
∫

∂V

ρkαk(Uk ⊗Uk) ·n+
∫

∂V

(αkReff
k ) ·n = −

∫

V

αk∇pk +
∫

V

ρkαkg+
∫

V

M k ,

(4)

where∂V = Ain ∪Aout ∪W en is the normal vector to the surface.
We assume that the transversal components of the velocity are zero,Uk = (uk,0,0)T ,
whereuk = uk(x,y,z), and constant densities. ThenM k = (Mk,0,0). We enforce the
no-slip boundary condition on the wall,uk|W = 0, so that the conservation equations
become:

∂
∂ t

∫

V

αk +

[

∫

A

αkuk

]out

in
= 0, (5)

∂
∂ t

∫

V

αkuk +

[

∫

A

αku2
k

]out

in
−

[

∫

A

2αkνeff
k

∂uk

∂x

]out

in
= −

∫

V

αk

ρk

∂ pk

∂x
+

∫

W

αkνeff
k

∂uk

∂n
+

∫

V

Mk

ρk
,

(6)

where[
∫

A
ψ]out

in =
∫

Aout
ψ − ∫

Ain
ψ.

Our model consists in describing the transverse profile of the unknown variablesαk

anduk at each point in space through given functions depending on some parame-
ters which in turn vary in the longitudinal direction. Our choice forαg(x,y,z) is as
follows:

αg(x,y,z) =















0 y ≤ β (x),
y−β (x)

δ (x)
β (x) < y < β (x)+δ (x),

1 y ≥ β (x)+δ (x),

(7)

whereβ (x) is related to the level of the liquid andδ (x) is the width of the interface.
Concerning the velocity profiles we choose a parabolic profile in z:
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uk(x,y,z) = Uk(x,y)
R2− y2− z2

R2− y2 , (8)

whereR is the constant radius of the pipe, then we choose a linear dependence ony
for the liquid phase:

Ul(x,y) =
y+R

β (x)+R
γ(x), y ≤ β (x)+δ (x) , (9)

and quadratic for the gas phase:

Ug(x,y) = ζ (x)(y−R)(β (x)− y)+ γ(x)
y−R

β (x)−R
, y ≥ β (x) . (10)

The graphs of the center line profiles of the variables are reported in Fig.1.
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Fig. 1 Left: graph ofαk, right: graph ofUk. In solid line, the graphs relative to the liquid phase,
in broken line, the graphs relative to the gas phase. The parameter are:β = 0.2, δ = 0.3, γ = 1,
ζ = 5.

We assume that the pressure of the gas is constant in the transversal directions,
while the liquid is subject to the hydrostatic pressure:

pg(x,y,z) = P(x) , pl(x,y,z) = P(x)+ρlg(β +δ/2− y) , (11)

which leads to a term proportional to the slope of the free surface∂ (β + δ/2)/∂x
in the momentum equation of the liquid phase. We adopt a zero-equation model for
the computation of the turbolent viscosity [1], that isνk = Ūk lk

Rek
, whereŪk is the

maximum phase velocity,lk is a geometric length scale andRek = 1000 is a free
parameter.
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3 Numerical integration

We assume that all the unknowns are constant in the cell and located in the cen-
ters of the cells. Hence, all integrals in (5-6) can be computed explicitly, obtaining
functions of the parametersβ , δ , γ e ζ . We set the following notation:

Hl(β ,δ ) :=
∫

A

αl , Hg(β ,δ ) :=
∫

A

αg , (12)

γFl(β ,δ ) :=
∫

A

αlul , ζFg,1(β ,δ )+ γFg,2(β ,δ ) :=
∫

A

αgug , (13)

Gl(β ,δ ,γ) :=
∫

A

αlu
2
l , Gg(β ,δ ,γ,ζ ) :=

∫

A

αlu
2
g , (14)

Wl(β ,δ ,γ) :=
∫

W

αl
∂ul

∂n
, Wg(β ,δ ,γ,ζ ) :=

∫

W

αg
∂ug

∂n
. (15)

Time is discretized with explicit Euler method. Equation (5) reads (subscripts denote
the cells, superscripts denote time):

∫

V

αn+1
i =

∫

V

αn
i +∆ t

[

∫

A

αn
i−1/2un

i−1/2−
∫

A

αn
i+1/2un

i+1/2

]

. (16)

The width of the interface should be dictated by some closureequation,δ n+1
i =

B(β n
i ,δ n

i ,γn
i ,ζ n

i ), but our current choice is to keep it constant. We found an optimal
value atδ = 10−2 mm. We remark that the width of the interface affects the drag
between the phases.
We use the mass conservation equation of the liquid phase to update the free surface
level β :

Hl(β n+1
i ,δ n+1

i ) = Hl(β n
i ,δ n

i )+
∆ t
∆x

[

γn
i−1/2Fl

(

β n
i−1/2,δ

n
i−1/2

)

− γn
i+1/2Fl

(

β n
i+1/2,δ

n
i+1/2

)

]

, (17)

that is a nonlinear equation inβ n+1
i which is solved in every cell with standard

Newton method. The conservation of the gas phase is used to obtain an equation for
the pressure. To compute the interface valuesγn

i−1/2, β n
i−1/2 andδ n

i−1/2 we have to
interpolate. Since we are considering only positive velocities we chose theupwind
interpolation (e.g.: β n

i−1/2 = β n
i−1).

