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Abstract. Human-Robot Collaboration is increasingly prominent in
people’s lives and in the industrial domain, for example in manufacturing
applications. The close proximity and frequent physical contacts between
humans and robots in such applications make guaranteeing suitable levels
of safety for human operators of the utmost importance. Formal verifi-
cation techniques can help in this regard through the exhaustive explo-
ration of system models, which can identify unwanted situations early in
the development process. This work extends our SAFER-HRC method-
ology with a rich non-deterministic formal model of operator behaviors,
which captures the hazardous situations resulting from human errors.
The model allows safety engineers to refine their designs until all plausi-
ble erroneous behaviors are considered and mitigated.

Keywords: Cognitive models · Formal verification · Task-analytic
models · Human errors · Safety analysis · Human-robot collaboration

1 Introduction

Collaborative robot applications necessitate close proximity and possible phys-
ical contacts between operators and robots, due to the intrinsic nature of the
activities they execute together. Thus, a central requirement in the design of
this kind of applications is an assessment that identifies hazards and eliminates
or mitigate risks. While informal assessment techniques such as HAZOP [28]
might overlook some hazards; formal verification techniques are more reliable
as they exhaustively check whether a system—modeled through a mathemati-
cal notation—satisfies required properties (e.g., safety properties), or has incom-
pletenesses and inconsistencies [5]. However, modeling collaborative applications
requires to consider the human behavior and its non-determinism caused by
autonomous judgments and improvising actions [43].

In this paper we extend the SAFER-HRC methodology introduced in [3,4] for
the assessment of the safety of Human-Robot Collaborative (HRC) applications,
by improving the formal model of operators on which the methodology relies.
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Unlike classic hazard identification approaches such as FTA [27] and FMECA
[26] which cannot deal with unpredictable human behavior, the proposed model
takes into account both normative human behavior and a number of possible
deviations. Thus, previously unrecognized hazardous situations are detected.

Two common approaches to model human operators in system models are:
(i) task-analytic models, which represent the observable manifestation of oper-
ators’ behavior; and (ii) cognitive models, which instead describe the cognitive
process behind the operator’s observable behavior [11]. In the first approach
tasks are represented as hierarchies of actions whose execution sequence is mod-
eled by if-then logic rules, and the operator behavior is part of the overall model
of the system. The latter techniques, instead, capture the knowledge used by the
operator to execute the task. The human cognitive state is usually described by
a set of variables that change with respect to the other elements in the system,
following a set of logical production rules. Cognitive models, unlike task-analytic
approach, highlight the erroneous behaviors of the operator—i.e., human activ-
ities that do not achieve their goals [39]—and provide clues about why such
behavior arose, and flaws in the design that allow their occurrence [16]. These
clues can be used to refine the system design to reduce the likelihood of operator
errors. Pairing a hierarchical task model with a human cognitive architecture
has been used to determine the role of operators in the system performance or
failure [40]. Cognitive models can be integrated in a larger formal model and
evaluated as a part of the system [8].

In [3,4] we formalized collaborative systems to verify the physical safety of
human operators. We used a task-analytic approach that models collaborative
systems in terms of three main modules—Operator, Robot and Layout—and
breaks down tasks into atomic actions. In this work, we combine the previous
model with a cognitive model capturing erroneous human behavior driven from
the operator’s perception of the environment and mental decisions. Thus, we can
describe likely errors due to certain characteristics that are frequently found in
human operators. To this end, the cognitive-driven reasons and phenotypes of
errors are treated as black boxes, and their consequences leading to hazardous
situations are analyzed in terms of human safety. The proposed methodology
captures human errors and inspects harmful situations caused by those errors.

This paper is structured as follows: Sect. 2 discusses related works on the for-
malization of human behaviors, especially errors. Section 3 introduces SAFER-
HRC and its extension with a model of operators’ erroneous behaviors. Section 4
shows how the improved model helps detect new, previously unrecognized haz-
ardous situations. Section 5 discusses some open issues and concludes.

