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Velocity feedback damping of piezo-actuated wings

Xiao Wang∗, Marco Morandini, Pierangelo Masarati

Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, Via La Masa 34,
20156 Milano, Italy

Abstract

A geometrical nonlinear model of thin-walled beams with fiber-reinforced and

piezo-composite is developed for smart aircraft wing structures. Some non-

classical effects such as warping inhibition and three-dimensional (3-D) strain

are accounted for in the beam model. The governing equations and the corre-

sponding boundary conditions are derived using the Hamilton’s principle. The

Extended Galerkin’s Method is used for the numerical study. A negative veloc-

ity feedback control algorithm is adopted to control the aircraft wing response.

The effective damping performance is optimized by studying anisotropic char-

acteristics of piezo-composite and elastic tailoring of the fiber-reinforced host

structure. The relations between active vibration control effect and design fac-

tors, such as the size and position of piezo-actuator are investigated in detailed.

Keywords: thin-walled beam, fiber-reinforced, piezo-composite, active control

Nomenclature

aij 1-D global stiffness coefficients

AFi Piezo-actuator coefficients, see Appendix A

bij Inertial coefficients

2b, 2d Width and depth of the beam cross-section, see Fig. 1

Bw, B̂w, B̄w Pure mechanical bimoment, piezo-bimoment actuation, and
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external bioment on the beam tip

Ei Electric field intensity

Fw, a(s) Primary and secondary warping functions

ki Feed back control gain in Eq. (26)

ĥ Electrode spacing of the interdigitated electrode

L Length of the beam, see Fig. 1

Mx,My,Mz 1-D stress couples of pure mechanical contributions

M̃x, M̃y, M̃z Piezo-moment actuations about the x, y and z axes

M̄x, M̄y, M̄z External stress couples on the beam tip

N Total number of constituent layers in the wall

Np, Nh Numbers of piezocomposite and host layers in the wall

Qx, Qz Shear forces in the x− and z−directions

Q̃x, Q̃z Piezo-transverse-shear actuations in the x− and z−directions

Q̄x, Q̄z Applied transverse shear forces at the beam tip

R(y) Distribution function along span for the actuator

(s, y, n) Local coordinate system on the cross-section, see Fig. 1

Ty, T̃y, T̄y Generalized axial force per unit span, piezo-extension actuation,

and applied axial force at the beam tip, respectively

u0, v0, w0 Displacement components of the cross-section along x, y, z axes,

see Fig. 1

αki , β
k
i Weighting coefficients for control gains in Eq. (26)

θ Ply-angle of layer, see Fig. 1

θh, θp Ply-angles of host structure and piezo-actuator

θx, θz, φ Rotations of the cross-section about the x, z and y axes, see Fig. 1

ψ(s) Torsional function

Γt, Γ̃t Pure mechanical nonlinear terms in twist motion and

piezo-nonlinear actuation, respectively

δ Variation operator

(̇), (̈),()′ ∂()/∂t, ∂2()/∂t2, ∂()/∂y

XT Transpose of the matrix or vector X
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1. Introduction

Composite thin-walled beams are widely used because of their potential ad-

vantages. Among them, light weight, specific high stiffness, and elastic couplings

are worth citing. Refined thin-walled beam models have been proposed for open5

or closed cross-section (see e.g. [1–6]). Among these efforts, Cortinez et al. [3]

and Vo and Lee [4] introduced warping shear to improve the model’s accuracy.

More generally, any geometrically exact, intrinsic theory of anisotropic beams

can be used provided the beam constitutive equation are computed correctly.

Many similar approaches, based on a semi-analytical discretization of the beam10

section displacement field, have been proposed to compute the stiffness ma-

trix of arbitrarily complex beam sections, see e.g. [1, 7, 8]. Basically the same

approach can be used for the characterization of composite beams with piezo-

electric patches [9, 10]. That said, simplified models such as the one used in

this paper are still interesting, as they allow to get a better inside into the15

dependence of the elastic solution of the beam section parameters.

Piezoelectric material are advantageous because of their fast response. As

such, they are well suited for the active control of deformable beams [11–15]. Due

to the brittle nature of ceramics, they are however vulnerable to damage and can

hardly conform to a curved surface. These drawbacks are overcame by piezo-20

composite materials such as the Active Fiber Composite (AFC) [16] and the

Macro-Fiber Composite (MFC) [17]. Piezo-composite materials can be shaped

and bonded to surfaces or embedded into structures. Thanks to their anisotropic

characteristics, piezo-composite actuators can produce a twisting actuation that

can help controlling the vibration of helicopter blades, see e.g. [18, 19].25

In this paper, a geometrical nonlinear thin-walled beam theory incorporat-

ing fiber-reinforced and piezo-composite is developed. Transverse shear strain,

primary and secondary warping inhibition and three-dimensional strain are ac-

counted for. A typical circumferential asymmetric stiffness (CAS) lay-up con-
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figuration is adopted to model the aircraft wing structure. The twist-bending30

elastic coupling induced by the CAS lay-up is beneficial for the aeroelastic re-

sponse behavior [14, 20, 21], especially for the suppression of the flutter insta-

bility [22–24]. Numerical studies based on the Extended Galerkin’s Method

are performed, and the relation between actuation performance and voltages is

investigated. Based on a negative velocity feedback control algorithm, the dy-35

namic response of an aircraft wing excited by an impulsive load is investigated.