We discretize the equation for the conservation of momentumfor the liquid phase
as follows:

∂
∂ t

∫

V

αlul ≃ ∆x
∂
∂ t

(

γiFl(βi,δi)
)

≃ ∆x
∆

(

γiFl(βi,δi)
)

∆ t
, (18)

[

∫

A

αlu
2
l

]out

in
≃ Gl(βi+1/2,δi+1/2,γi+1/2)−Gl(βi−1/2,δi−1/2,γi−1/2) , (19)

−
∫

V

αl

ρl

∂ pl

∂x
= −

∫

V

αl

ρl

∂P
∂x

−
∫

V

αlg
∂ (β +δ/2)

∂x
≃−∆xHl(βi,δi)

(

1
ρl

∂P
∂x

∣

∣

∣

∣

i
+g

∂ (β +δ/2)

∂x

∣

∣

∣

∣

i

)

.

(20)
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The gradient of the pressure will be discussed later, while the slope of the free
surface is handled with a centered scheme. Since the viscosity is constant in the
section of the tube, we have:

∫

W

αlν
eff
l

∂ul

∂n
≃ νeff

l,i Wl(βi,δi,γi). (21)

The drag force between the phases is computed with [4,8]:

Ml =
3
4

αlαg

(

αl
CD,l ρg

dl
+αg

CD,g ρl

dg

)

|ur| ur , (22)

wheredl anddg are the typical diameters of the drops/bubbles of the phases, ur =
ug−ul is the relative velocity andCD,l , CD,g are coefficients computed with Schiller-
Naumann formula. Sinceαlαg 6= 0 only at the interfaceβ < y < β +δ , we have:

∫

V

Ml

ρl
≃ ∆x

∫ β+δ

β

(

∫ −
√

R2−y2

−
√

R2−y2

Ml

ρl
dz

)

dy =
∆x
ρl

Ml(βi,δi,γi,ζi) . (23)

The integrals are computed with a quadrature scheme. We compute the diffusion
term using the average velocities:

ūl =

∫

A
αlul

∫

A
αl

= γ
Fl(β ,δ )

Hl(β ,δ )

approximating∂ul/∂x with ∂ ūl/∂x (i.e. a term that does not depend ony andz).
Then we define:

[

∫

A

2αlν
eff
l

∂ ūl

∂x

]out

in
≃

[

2
∂ ūl

∂x
νeff

l

∫

A

αl

]out

in

:=
[

Dl(βi+1/2,δi+1/2,γi+1/2)−Dl(βi−1/2,δi−1/2,γi−1/2))
]

.

(24)

Finally, the momentum equation for the liquid phase reads:

∆x
∆

(

γiFl(βi,δi)
)

∆ t
+

[

Gl(βi+1/2,δi+1/2,γi+1/2)−Gl(βi−1/2,δi−1/2,γi−1/2))
]

−
[

Dl(βi+1/2,δi+1/2,γi+1/2)−Dl(βi−1/2,δi−1/2,γi−1/2))
]

=

−∆xHl(βi,δi)

(

1
ρl

∂P
∂x

∣

∣

∣

∣

i
+g

∂ (β +δ/2)

∂x

∣

∣

∣

∣

i

)

+ νeff
l,i Wl(βi,δi,γi)+

∆x
ρl

Ml(βi,δi,γi,ζi),

(25)

which is a linear equation for the unknownγn+1
i . The gas phase is handled similarly,

leading to a linear equation for the unknownζ n+1
i .

The equations are integrated according to the following scheme:

1. Mass conservation: The free surface is updated solving (17) for each cell.
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2. Velocity predictor : The auxiliar valuesγ∗ andζ ∗ are computed with an explicit
Euler iteration of the momentum equations.

3. Pressure correction: to compute the pressure correction∂P
∂x

∣

∣

∗
i we enforce the

continuity equation.
4. Velocity correction: Once∂P

∂x

∣

∣

∗
i is known, we can computeγn+1 e ζ n+1.

4 Results

Figure 2 represents some results of our simulations. The picture on the left dis-
plays some snapshots of the free surface in slug flow at different instants in time;
the curves are represented each 0.2 sec and are shifted relative to each other with
respect to time. The liquid superficial velocity isLSV = 0.7 m/s and the gas super-
ficial velocity isGSV = 6 m/s, in a pipeline with 4 cm of diameter and 10 m long.
We can clearly observe that our model can reproduce the continuous generation of
slug in the pipe.
The picture on the right compares our results for different regimes to the bench-
mark given by the flow map provided in [7]. We observe that our model is able to
reproduce a good transitions between the elongated bubble and the slug regimes,
whereas the exact transition between the stratified/wave flow and the slug flow is
more difficult to be captured. Moreover, we cannot distinguish the stratified from
the wave regime. Nevertheless, the comparison with the experimental data show
that our model is able to predict the flow map with an acceptable accuracy.
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Fig. 2 Shapshots (left) and flow map (right).
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5 Conclusions

These are the main features of the scheme that we introduced:

• The numerical algorithm is very fast, it is comparable with 1d schemes.
• The results are in quantitative and qualitative accord withexperimental data.
• The model is very flexible. The transversal profiles can be changed, while keep-

ing the basic structure of the model and its numerical implementation.
• The numerical algorithm is stable, it does not pose any problem in the slug re-

gions.
• The model has been implemented for horizontal pipelines. Itcould be easily

adapted to moderate slopes, but it requires serious modifications to handle verti-
cal pipelines.

In conclusion, we proved the feasibility of a reduction scheme for two phase flu-
idodynamics in a pipeline, consisting in choosing a specificshape for the dynamic
variables in the transversal directions depending on parameters.
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