2 Related Work on Human Behavior and Errors

Cognitive architectures such as SOAR [34], ACT-R [2,42], OCM [14,35] and
PUM [45] have been widely-used to model the normative and erroneous human
behavior. SOAR and ACT-R cannot be used in formal verification approaches
since they lack a formal semantics, whereas OCM is known to be suitable only for
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designing air traffic control applications. PUM, instead, has been used in a wider
range of applications [12,13,18,44], where the model of the operator includes a
set of goals and a set of actions to achieve them. The operator’s knowledge of how
to execute actions is modeled as a set of rules. PUM models differentiate between
mental and physical actions: first the operator decides to execute an action; then,
the action eventually starts. PUM models can be used in different domains, such
as Collaborative Robotics. Nevertheless they should be able to replicate human
erroneous behavior, so that a verification process can detect the hazardous sit-
uations raised by them. Currently, model-based techniques that include human
errors focus on interface devices and not physical collaboration and contacts
[10]. For example, Physiograms [19] model interfaces of physical devices and
[9,36] study the impacts of miscommunication in human-human collaboration
while interacting with critical systems. [7,38] explore human deviation from cor-
rect instructions using ConcurTaskTrees [37]. [41] upgrades the SAL cognitive
model with systematic errors taken from empirical data. Nevertheless, using data
related to specific case studies can lead to the loss of generality. [17,19,33] are
other examples that combine cognitive and formal models to capture erroneous
human behaviors in interactions with devices.

No generally accepted classification of human errors is available. [43] divides
errors into two main groups: location- and orientation-related. The former hap-
pen when an action is related to multiple locations, or if there are two actions
which take place in different locations within the task. The latter happen, for
example, when the operator needs to hold a workpiece while it is being screw-
driven on a pallet: even if the location is correct, the action might not conclude
due to the wrong orientation of the workpiece. [25], instead, classifies the simple
phenotypes of human errors into: repetition of an action, reversing the order of
actions, omission of actions, late actions, early actions, replacement of an action
by another, insertion of an additional action from elsewhere in the task, and intru-
sion of an additional unrelated action. [22] manually introduces these phenotypes
into task specifications, which suffers from many false negatives. The author iden-
tifies complex phenotypes created by the combination of simple ones: (i) under-
shooting, which occurs when an action stops too early; (ii) side tracking, where a
segment of unrelated action is carried out, then the correct sequence is resumed;
(iii) capturing, where an unrelated action sequence is carried out instead of the
expected one; (iv) branching, where the wrong sequence of actions is chosen; (v)
overshooting, where the action carries on past its correct end point by not recog-
nizing its post-conditions. Complex phenotypes are combinations of simple ones,
as shown in Fig. 1 (where “wrong place” refers to the action’s temporal position in
the execution sequence, not to a location in the layout). [16] proposes to include
in the model strong enough design rules so that cognitively plausible erroneous
behavior is not allowed, or is at least is unlikely. Further, authors in [15] propose
a framework for reasoning about human-in-the-loop, to identify potential causes
for human failure in human-automation interface applications. They have also
explored the role of personal variables such as knowledge, experience, the ability
to complete recommended actions (self-efficiency), effectiveness of those actions
(response-efficiency) and operator trust in them.
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Error Mode

Simple
Phenotype

Complex
Phenotype

Actions in wrong place Actions at wrong time Actions of wrong type
Actions not
included in

current plans

Repetition Reversal Omission Delay Premature action Replacement Insertion Intrusion

Restart Jumping Undershoot Side-tracking Capture Branching Overshoot

Fig. 1. A taxonomy of erroneous actions phenotypes, taken from [22]

To conclude this section, we remark that some works use probabilistic models
to model human operators [20,23,32]. In this vein, [21] uses probability distrib-
utions to express human behavior, where distribution functions capture factors
such as fatigue and proficiency. However, no validated data from live experiments
with real users have been made available, and the article mentions that fictional
data were used in order to simulate a distribution over erroneous human behav-
ior. In this work, we do not use probabilistic models to capture human behaviors
mainly for two reasons. The first one is a lack of data concerning realistic values
for such probabilities. The second is that in our approach the operator model
is part of a bigger one that is used to perform the safety analysis of systems.
The main aim of the overall model is to identify hazardous situations (including
those caused by human errors) and to define suitable Risk Reduction Measures
(RRMs, see Sect. 3) to reduce their resulting risk. The goal is to eventually intro-
duce relevant RRMs for every erroneous situation that the safety engineers deem
relevant, regardless of their probability value. Nevertheless, once the causes of
human errors are identified and categorized (as in Sect. 3), one could evaluate
the corresponding probabilities of the different error causes. This can help refine
the design by defining more efficient and relevant RRMs.