Furthermore, the control efficiency is optimized via the study of anisotropic

characteristics of piezo-actuator and the elastic tailoring of fiber-reinforced host

structure. Finally, considering the high cost and high density of piezo-composite

materials, the effect of size and position of the piezo-actuator is investigated.40

2. Structural Elements of a Geometrically Nonlinear Theory of Anisotropic

Thin-Walled Beams

A geometrical nonlinear, single-cell, closed cross-section, fiber-reinforced com-

posite thin-walled beam model incorporating piezoelectric materials is consid-

ered. The geometric configuration and the chosen corresponding coordinate45

system are indicated in Figs. 1. In addition to the global coordinate (x, y, z), a

local coordinate (s, y, n) is defined on the mid-line contour of the cross-section,

see Fig. 1.

2.1. Constitutive relations

We assume that both fiber-reinforced composite material and the piezo-

composite material can be modeled with linear piezoelectric constitutive rela-

tionships. The constitutive equations of a 3-D piezoelectric continuum can be

expressed as [25]

σij = cEijklεkl − ekijEk, (1a)

Di = eiklεkl + κεikEk, (1b)
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Figure 1: Geometry of the beam with a rectangular cross-section (CAS lay-up).

where, cEijkl, ekij , and κεik denote the elastic stiffness coefficients, the piezoelec-50

tric stress tensor and the dielectric constant tensor, respectively. The super-

scripts E and ε denote constant electric field and constant strain, respectively.

Symbols σij and εkl denote the stress and strain components, while Ek and Di

denote the electric field intensity and electric displacement vector, respectively.

Eq. (1a) describes the converse piezoelectric effect which is used for distributed55

sensing while Eq. (1b) describes the direct piezoelectric effect that is used for

the active distributed control.

The constitutive equations for the kth layer, reduced to the plane stress

condition σnn = 0 and referred to the local coordinate system (s, y, n) are

σss

σyy

τyn

τsn

τsy


(k)

=



Q̄11 Q̄12 0 0 Q̄16

Q̄12 Q̄22 0 0 Q̄26

0 0 Q̄44 Q̄45 0

0 0 Q̄45 Q̄55 0

Q̄16 Q̄26 0 0 Q̄66


(k)



εss

εyy

γyn

γsn

γsz


(k)

−



ess

eyy

0

0

esy


(k)

E1(k).

(2)

We assume constant electric filed through the actuator thickness, i.e., E1 =

−(V/ĥ), where V and ĥ are the applied voltage and electrode spacing of the
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interdigitated electrode for the actuator layer, respectively. And the reduced

piezoelectric stress coefficients can be computed as

ess = m2e11 + n2e12 −
C̄13

C̄33
e13, eyy = n2e11 +m2e12 −

C̄23

C̄33
e13, (3a)

esy = mn (e11 − e12)− C̄36

C̄33
e13, (3b)

where m ≡ cos θ and n ≡ sin θ, θ ∈ [0, 2π].

2.2. 2-D Piezoelectric Constitutive Equations

The host structure is assumed composed of Nh layers; the piezo-actuator

is composed of Np piezocomposite layers. The distribution function R(·) of

actuators can be given by (see Fig. 2):

Rk(n) = H(n− n(k−1))−H(n− n(k)), (4a)

Rk(s) = H(s− sk1)−H(s− sk2), (4b)

Rk(y) = H(y − yk1)−H(y − yk2), (4c)

where H(·) denotes Heaviside’s distribution, while (n(k−1), n(k)), (sk1, sk2) and60

(yk1, yk2) denote, in sequence, the top and bottom heights of kth piezoelectric

layer measured across the beam thickness, its location along the beam circum-

ference and its span location.

Considering the definition of the stretching quantity Aij , of the bending-

stretching coupling stiffness quantity Bij and of the thermal and hygric moments

Dij ,

(Aij , Bij , Dij) =

N∑
k=1

∫ n(k)

n(k−1)

Q̄
(k)
ij (1, n, n2) dn, (N = Nm +Nl), (5)

as well as the assumption Nss = Nsn = 0 [26],

(Nss, Nyy, Nsy, Nyn, Nsn) =

N∑
k=1

∫ n(k)

n(k−1)

(σss, σyy, σsy, σyn, σsn)(k) dn, (6a)
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Figure 2: Piezo-actuator location.

(Lyy, Lsy) =

N∑
k=1

∫ n(k)

n(k−1)

(σyy, σsy)(k)ndn, (6b)

the stress resultants and stress couples reduce to the following expressions

Nyy

Nys

Lyy

Lsy


=


K11 K12 K13 K14

K21 K22 K23 K24

K41 K42 K43 K44

K51 K52 K53 K54





ε0yy

γ0
ys

φ′

ε1yy


−



Ñyy

Ñsy

L̃yy

L̃sy


, (7)

and

Nyn =

(
A44 −

A45
2

A55

)
γyn. (8)

In these equations, (1) Kij , (2) ε0yy, (3) ε1yy, (4) γ0
ys and (5) γyn denote (1)

the modified local stiffness coefficients, (2) the axial strain associated with the

primary warping, (3) a measure of curvature associated with the secondary

warping, (4) the tangential shear strain and (5) the transverse shear strain,

respectively. Their expressions can be found in Ref. [26]. The piezo-actuator
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induced stress resultants Ñyy, Ñsy and stress couples L̃yy, L̃sy are defined as

Ñyy =
∑Np

k=1

(
eyy −

A12

A11
ess

)
E1(k)[n(k) − n(k−1)]R(k)(s)R(k)(y)

Ñsy =
∑Np

k=1

(
esy −

A16

A11
ess

)
E1(k)[n(k) − n(k−1)]R(k)(s)R(k)(y)

L̃yy =
∑Np

k=1

[
1

2
eyy[n(k) + n(k−1)]−

B12

A11
ess

]
E1(k)[n(k) − n(k−1)]R(k)(s)R(k)(y)

L̃sy =
∑Np

k=1

[
1

2
esy[n(k) + n(k−1)]−

B16

A11
ess

]
E1(k)[n(k) − n(k−1)]R(k)(s)R(k)(y)

(9)

3. Formulation of the Governing System

Hamilton’s principle is used to derive the governing equations and the cor-

responding boundary conditions. The path of motion renders the following

variational form stationary:∫ t2

t1

(
δT + δV − δWe

)
d t = 0, (10a)

with ( at t = t1, t2 )

δu0 = δv0 = δw0 = δθx = δθz = δφ = 0, (10b)

where T , V and δWe denote the kinetic energy, strain energy and the virtual65

work due to the external forces, respectively.