3 Operator Model

The SAFER-HRC methodology [3,4] hinges on a formal model of HRC appli-
cations that relies on a discrete notion of time, and on finite discretizations of
the notion of space and of the scalar properties of systems—e.g., velocity. Let us
first provide some background on the techniques on which the model is based.

Preliminaries. The SAFER-HRC formal model is expressed through the TRIO
metric temporal logic, which features an underlying linear temporal structure
and a quantitative notion of time [24]. TRIO formulae are built out of the usual
first-order connectives, operators, and quantifiers, as well as a single basic modal
operator, called Dist, that implicitly relates the current time, to another time
instant: given a time-dependent formula φ and a (arithmetic) term t indicating
a time distance (either positive or negative), formula Dist(φ, t) specifies that
φ holds at exactly t time units from the current one. While TRIO can exploit
both discrete and dense time domains, in this work we assume the standard
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Table 1. List of derived TRIO operators

Operator Definition Meaning

Futr(φ, d) d > 0 ∧ Dist(φ, d) φ occurs exactly at d time units in the future

Past(φ, d) d > 0 ∧ Dist(φ, −d) φ occurred exactly at d time units in the past

AlwF(φ) ∀t(t > 0 ⇒ Dist(φ, t)) φ holds always in the future

Until(φ, ψ) ∃t(Futr(ψ, t) ∧ ∀t′(0 <
t′ < t ⇒ Dist(φ, t′)))

φ will hold until ψ occurs

SomF(φ) ∃t(t > 0 ∧ Dist(φ, t)) φ occurs sometimes in the future

SomP(φ) ∃t(t > 0 ∧ Dist(φ, −t)) φ occurred sometimes in the past

model of the nonnegative integers N as discrete time domain. TRIO defines a
number of derived temporal operators from the basic Dist, through propositional
composition and first-order logic quantification. Table 1 defines some of the most
significant ones, including those used in this work. The satisfiability of TRIO
formulae is in general undecidable. SAFER-HRC uses a decidable subset of the
language, which can be handled by automated verification tools, such as the Zot
bounded satisfiability checker [1]. Zot is used to check the model of the system
against desired safety properties. If the property is not satisfied, Zot provides a
counterexample witnessing a system execution that violates the property.

Basic Model. The proposed model for HRC applications includes three main
modules: operator (O), robot (R), and layout (L). ISO15066 [31] contains bio-
mechanical studies that divide the human body into 26 sections according to
their pain tolerance and being injury prone. In consistency to this standard,
O describes all of the identified body sections, the relative constraints concern-
ing their movements, and their position and velocity at each time instant. R
divides robots into their components (arms and end-effectors), and captures the
velocity, position and force of each part at each time instant. The values for
velocity and force range over the quantized set {none, low,mid,high}. These
values will later be used to calculate the risk value of the system. The layout
L of the workspace is partitioned into a finite number of regions, each with
a defined shape, material and an attribute stating the presence of obstacles
({occluded, clear, free,warning}). At each time instant, the position of each ele-
ment of R and O corresponds to the region in which it is located.

SAFER-HRC aims to identify hazardous situations—as described in [29]—by
providing their formalization, compute a quantized risk (∈ {0, 1, 2}), and define
corresponding Risk Reduction Measures (RRMs) in conformance with [30]. Each
HRC task is broken down into a set of elementary actions, which are the smallest
possible functional units and are executed either by operators (the performer of
the action is the operator: ai,actor =op) or by robots (the performer is the robot:
ai,actor = ro). Each action is associated with a pair 〈preC, postC〉 of pre- and
post-conditions, which are formalized through logical constraints capturing the
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action’s temporal relations with other actions (e.g., precedence). In each instant,
the state of an action is described by one of the following atomic formulae:

– ai,sts=ns (not started): state in which not all pre-conditions are true, yet.
– ai,sts=wt (waiting): a state of human actions only, in which all pre-conditions

are true, but the action has not yet started. It allows for the introduction of
delays or hesitations in human actions.

– ai,sts = exe (executing): running state, triggered by the validity of all pre-
conditions.

– ai,sts=sfex (safe executing): special running state, triggered by the activation
of at least one RRM. This means that there are currently detected hazards
in the system but their consequences are being mitigated by RRMs without
interrupting the execution of the action.

– ai,sts = hd (hold): exception state, entered upon an explicit suspension of
execution due to a request from the operator. When the state is active, the
execution is momentarily paused, although some RRMs may be enabled.

– ai,sts = dn (done): regular termination state, triggered by the validity of all
post-conditions.

– ai,sts =exit: whenever the desired safety properties are violated in any state
value, the action quits (together with all other actions). The transition may
be triggered by situations (e.g., hazards and risks) detected in other actions.

The proposed model also includes the formalization of two recognized types
of physical hazards, according to [31]: (i) Transient (Tr) ones, which are fast,
impact-like contacts, where body parts are hit and then recoil because of the
kinetic energy transferred to the body; and (ii) Quasi-static (Qs) ones, which are
sustained contacts of body parts against a constraining object with continuous
energy flow from the robot. SAFER-HRC introduces two types of RRMs to treat
the detected hazards: Speed and Separation Monitoring (SSM) and Power and
Force Limitation (PFL) to avoid physical contacts or limit their consequences,
respectively. The former type maintains the robot speed constantly low when the
robot works at a distance less than a predefined threshold from the operator;
the latter type, instead, limits the value of the robot force.

The original version of the O module focused more on modeling the norma-
tive and expected behavior of the operator. In this paper, our aim is to model
the operator behavior more realistically, and to capture also situations such as
unintended behavior—errors or misuses. The operator model has been extended
by including reasonably predictable human errors, to detect hazards that they
cause which have been overlooked in the basic model.

Extended Operator Model: Formal Cognitive Model. We now present
an extension of module O of the model proposed in [3]. The new model allows for
the generation of traces that include human errors and encompasses functional
and behavioral human modeling. Since the model is used to generate errors and
to analyse the effects of errors on human safety, it focuses on the consequences
of human errors rather than their causes. We explain below how phenotypes of
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Fig. 2. Parallel composition of execution and erroneous state of each action

erroneous human behavior are taken into account, but we leave the study of
genotypes for future work. The model relies on the following assumptions.

(i) Operator actions are fully non-deterministic and are rationally possible
to be taken by the operator as their pre-conditions turn true. Every action has
a timeout Δ within which the operator needs to decide whether to start the
execution of the action after its pre-conditions hold.

(ii) Each action has a corresponding preceding mental decision opActsi, which
works as its trigger. When opActsi becomes true, it means that in the next
instant the operator starts executing action ai. An action which is waiting starts
executing right after when the operator makes her mental decision to start acting.
Each action has also a corresponding mental decision about stopping (ending,
pausing) its execution, captured by predicate opStopsi. These two predicates
capture the perception of the operator from processing the state of her envi-
ronment, and the decisions (starting/stopping) she will make according to those
perceptions. The decision of the operator to start and end an action is due to
what she may see, touch or feel. Instead of modeling each of these causes sepa-
rately, we model the decision itself directly.

(iii) Additional states for operator actions are introduced describing if the
execution state is normative (nrm) or erroneous (err). Figure 2 shows the state-
chart capturing the evolution of a single action, which can be in one of the
possible execution states {exe, sfex, hd, exit} and at the same time in one of
{err,nrm}.

(iv) The number of possible human errors is bounded, to avoid making the
model too complex and also to avoid generating a lot of false positive situations.

Formalizing Human Errors. Given the classification of [43] and the pheno-
types introduced in [25], we categorize human errors in three main types:

1. Time-related errors (errTP ), which occur when the operator does not follow
the correct temporal ordering of actions. Eventually these errors lead to an
instance of one of the phenotypes introduced in Fig. 1.
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Second-order
causes

First-order
causes

Error types

Inattentive
Untrained
Rash

...

Lack
of skill,

attention
or vigor

1. Temporal
2. Spatial
3. Goal

O
Model

Hazardous
Histories

Normative
Histories

Fig. 3. Types of error that occur due to first-order causes related to the operator’s
state during execution

2. Space-related errors (errS), that happen when the operator is in the wrong
L region or places the instruments in the wrong regions.