3.1. Governing Equations

After lengthy variation manipulations, the governing equations are

δu0 : [(Ty + T̃y)u′0 − (Mz + M̃z)φ
′ sinφ+ (Mx + M̃x)φ′ cosφ

+ (Qx + Q̃x) cosφ+ (Qz + Q̃z) sinφ]′ + px − b1ü0 = 0,
(11a)

δv0 : (Ty + T̃y)′ + py − b1v̈0 = 0, (11b)

δw0 : [(Ty + T̃y)w′0 − (Mz + M̃z)φ
′ cosφ− (Mx + M̃x)φ′ sinφ

− (Qx + Q̃x) sinφ+ (Qz + Q̃z) cosφ]′ + pz − b1ẅ0 = 0,
(11c)
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δφ : (My + M̃y)′ − (Bw + B̃w)′′ + [(Mx + M̃x)(u′0 cosφ− w′0 sinφ)

− (Mz + M̃z)(w
′
0 cosφ+ u′0 sinφ) + (Γt + Γ̃t)φ

′]′

+ (Mx + M̃x)(u′0φ
′ sinφ+ w′0φ

′ cosφ)

− (Mz + M̃z)(w
′
0φ
′ sinφ− u′0φ′ cosφ)

+ (Qx + Q̃x)(u′0 sinφ+ w′0 cosφ)

− (Qz + Q̃z)(u
′
0 cosφ− w′0 sinφ)

+my + b′w − (b4 + b5)φ̈+ (b10 + b18)φ̈′′ = 0,

(11d)

δθx : (Mx + M̃x)′ − (Qz + Q̃z) +mx − b4θ̈x = 0, (11e)

δθz : (Mz + M̃z)
′ − (Qx + Q̃x) +mz − b5θ̈z = 0, (11f)

where px, py and pz are the external forces per unit span length and mx, my

and mz are the moments about x−, y− and z − axes, respectively; bw stands

for the bimoment of the surface traction. The essential and natural boundary

conditions are:

δu0 : u0 = ū0 or

Tyu
′
0 −Mzφ

′ sinφ+Mxφ
′ cosφ+Qx cosφ+Qz sinφ = Q̄x,

(12a)

δv0 : v0 = v̄0 or Ty = T̄y, (12b)

δw0 : w0 = w̄0 or

Tyw
′
0 −Mzφ

′ cosφ−Mxφ
′ sinφ−Qx sinφ+Qz cosφ = Q̄z,

(12c)

δφ : φ = φ̄ or

−B′w +My +Mx(u′0 cosφ− w′0 sinφ)

−Mz(w
′
0 cosφ+ u′0 sinφ) + Γtφ

′ + Γtφ
′ = M̄y − (b10 + b18)φ̈′,

(12d)

9



δφ′ : φ′ = φ̄′ or Bw = B̄w, (12e)

δθx : θx = θ̄x or Mx = M̄x, (12f)

δθz : θz = θ̄z or Mz = M̄z. (12g)

In Eqs. (11) and (12), the terms without and with over-tilde (̃·) identify the

pure mechanical and piezo-actuator contributions, respectively. The expressions

for stress and stress couple resultants (e.g. Ty, T̃y, Mx, etc.) will be discussed70

in the following section. Explicit expressions for inertial terms bij can be found

in the appendix of Ref. [26].

4. Governing equation system for circumferential asymmetric stiff-

ness lay-up configuration

75

4.1. Force-displacement relationship

The linearized beam constitutive law reads

Fi = aijDj (13)

where Fi, aij and Dj denotes the stress and couple stress resultants (i.e. the

beam internal actions), the stiffness coefficients and the beam deformation mea-

sure work-conjugated to the internal actions, respectively; see e.g. Ref. [26] for

an explicit expression of aij . The stiffness matrix [aij ] is fully populated in the

general case, so that bending, twisting, extension, transverse shearing and warp-

ing are all coupled together. For a circumferential asymmetric stiffness (CAS)

lay-up configuration the stiffness matrix [aij ] can be decoupled into two types

10



of elastic coupling, viz, extension-transverse shear

Ty

Qx

Qz

Γt


=


a11 a14 a15 a18

a14 a44 0 a48

a15 0 a55 0

a18 a48 0 a88





v′0 +
1

2
(u′0)2 +

1

2
(w′0)2

θz + u′0 cosφ− w′0 sinφ

θx + u′0 sinφ+ w′0 cosφ
1

2
(φ′)2


, (14a)

and bending-twist coupling,

Mz

Mx

Bw

My


=


a22 0 0 0

0 a33 0 a37

0 0 a66 0

0 a37 0 a77





θ′z − w′0φ′ cosφ− u′0φ′ sinφ

θ′x + u′0φ
′ cosφ− w′0φ′ sinφ

φ′′

φ′


; (14b)

the stiffness coefficient a15 is equal to zero for balanced lay-ups on the left and

right beam spars.