3. Goal-related errors (errG), that arise when the operator is in the right spot
to execute an action and starts the execution with no time-related error, but
she does not follow instructions correctly and the action is performed poorly.
This happens more frequently when the operator is untrained and unskillful.

An error can appear due to two different layers of motives: first-order and second-
order causes. Errors originate directly from first-order causes, which are the lack
of at least one of the following factors: skill (knowledge + experience + trust in
design), attention or vigor. First-order causes themselves originate from the state
of the operator, who can be fatigued, inattentive, unaware of the instructions,
rash, etc. The goal of this work is to enrich the list of detected hazards, and to
this end considering only first-order causes is enough. Second-order causes, on
the other hand, are less relevant during the process of identifying new instances
of hazardous situations and assessing their corresponding risks. The relations
between errors and their first- and second-order causes are shown in Fig. 3. In
the rest of this section we illustrate how the formal model takes human errors
into account and represents the situations that can arise because of them. In fact,
human errors must be formalized and included in the model to systematically
generate and verify them during application of the SAFER-HRC methodology.

1. Time-related Errors happen when the operator manipulates the expected
temporal order of actions and creates an unwanted situation.

errTP i ⇔ Repetitioni ∨ Omissioni ∨ Latei ∨ Earlyi ∨ Intrusioni (1)

Our proposed model formalizes each phenotype introduced in [25] and listed in
Fig. 1 through the formulae below. Implicitly, since we are dealing with operator
errors, constraint ai,actor =op is assumed in all the following formulae.

The model captured in module O does not force the operator to start another
action or remain idle after executing an action. Consider for example the case
(see Sect. 4) where the operator should prepare the jigs and fixtures before the
robot starts moving towards the pallet. If the operator repeats the preparation
for other jigs or continues to play with jigs after they are already in place, there
could be a collision between the operator’s hand and the robot end-effector. The
formula below formalizes an erroneous repetition of an action i by stating that
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this occurs when the action is currently done and either it was just completed
without the operator acknowledging this (i.e., Past(¬ai,sts=dn ∧ ¬opStopsi, 1)
holds), or the operator decides to perform it again (i.e., opActsi holds).

Repetitioni ⇔ ai,sts=dn ∧ (Past(ai,sts �=dn ∧ ¬opStopsi, 1) ∨ opActsi) (2)

The cases of reversed and replaced actions in the temporal model are actu-
ally covered by the formalization of early/late actions presented below. To allow
for the wrong sequencing of operator actions, the corresponding pre-conditions
are looser than those for actions executed by robots. In fact, whereas the pre-
condition for a robot action typically includes a list of other actions that must
have been completed, this does not occur for operator actions, which can be
executed as soon as the operator is in the right area and has the required tools.

An action ai is omitted if the operator never executes it, thus predicate
opActsi is never true (AlwF(¬opActsi) holds). Consequently, the status of ai will
always remain ns or wt in the future (i.e., AlwF(ai,sts=wt ∨ ai,sts=ns) holds),
which prevents the execution of robot actions whose pre-conditions require
the termination of ai. Subformula SomP(Lasted(ai,sts = wt,Δ)) states that for
action i to be considered omitted it must have previously been in the waiting
state for at least Δ time units—otherwise it might simply be the case that not
enough time has been given the operator to start it.

Omissioni ⇔AlwF(¬opActsi ∧ (ai,sts=wt ∨ ai,sts=ns)) ∧
SomP(Lasted(ai,sts = wt,Δ))

(3)

An action i is delayed (i.e., predicate Latei holds) if the operator starts
executing it (i.e., opActsi holds), and the timeout Δ to start the action after it
was enabled has already expired sometimes in the past.

Latei⇔opActsi ∧ SomP(Lasted(ai,sts = wt,Δ)) (4)

Action i is prematurely executed (i.e., Earlyi holds) when its pre-
conditions are not yet satisfied (it is still “not started”), but the operator has
already decided to execute it (opActsi holds). In fact, the operator’s act does
not change the status of ai, which remains “not started”.

Earlyi⇔ai,sts=ns ∧ Past(opActsi, 1) (5)

Intrusion and insertion errors occur when the operator confuses the task
to be executed with another one. Both these situations are captured by predicate
Intrusioni, which is formalized by the formula below. More precisely, if T is the
task being executed, Intrusioni holds when there is an action of T that is in
the waiting state, but the operator starts executing an action j that is not in T :

Intrusioni⇔ai,sts=wt ∧ ∃j �∈ T : Past
(
opActsj , 1

)
(6)

2. Space-related errors are raised due to movements of the operator in the
layout which are not over-constrained in the model. An action is prone to space-
related errors when the operator violates its location-base requirements during
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its execution (i.e., safeLi is false while the action is executing), or if the action
goes into a “hold” state without the operator having asked to stop the action
(i.e., opStopsi is false, which means that the holding state has been entered for
reasons related to the behavior of the operator). Examples of operator behaviors
that lead to such situations are: leaving her required position or safe spot, getting
closer to robot than the distance indicated in the instructions, approaching the
robot when an alarm signals to stay away.

errSi ⇒(¬safeLi ∧ (ai,sts=exe ∨ ai,sts=sfex)
)∨

(
ai,sts=hd ∧ (Past(ai,sts �=hd ∧ ¬opStopsi), 1)

) (7)

3. Goal-related Errors deal with actions which are not executed consistently
with the instructions of the task. For example if the operator does not place
the fixtures properly or tightens the part on the pallet while screw-driving. The
presence of goal-related errors is represented by predicate errGi, which is non-
deterministically assigned values during the exploration of the system traces.
Notice that, in practice, goal-related errors can be detected, for example, through
the use of cameras installed in the work-cell; hence, predicate errGi can be seen
as capturing the information provided by such cameras.

The addition of the formalization of these phenotypes to the model allows
us to check whether there are hazardous situations that cannot be mitigated by
currently introduced RRMs, thus if the base model failed to capture hazards
that arise due to human errors. As mentioned in Sect. 3, the model introduces
constraints on the number of human errors during execution of a task. In fact,
it is reasonable that an operator does not make too many errors during a single
execution of an application; on the other hand, this number can be configured
in the model, although the higher the number, the greater the complexity of
the model and the required analysis time. The following formula—which has
been simplified for the sake of brevity, and where past(counti, 1) is the function
returning the value of counti at the previous instant—describes the increment
of the counter of errors made during action i:

counti = past(counti, 1) + 1 ⇔(errGi ∧ Past(¬errGi, 1)) ∨ (errSi ∧ Past(¬errSi, 1))

∨ (errTP i ∧ Past(¬errTP i, 1))

(8)

The total counter count is simply the sum of all counti, and we impose that
it never exceeds a (configurable) threshold N : AlwF(count ≤ N). Notice that,
in a similar vein, in the formal model we impose a constraint that errGi cannot
occur more often than every 5 time units.

The next section shows how experiments carried out with the enhanced model
can highlight hazardous cases that originate from human errors.

4 Case Study

The case study on which we applied the enhanced SAFER-HRC methodology
features a hybrid human-robot assembly task in the preparation of a machine
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tool pallet—i.e., setting jigs and mounting/dismounting workpieces into fixtures
before/after machining. In Flexible Manufacturing Systems, load/unload sta-
tions are the only parts handled manually in a largely automatic procedure.
A collaborative robot, capable of relocating inside the production plant, can
be used for a number of tasks—e.g., carrying containers with workpieces or
finished items, supporting workpieces during assembly. The overall goal of the
HRC application is to provide all services that improve the ergonomics of man-
ual operations, release the operators from repetitive/heavy/dull tasks, provide
quantitative logs of operations, reduce errors. The operator can choose to achieve
the task in different ways: either she performs the actions related to the pick-
and-place subtask while the robot screw-drives (alternative V1), or vice-versa
(alternative V2). The work-cell layout L is divided according to a polar grid,
partitioning the angular range of the robot shoulder joint and the outreach of
the manipulator from its base (see Fig. 4).