4.2. Force-voltage relationship

We introduce two actuator pairs, viz., flange-actuator-pair (top and bottom

plates) and web-actuator-pair (left and right spars). Thus, four voltage parame-

ters VT , VB , VL and VR can be defined, i.e. the voltages applied on the actuators

located at the top, bottom, left and right plates of the beam, see Fig. 2. The

relation between the piezo-actuator induced stress and stress couple resultants

(F̃) and the voltages (V) can be expressed as

F̃ = [AFi ]R(y)V, (15)

where R(y) of Eq. (4c) denotes the location along span of the actuator, F̃ =80

{T̃y M̃y B̃w Γ̃t M̃z M̃x Q̃x Q̃z}T and V = {V1 V2 V3 V4}T =
1

2
{(VT −

VB) (VT +VB) (VL−VR) (VL +VR)}T . The piezo-actuator coefficients AFi
(i = 1, 2, 3, 4) are defined in Appendix A.

If the piezo-composite actuators are distributed in CAS configuration, Eq. (15)

11



can be split in two, viz., extension-transverse coupling

T̃y(y, t)

Q̃x(y, t)

Q̃z(y, t)

Γ̃t(y, t)


=


ATy2 ATy4

AQx2 0

0 AQz4

AΓt
2 AΓt

4 (t)


V2(t)

V4(t)

R(y), (16a)

and bending-twist coupling

M̃z(y, t)

M̃x(y, t)

B̃w(y, t)

M̃y(y, t)


=


0 AMz

3

AMx
1 0

0 0

AMy
1 AMy

3


V1(t)

V3(t)

R(y). (16b)

4.3. Linearized governing equations

Approximating the trigonometric functions of Eqs. (11)-(12) with their Tay-85

lor series expansion, i.e. sinφ ≈ φ and cosφ ≈ 1, the CAS lay-up configuration

equations can be split into two subsystem, the Lateral Bending-Extension cou-

pling subsystem (u0−v0−θz) and the Twist-Vertical Bending coupling subsystem

(w0 − φ− θx).

BE-subsystem (Lateral Bending-Extension coupling subsystem).

δu0 : a14v
′′
0 + a44(u′′0 + θ′z)− b1ü0 + px + δpAQx2 V2R

′(y) = 0, (17a)

δv0 : a11v
′′
0 + a14(u′′0 + θ′z)− b1v̈0 + py + δpATy2 V2R

′(y) + δpATy4 V4R
′(y) = 0,

(17b)

δθz : a22θ
′′
z − a14v

′
0 + a44(u′0 + θz)− (b5 + b15)θ̈z +mz + δpAMz

3 V3R
′(y)

− (δp + δs)AQx2 V2R(y) = 0.

(17c)

The boundary conditions for cantilevered beams are

at y = 0:

u0 = v0 = θz = 0, (18)

12



and at y = L:

δu0 : a14v
′
0 + a44(u′0 + θz) + δsAQx2 V2 = Q̄x, (19a)

δv0 : a11v
′
0 + a14(u′0 + θz) + δsATy2 V2 + δsATy4 V4 = T̄y, (19b)

δθz : a22θ
′
z + δsAMz

3 V3 = M̄z. (19c)

TB-subsystem (Twist-Vertical Bending coupling subsystem).

δw0 : a55(w′′0 + θ′x)− b1ẅ0 + pz + δpAQz4 V4R
′(y) = 0, (20a)

δφ : a37θ
′′
x + a77φ

′′ − a66φ
(iv) − (b4 + b5)φ̈+ (b10 + b18)φ̈′′ +my + b′w

+ δpAMy
1 V1R

′(y) + δpAMy
3 V3R

′(y) = 0,
(20b)

δθx : a33θ
′′
x + a37φ

′′ − a55(w′0 + θx)− (b4 + b14)θ̈x +mx + δpAMx
1 V1R

′(y)

− (δp + δs)AQz4 V4R(y) = 0,

(20c)

The boundary conditions, for cantilevered beams are

at y = 0:

w0 = φ = φ′ = θx = 0, (21)

and at y = L:

δw0 : a55(w′0 + θx) + δsAQz4 V4 = 0,= Q̄z, (22a)

δφ : a37θ
′
x + a77φ

′ − a′′′66φ+ (b10 + b18)φ̈′ + δsAMy
1 V1 + δsAMy

3 V3 = M̄y,

(22b)
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δφ′ : a66φ
′′ = B̄w, (22c)

δθx : a33θ
′
x + a37φ

′ + δsAMx
1 V1 = M̄x, (22d)

If the actuator is spread over the entire beam span, the traces are δp = 0 and90

δs = 1; otherwise, if the actuator is a single patch, the traces assume the values

δp = 1 and δs = 0. Note that the BE-subsystem and the TB-subsystem are not

entirely independent, since they are coupled by the voltage parameters V3 and

V4.

5. Solution methodology95

The Extend Galerkin’s Method (EGM) [27, 28] is used to discretize the

system. EGM adopts weighting (or shape) functions that need to fulfill only

the essential boundary conditions. Natural boundary conditions do not appear

explicitly in the functional, and are satisfied in a weak sense. Symmetric mass

and stiffness matrices will be obtained for thin-walled beams with CAS lay-ups.

From now on, bold fonts will denote vectors or matrices, with regular fonts

denoting scalar variables. Thus,

u0(y, t) = ΨT
u (y)qu(t), v0(y, t) = ΨT

v (y)qv(t), w0(y, t) = ΨT
w(y)qw(t),

φ(y, t) = ΨT
φ (y)qφ(t), θx(y, t) = ΨT

x (y)qx(t), θz(y, t) = ΨT
z (y)qz(t),

(23)

where the shape functions ΨT
u (y), ΨT

v (y), · · · ΨT
z (y) are required to fulfill only

the essential boundary conditions.

Equations (17)-(19) and (20)-(22) lead to the following discretized equations

of motion,

[M](B,T ){q̈}(B,T ) + [K](B,T ){q}(B,T ) + [A](B,T ){V}(B,T ) = [Q](B,T ), (24)

where the subscript B, T denote the BE-subsystem and TB-subsystem, respec-

tively, and qB = {qTu qTv qTz }T , qT = {qTw qTφ qTx }T , VB = {V2 V3 V4}T ,

14



VT = {V1 V3 V4}T . The expressions for mass matrix M(B,T ), stiffness matrix100

K(B,T ), actuation matrix A(B,T ) and external excitation vector Q(B,T ) are given

in Appendix B.

6. Model validations

The beam simplified model is firstly validated by comparing the vibration

frequency predicted for a composite thin-walled beam with the analytical results105

of Ref. [29] and the experimental data of Ref. [30]. The geometry and material

properties of the cantilever thin-walled box beam of Fig. 1 are specified in Ta-

ble 1. The results, reported in Table 2, show a better agreement of the present

model with experimental data than that of Ref. [29].

Table 1: Details of thin-walled composite box beam for validation [30]

E11 1.42× 1011 N/m
2

Density (ρ ) 1.442× 103 Kg/m
3

E22 = E33 9.8× 109 N/m
2

Width (2ba) 2.268× 10−2 m

G12 = G13 6.0× 109 N/m
2

Depth (2da) 1.212× 10−2 m

G23 4.83× 109 N/m
2

Number of layers (Np) 6

µ12 = µ13 0.42 Layer thickness 1.270× 10−4 m

µ23 0.50 Length (L) 0.8446 m

a Inner dimensions of the cross section.

Table 2: Natural frequency (Hz) for [45]6 CAS lay-up configuration

Mode Exp. [30] Analytical [29] Error (%) Present Error a (%)

1TB 16.67 14.69 -11.9 15.20 -8.8

2TB 96.15 92.02 -4.3 95.09 -1.1

1BE 29.48 25.13 -14.8 26.64 -9.6

a Relative error, (Present− Exp.)/Exp.× 100%.

The piezo-composite actuator model validation is based on the results ob-110

tained for a 1/16th scale blade with NACA 0012 airfoil single-cell cross-section [31].
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Figure 3: NACA0012 airfoil cross-section.

The cross-section geometry is shown in Fig. 3. The AFC fibers are aligned at

+45o and −45o at the blade top and bottom, respectively. The E-glass and

AFC material properties are reported in Table 3. Fig. 4 shows the induced tip

twist angle as a function of the applied voltage, with a good agreement with115

Ref. [31].

7. Static study

The material property (Graphite-Epoxy) and geometric specification for the

thin-walled box beam of Fig. 1 are shown in Table 4. In order to obtain bet-

ter actuating performance [32], the piezo-actuators are manufactured by single120

crystal MFC, whose material property is specified in Table 3. Moreover, the

piezo-composite laminate is distributed over the entire cross-section. The lay-

up configurations (both for host structure and piezo-actuator) can be found in

Table 5.
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Table 3: Material properties of E-glass, AFC and single crystal MFC (S-MFC)

E-Glass [31] AFC [31] S-MFC [32]

E1 (Gpa) 14.8 30.54 6.23

E2 (Gpa) 13.6 16.11 11.08

G12 (Gpa) 1.9 5.5 2.01

µ12 0.19 0.36 0.229

d11 (×10−12 m/V) N/A 381 1896.5

d12 (×10−12 m/V) N/A -160 -838.2

ρ (Kg m−3) 1700 4810 5338.3

Thickness (×10−4 m) 2.032 1.689 17

Electrode spacing (×10−3 m) N/A 1.143 1.7

Table 4: Material property and geometric specification of the host structure [33, p. 131]

E11 206.8× 109 N/m
2

Width (2ba) 0.254 m

E22 = E33 5.17× 109 N/m
2

Depth (2da) 0.0681 m

G12 = G13 2.55× 109 N/m
2

Wall thickness (h) 0.0102 m

G23 3.10× 109 N/m
2

Number of layers (Np) 6

µ12 = µ13 = µ23 0.25 Layer thickness 0.0017 m

ρ 1.528× 103 Kg/m
3

Length (L) 2.032 m

a The length is measured on the mid-line contour.

7.1. Piezo-actuator coefficients study125

The non-zero CAS configuration piezo-actuator coefficients of Eq.(16) are

depicted in Figs. 5 and 6 as a function of the piezo-actuator ply-angle θp. Two

distinct trends emerge from the results of Figs. 5 and 6.

The first trend characterizes the bending coefficients (AMx
1 , AMz

3 ) and the

extension coefficients (ATy2 , ATy4 ). The coefficients increase from θp = 0o to130

θp = 90o, then decrease until θp = 180o. Their values equal zero when θp ≈ 40o

and ≈ 140o. Note that, because of the reverse definition of θx (see Fig. 1),

coefficients AMx
1 and AMz

3 present the exactly opposite trends.
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Figure 4: Tip deflection

The second trend characterizes the transverse shear coefficients (AQx2 , AQz4 )

and the twist coefficients (AMy
1 , AMy

3 ). The previous groups of coefficients have135

a symmetric dependence centered around θp = 90o. These coefficients, instead,

show an anti-symmetric trend around θp = 90o. They are equal to zero when

θp = 0o, 90o, 180o, with the maximum absolute values reached for θp ≈ 42o and

θp ≈ 138o.

Table 5: Lay-up configurations for beam with CAS lay-up [unit:deg].

Flanges Webs

Material Layer Top Bottom Left Right

Piezo-actuator CAS (7) a [θp] [θp] [θp] [θp]

Host structure CAS (1-6) [θh]6 [θh]6 [θh/− θh]3 [θh/− θh]3
a The piezo-actuator is positioned of the outer side of the laminate.
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7.2. Actuation performance study140

In this subsection, the relationship between actuation performance and volt-

age parameters (V1, V2, V3, V4) is specifically discussed.