Fig. 4. Top-view representation of the discretized layout

Formal verification was carried out through the Zot [1] tool, which exhaus-
tively explores the state-space of traces of the model up to a bounded length
[24]. All verification experiments were performed using the bvzot plugin [6] on a
2.6 GHz Intel R© coreTM i5 machine. The bounded search depth for Zot was set to
30, and the verification execution was a matter of few seconds. We verified that
the risk does not exceed a desired threshold (2, in this case), unless there is a
RRM which mitigates it right at the next time instant. The property is captured
by the following formula:

∀i, j, k
(
Alw

(
(riskijk < 2) ∨ (riskijk = 2 ∧ ∃y(RRMijk,y) ∧ Futr(riskijk < 2, 1))

))

(9)
Given the extensions introduced in the operator model, we aim to guarantee that
the property is verified also when human errors are systematically considered at
design time. In particular, we observed new hazardous situations that the old
model was not able to capture or mitigate. Here we report on a pair of them: the
first one describes a new quasi-static hazard instance that persists even though
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Table 2. Output of the verification tool: state of the model at each time instant

RRMs are active in the system. The second one demonstrates a situation for
which there is not actually a reasonable RRM that can fully mitigate it.

Persistent Hazard. Table 2 shows an example of the output of the Zot formal
verification. Table 2(a) is used by safety analyzers to examine the risk level at
each time instant. In this example, the chosen alternative is V1 and actions from
V2 are considered as Intrusion errors. The table shoes that there are two time
instants in a row with risk value equal to two, which violates the desired safety
property. Table 2(b) shows where human errors happen; in particular, it shows
that, although there are active RRMs at times 14 and 15, the risk level is still 2
and the error present is Repetition7. Thus, we associate a stronger RRM to the
hazard “Qs on Arm area by R1”, which not only limits the relative force—which
was enough in absence of human errors—but also the relative velocity value.

Unreasonably Uncommon Behavior. The formal model presented in this
paper has not been designed to directly address irrational human behaviors or
intentional misuses. Nevertheless, it is able to detect some situations that can
be classified as “unreasonably uncommon”, as they should be very unlikely to
occur. For example, consider the case of an operator that purposely throws
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Table 3. New hazardous situations detected by the tool (a) Situation where the oper-
ator is rapidly closing on the robot, which is still (b) Error cause: the operator is
mistakenly executing an action belonging to another task, which requires her to move
where the robot is (in refers to intrusion error)

herself under the robot sharp end-effector. Defining a RRM for this case can
be considered useless, because a determined operator would still not follow it.
The experiment of Table 3 shows a case where the operator is unexpectedly
moving towards the robot. The reason could be intentional harm—caused by an
instance of errG— or that the operator is doing something wrong that leads to an
unwanted situation—presence of instances of errTP , errS or errG. However, no
hazard has been identified by the tool because we kept very unlikely scenarios
out of the model when formalizing hazards and risks (essentially, the risk for
these kinds of situations is considered low), and in any other case a still robot
in the homing position (L0) is not considered a source of harm and danger. In
fact, the situation in this case has been detected by perusing a trace produced
by the Zot tool in “simulation mode”, that did not highlight a high risk.

5 Discussion and Conclusion

In this work, the SAFER-HRC methodology is extended to capture and consider
also the erroneous behavior of human operators. Using the improved model, we
re-checked desired safety properties of previously analyzed HRC applications;
the new checks highlighted some instances of hazards that had been overlooked
in previous runs of the methodology due to a lack of precise human modeling.

The improved accuracy of the model opens the possibility to refine previously-
introduced RRMs in order to provide a trade-off between safety and efficiency.
Previously, very general RRMs had to be introduced, such as “reduce speed down
to a certain value”, or “reduce applied force down to zero”. However, the newly
introduced details concerning the reasons behind and the exact configuration of
hazards allow us to define more specific and hazard-dependent RRMs and avoid
the use of over-conservative RRMs when a less strict RRM can provide safety.
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As a future step, we plan to associate probability distributions with relations
between hazards and human errors to see how errors can increase the occurrence
of hazards. In this way we might be able to provide more efficient treatments
for hazards without compromising the functionality of the system. We are also
concluding a prototype tool—a plug-in for Papyrus Eclipse Environment—which
resolves the difficulty of dealing with logic formulae to model the applications
for safety experts. The tool automatically transforms UML diagrams to Logical
formulae and invokes Zot to verify the safety property so that the design and
verification of HRC application is made easier, faster and more automated.

Acknowledgment. We thank the anonymous reviewers for their comments and sug-
gestions, which helped us improve the paper.
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