7.2.1. TB-subsystem

The equations governing the TB-subsystem in Eqs. (20), have the voltage

vector VT = [V1, V3, V4]T as forcing parameters. Specifically, the voltage pa-145

rameter V1 influences both twist and bending, while V3 and V4 work for twist

and transverse shear, respectively. Note that the elastic coupling of the struc-

ture has a significant effect on the actuation performance. The twist-bending

elastic coupling in Eq. (14b) is related to the stiffness coefficient a37. Two typ-

ical host structure ply-angles, viz., θh = 15o and θh = 75o, are considered here.150

The corresponding values for a37 were computed in Ref. [26], i.e., a37 equals

−4.05× 103 N.m2 and 3.92× 105 N.m2, respectively. Thus, the elastic coupling

can be ignored for θh = 15o, while it is significant for θh = 75o.

Figures 7 and 8 depict the tip deflections obtained from V1 = 1000 V (black

curve), V3 = 1000 V (red curve) and V4 = 1000 V (green curve) for weak and

strong elastic coupling cases, respectively. The non-dimensional quantities are

defined as

û0 =
u0

2b
, v̂0 =

v0

L
, ŵ0 =

w0

2b
, φ̂ = φ, θ̂x = θx, θ̂z = θz. (25)

It can be seen that the voltage parameter V4, which is related to transverse-155

shear-actuation can be ignored in both cases. In addition, the voltage parameter

V1 dominates the TB-subsystem actuation performance. Note that, for strong

elastic coupling case in Fig. 8, twist-actuation shows better performance on

bending deflection than direct bending-actuation.

7.2.2. BE-subsystem160

According to the governing equations (17) of the BE-subsystem, voltage V2

is related to both extension and transverse shear actuation, while V3 and V4 are
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Figure 7: Beam tip deflections of the TB-subsystem ( θh = 15o) as a function of the piezo-

actuator ply-angle θp.
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related to bending and extension actuation, respectively. The results obtained

for two typical host structure cases, θh = 15o and θh = 75o, are reported in

Figs. 9 and 10.
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Figure 9: Beam tip deflections of BE-subsystem ( θh = 15o) as a function of the piezo-actuator

ply-angle θp.

165

The beam extension stiffness coefficient a11 is much higher than the other

terms. Thus, the extension actuation induced by voltage parameter V4 can be

ignored, see both Figs. 9 and 10. The voltage V2 has a significant effect on

actuation performance for both cases: the transverse-shear-actuation, weak in

the TB-subsystem, is much stronger in the BE-subsystem. One reason for this170

is that the size of the flange-actuator-pair is almost four times than that of the

web-actuator-pair. In addition, the direct bending actuation induced by voltage

V3 (red line) in the θh = 75o case in Fig. 10 is much weaker than that in the

θh = 15o case in Fig. 9.

7.2.3. Conclusion175

In a nutshell, the TB-subsystem is dominated by V1 for the weak elastic

coupling case (see Fig. 7), while the BE-subsystem is dominated by V2 when
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Figure 10: Beam tip deflections of BE-subsystem ( θh = 75o) as a function of the piezo-

actuator ply-angle θp.

the elastic coupling effect is strong (see Fig. 10). As a result, although the TB-

subsystem and the BE-system are actually coupled by V3 and V4, it is nonethe-

less reasonable to treat these two subsystems as independent.180

8. Dynamic control: negative velocity feedback control

8.1. Governing equations including negative velocity feedback control

A negative velocity feedback control is considered here. Since we are in-

terested in the aeroelastic control of an aircraft wing we choose to focus this

investigation into the torsion/bending (TB) subsystem. If we assume the sensor

can offer the velocity information at y = Ys, then actuating voltage vector VT

for the negative velocity feedback control can be computed

VT =


V1

V3

V4

 =


−k1[αk1

˙̂
φ(Ys, t) + βk1

˙̂
θx(Ys, t)]

−k3
˙̂
φ(y, t)

−k4[αk4
˙̂w0(Ys, t) + βk4

˙̂
θx(Ys, t)]

 = P(Ys)q̇T (t), (26)
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where, ki (i = 1, 3, 4) are the feedback control gains, αki and βki are weighting

coefficients of the control gains, and matrix P is defined in Appendix B. As a

result, the closed-loop discretized system Eq. (24) becomes

MT q̈T (t) +ATPq̇T (t) + KTqT (t) = QT (t). (27)

8.2. Control gain weighting coefficients discussion

The first step in designing the controller is to choose suitable control weight-

ing coefficients. Since the flapping and twisting motions usually have a signifi-

cant phase difference, we can simplify the control system by considering only two

cases for the voltage parameter V1, i.e., the bending control (αk1 = 0, βk1 = −1)

and the twist control (αk1 = 1, βk1 = 0). Furthermore, as evidenced by the static

study, the shear force induced by V4 is immaterial in the TB-subsystem. As

a result, the velocity feedback Eq. (26) can be simplified to a combination of

these two cases: the Bending Control Methodology,

VT =

V1

V3

 =

 k1θ̇x

−k3φ̇

 (28)

and the Twist Control Methodology

VT =

V1

V3

 =

−k1φ̇

−k3φ̇

 (29)

The static study in Section 7.2.1 evidenced a significant effect of the twist-

bending elastic coupling on the actuation performance. Thus, the weak and185

strong elastic coupling cases are separately investigated here. Bending control

is considered first because twist control has a weak bending authority for the

weak elastic coupling case. Fig. 11 depicts the damping ratios obtained for the

first four modes of the weak elastic coupling case θh = 15o. The figure allows to

easily identify the positive damping area 90o 6 θp 6 138o. The first four modes190

are denoted as Flap1, Flap2, Twist1 and Flap3, respectively. Since the twist-

bending coupling can be ignored in the first four modes, the damping ratios of

the flapping and the twist modes follow the trend of coefficients AMx
1 and AMy

3

variation in Fig. 5, respectively.
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Figure 11: Damping ratios as a function of piezo-composite ply-angle θp; bending control

methodology, ki = 100, θh = 15o.

Considering the strong twist-bending elastic coupling case of θh = 75o, the195

results obtained with the bending control methodology and the twist control

methodology are shown in Figs. 12 and 13, respectively. Note that, due to the

strong elastic coupling, there will be no pure bending mode or twist mode for the

TB-subsystem. The twist control methodology is more efficient, especially for

the third mode (3TB), whose modal shape is dominated by the twist component.200

This is because the negative twist damping will be induced by direct bending

actuation via twist-bending elastic coupling, see Fig. 12.

In a nutshell, the optimal control strategy for the θh = 15o case is the

bending control methodology with θp ≈ 120o, while for the θh = 75o case is the

twist control methodology with θp ≈ 135o.205

8.3. Optimized by tailoring

It is clear that the twist-bending elastic coupling has a significant effect

on control efficiency. Thus, in order to optimize the control performance by

host structure tailoring, the effect of the ply-angle θh at the vibration control
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authority is investigated.210

Figure 14 depicts the frequencies of the first four modes as a function of angle

θh. A typical mode cross phenomenon between the third and fourth modes can

be found in Fig. 14. In order to avoid misunderstanding in the following study,

we denote 3TB and 4TB the 4th and 3rd modes in the mode crossed range

33o < θh < 60o, respectively. The frequency of mode 1TB increases from215

θh = 0o to θh = 90o; modes 2TB and 4TB reach their maximum frequency for

θh ≈ 80o.

In order to compare the bending and twist control methodologies, θp = 120o

in piezo-actuator is adopted here, since this angle allows to achieve compara-

ble bending moment and twist authorities. The damping ratios obtained with220

the bending and the twist control methodology are shown in Figs. 15 and 16,

respectively. A sudden change around the mode cross points θh ≈ 33o and

θh ≈ 58o can be found in Figs. 15 and 16. Especially near the point θh ≈ 58o in

Fig. 15, a jump phenomenon is observed. This is because near this point, not

only the eigen-frequencies of the 3TB and 4TB modes are almost the same, but225
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their mode shapes are similar as well. Outside of the mode cross regions, the

damping ratios for both control methodologies increase for the 1TB, 2TB and

4TB modes, and decreases for the 3TB mode. Furthermore, for bending con-

trol methodology of Fig. 15, mode 3TB has a negative damping above θh ≈ 80o,

and the damping ratios of modes 1TB, 2TB and 3TB significantly decrease near230

θh = 90o.

The absolute value of the first mode (1TB) eigenvalue real part is plotted

as a function of θh in Fig. 17. The corresponding curves for the 2TB, 3TB and

4TB modes are reported in Fig. 18. The plots of Figs. 17 and 18 can be splitted

into two different regions, i.e. Area 1 for 0 < θh < 45o and Area 2 for 690 <235

θh < 87o; these regions are characterized by weak and strong twist-bending

elastic coupling, respectively. In Area 1, the twist control methodology (red

lines) has almost no flapping damping; thus, the bending control methodology

(black lines) should be chosen. Within Area 2, instead, the flapping damping

induced by the elastic coupling allows to achieve a damping that is higher than240

that of the direct flapping control; thus, the twist control methodology would

be a better choice here.

8.4. Vibration control under an impulsive load

An impulsive load with coefficients pz = my = 1, and mx = 0 in Eqs. (20) is

applied to the θh = 75o structure. Figs. 19 and 20 depict the time responses of245

the tip flapping displacement ŵ0(L, t) and twist rotation φ̂(L, t), respectively.

Piezo-actuator θp = 90o with bending control methodology, that was chosen

in Refs. [14, 15, 24], is compared with the piezo-actuator θp = 135o with twist

control methodology. From the results of Figs. 19 and 20, it can be seen that the

twist control shows a significant advantage both for the flapping and twisting250

motions.

8.5. The influence of position of piezo-actuator

Investigating the effect of size and position of piezo-actuators allows to

strike a balance between their cost and efficiency. As reported by Librescu
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ply-angle θh; θp = 120o, ki = 100.
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Figure 19: Tip flapping displacement ŵ0 in TB-subsystem (θh = 75o) subject to an impulse

load; ki = 100.
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Figure 20: Tip twist rotation φ̂ in TB-subsystem (θh = 75o) subject to an impulse load;

ki = 100.
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et al [20, 21], twist-bending elastic coupling is beneficial for the aeroelastic re-255

sponse behavior. Thus the piezo-actuator θp = 135o with twist control method-

ology and strong elastic coupling host structure θh = 75o is considered here.

The size of the piezo-actuator is first fixed at 10% of the beam span, and the

sensors are applied at the outer end of the piezo-actuator, see Fig. 21. The

resulting first four modes damping ratios are depicted in Fig. 22 as a function260

of the piezo-actuator position. When the piezo is positioned between 48% and

67% of the wing span, the 4TB mode damping is negative. A good compromise

is achieved at 40% of the span. However, for a large size piezo-actuator, e.g.,

70% length of span see Fig. 23, the damping ratios of the first four modes are

all positive. In a nutshell, the optimized position for piezo-actuator is around265

central point of the span.

9. Summary and conclusions

A geometrical nonlinear fiber-reinforced composite thin-walled beam theory

incorporating piezo-composite actuators is developed and used to model a smart

aircraft wing. A circumferential asymmetric stiffness (CAS) lay-up configura-270

tion is adopted in order to split the linear system into two subsystems, viz.,
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the lateral bending-extension coupled subsystem and the twist-vertical bend-

ing coupled subsystem. A simple negative velocity feedback control algorithm

is proposed, and used to asses how the piezo-actuator and the fiber-reinforced

host structure elastic tailoring influence the vibration suppression control. The275

main conclusions are that

1. the twist bending elastic coupling of the host structure is beneficial for

active damping performance;

2. the transverse shear force actuation is immaterial in TB-subsystem, and

the inducing voltage V4 can be ignored in dynamical control;280

3. for the strong twist elastic coupling case, the twist control presents a better

flapping control efficiency than the direct bending control;

4. optimizing the size and position of the piezo-actuator can improve the

damping control authority and reduce the overall cost of the structure.
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Appendix A. The piezo-actuator coefficients AF
i285

The subscript i = 1, 2, 3, 4 of piezo-actuator coefficients AFi denote the op-

eration

AF1 =

∫
T

AFT d s−
∫
B

AFB d s, AF2 =

∫
T

AFT d s+

∫
B

AFB d s, (A.1a)

AF3 =

∫
L

AFL d s−
∫
R

AFR d s, AF4 =

∫
L

AFL d s+

∫
R

AFR d s, (A.1b)

where T,B,L,R denotes top, bottom, left and right wall, respectively. The

definitions of AF are given as

ATy =

Np∑
k=1

(
eyy −

A12

A11
ess

)
[n(k) − n(k−1)]

ĥ
R(k)(s), (A.2a)

AMz =

Np∑
k=1

{
x

(
eyy −

A12

A11
ess

)
[n(k) − n(k−1)]

ĥ
R(k)(s)

− d z

d s

[
1

2
eyy[n(k) + n(k−1)]−

B12

A11
ess

]
[n(k) − n(k−1)]

ĥ
R(k)(s)

}
,

(A.2b)

AMx =

Np∑
k=1

{
z

(
eyy −

A12

A11
ess

)
[n(k) − n(k−1)]

ĥ
R(k)(s)

+
dx

d s

[
1

2
eyy[n(k) + n(k−1)]−

B12

A11
ess

]
[n(k) − n(k−1)]

ĥ
R(k)(s)

}
,

(A.2c)

AQx =

Np∑
k=1

dx

d s

(
esy −

A16

A11
ess

)
[n(k) − n(k−1)]

ĥ
R(k)(s), (A.2d)

AQz =

Np∑
k=1

d z

d s

(
esy −

A16

A11
ess

)
[n(k) − n(k−1)]

ĥ
R(k)(s), (A.2e)

ABw = −
Np∑
k=1

{
Fw

(
eyy −

A12

A11
ess

)
[n(k) − n(k−1)]

ĥ
R(k)(s)

+ a(s)

[
1

2
eyy[n(k) + n(k−1)]−

B12

A11
ess

]
[n(k) − n(k−1)]

ĥ
R(k)(s)

}
,

(A.2f)
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Appendix B. Matrix via the Extended Galerkin’s Method

Mass matrix.

MB =

∫ L

0


b1ΨuΨ

T
u 0 0

b1ΨvΨ
T
v 0

Symm (b5 + b15)ΨzΨ
T
z

d y, (B.1)

M =
∫ L

0


b1ΨwΨT

w 0 0

(b4 + b5)ΨφΨ
T
φ + (b10 + b18)Ψ′φΨ

′T
φ 0

Symm (b4 + b14)ΨxΨ
T
x

d y.

(B.2)

Stiffness matrix.

KB =

∫ L

0


a44Ψ

′
uΨ
′
u
T

a14Ψ
′
uΨ
′
v
T

a44Ψ
′
uΨz

T

a11Ψ
′
vΨ
′
v
T

a14Ψ
′
vΨz

T

Symm a22Ψ
′
zΨ
′
z
T

+ a44ΨzΨz
T

d y, (B.3)

KT =
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a55Ψ
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T
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′
x
T

Symm a33Ψ
′
xΨ
′
x
T

+ a55ΨxΨx
T
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(B.4)
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Piezo-actuator Matrix.

AB =

∫ L

0


AQx2 ΨuR

′(y) 0 0

ATy2 ΨvR
′(y) 0 ATy4 ΨvR

′(y)

−AQx2 ΨzR(y) AQz3 ΨzR
′(y) 0

d y, (B.5)

AT =

∫ L

0


0 0 AQz4 ΨwR

′(y)

AMy
1 ΨφR

′(y) AMy
3 ΨφR

′(y) 0

AMx
1 ΨxR

′(y) 0 −AQz4 ΨxR(y)

d y, (B.6)

External forces vector.

QB =


∫ L

0
pxΨu d y + Q̄xΨu(L)∫ L

0
pyΨv d y + T̄yΨv(L)∫ L

0
mzΨz d y + M̄zΨz(L)

 , (B.7)

QT =


∫ L

0
pzΨw d y + Q̄zΨw(L)∫ L

0
(my + b′w)Ψφ d y + [M̄yΨφ(L) + B̄wΨ′φ(L)]∫ L

0
mxΨx d y + M̄xΨx(L)

 . (B.8)

Control matrix P in Eq. (26).

P =


0 −k1α

k
1Ψφ

T (Ys) −k1β
k
1 Ψx

T (Ys)

0 −k3Ψφ
T (Ys) 0

−k4α
k
4

Ψw(Ys)
T

2b
0 −k4β

k
4 Ψx

T (Ys)

 (B.9)
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