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Abstract

Simple models of disease propagation often disregard the effects of transmission heterogeneity on the

ecological and epidemiological dynamics associated with host-parasite interactions. However, for some

diseases like schistosomiasis, a widespread parasitic infection caused by Schistosoma worms, account-

ing for heterogeneity is crucial to both characterize long-term dynamics and evaluate opportunities5

for disease control. Elaborating on the classic Macdonald model for macroparasite transmission, we

analyze families of models including explicit descriptions of heterogeneity related to differential trans-

mission risk within a community, water contact patterns, the distribution of the snail host population,

human mobility, and the seasonal fluctuations of the environment. Through simple numerical exam-

ples, we show that heterogeneous multigroup communities may be more prone to schistosomiasis than10

homogeneous ones, that the availability of multiple water sources can hinder parasite transmission,

and that both spatial and temporal heterogeneities may have nontrivial implications for disease en-

demicity. Finally, we discuss the implications of heterogeneity for disease control. Although focused

on schistosomiasis, results from this study may apply as well to other parasitic infections with complex

transmission cycles, such as cysticercosis, dracunculiasis and fasciolosis.15
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Introduction

Transmission heterogeneity is a central issue in the study of infectious disease dynamics; in fact, it has20

been receiving considerable attention for more than thirty years, with research focusing on the role played

by heterogeneity in both short-term epidemic dynamics and long-term transmission maintenance, as well

as on the challenges and opportunities that heterogeneity poses to disease control (see e.g. Nold, 1980;

Hethcote and Van Ark, 1987; Andreasen and Christiansen, 1989; Diekmann et al., 1990; Dushoff and

Levin, 1994; Woolhouse et al., 1997; van den Driessche and Watmough, 2002; Heffernan et al., 2005;25

Lloyd-Smith et al., 2005; Bolzoni et al., 2007; see also VanderWaal and Ezenwa, 2016 for a recent review).

A full understanding of the drivers and the consequences of heterogeneity still represents a major challenge

for epidemiology, especially for diseases characterized by indirect transmission, such as vector-borne,

water-related, or macroparasitic infections (Hollingsworth et al., 2015).

One such disease for which there is a unanimous scientific consensus about the relevance of heterogene-30

ity on transmission is schistosomiasis, one of the most common parasitic diseases (second only to malaria)

and the deadliest among the neglected tropical diseases (Centers for Disease Control and Prevention,

2011). Schistosomiasis is caused by trematode parasites belonging to the genus Schistosoma, which need

some species of freshwater snails as obligate intermediate hosts. It affects more than 250 million people in

tropical and subtropical regions of the developing world, especially in sub-Saharan Africa, which is home35

to approximately 90% of worldwide cases (World Health Organization, 2017). Human infection occurs

through contact with water contaminated with freely swimming, short-lived schistosome larvae, known

as cercariae, which are shed by infected snails. Specifically, cercariae can infect exposed humans through

skin penetration. Within human hosts, they develop into sexually mature schistosomes. Depending on

their species, the resting place of adult parasites is in the blood vessels around the bladder or the intestine40

of the infected human host. There, schistosomes mate and produce eggs that are excreted through urine

or faeces. After reaching freshwater, eggs hatch into so-called miracidia, a second short-lived larval form

of the parasite that can infect species-specific snail hosts and undergo asexual replication therein. Infected

snails complete the parasite’s life cycle by shedding cercariae into water (see e.g. Colley et al., 2014).

The transmission of schistosomiasis is thus controlled by contact with environmental freshwater in-45

fested with parasite larvae. Unsurprisingly, then, the disease is especially prevalent in communities that

lack access to piped drinking water and adequate sanitation, and that have to resort to unsafe water

sources for their primary needs (Rollinson et al., 2013). Conversely, the availability of adequate water

provisioning and sanitation infrastructures may offer protection against schistosomiasis (Grimes et al.,

2014). At a regional scale, different communities may be endowed with differential infection risk linked to50

their geographical and/or socioeconomic context. However, safe water supplies cannot completely avert
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human contact with environmental freshwater, nor can the presence of adequate sanitation guarantee per

se its use (Grimes et al., 2015). Agricultural, domestic, occupational and recreational tasks may foster

contact with potentially infested water, and thus represent risk factors even in places where water provi-

sioning and sanitation are adequate. Also, differences in behavior and lifestyle represent major potential55

determinants of transmission heterogeneity (Funk et al., 2015). As a result, the risk of schistosomiasis

infection is usually not equally spread even at a local level, i.e. within a community, actually being higher

for people whose routinary activities bring them in contact with water, such as fishermen, farmers and

women. Overall, however, infection risk is highest among school-aged children, mostly because they are

likely to spend a considerable amount of time in unsafe water; also, their immune system may not be60

fully developed yet (World Health Organization, 2017). Several risk groups may thus be identified within

a local community, possibly based on age, sex and/or occupation (e.g. Spear et al., 2004a).

In communities with access to several water sources, even individuals within the same risk group may

be endowed with differential infection risk because of their specific water-contact patterns. Different water

bodies may represent habitats of different quality for the intermediate snail hosts of the schistosomes,65

and can thus be relatively heterogeneous in terms of the local snail population abundance they can host

(e.g. Gurarie and King, 2005). As such, a comprehensive description of heterogeneity in schistosomiasis

transmission also requires an account of individual preferences related to water contacts (e.g. Scott et al.,

2003), as well as an ecological assessment of snail density (and possibly infection prevalence) at each of

the available water sources (Perez-Saez et al., 2016; Gurarie et al., 2017). Additionally, infection risk may70

also be heterogeneously distributed over time. Temporal variability of schistosomiasis transmission can

arise from the seasonal fluctuations of climatological variables (e.g. Sturrock et al., 2001; Liang et al.,

2007) – most notably rainfall/temperature in tropical/temperate areas (McCreesh and Booth, 2013) –

and environmental conditions (as in the case of fluctuating transmission risk during floods; e.g. Wu et al.,

2008), both of which can remarkably influence snail population ecology (e.g. Chandiwana et al., 1987;75

Woolhouse et al., 1998; Sturrock et al., 2001). Water-contact patterns can also vary over time as a response

to seasonal changes in human activities related, for instance, to agriculture and farming (e.g. Spear et al.,

2004b; Liang et al., 2007). As a result of seasonal environmental forcing, transmission intensity and

infection prevalence in both human and snail hosts are often observed to follow seasonal patterns (e.g.

Chandiwana et al., 1987; Woolhouse et al., 1989; Sturrock et al., 2001).80

Heterogeneity has been accounted for in mathematical models for schistosomiasis transmission since

long. A seminal contribution in this respect was given by Barbour (1978), who elaborated on Macdonald’s

(1965) basic model, and extended it to account for individual variations in water contact patterns and

source heterogeneity. In particular, Barbour derived an expression for the threshold parameter controlling
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disease transmission and concluded that heterogeneities in water contacts can favor endemicity. Later85

works focused on the role played by multiple water sources and individual heterogeneity (Woolhouse et al.,

1991, 1998), site-specific environmental features (Liang et al., 2002, 2005), and the interplay between

local-scale heterogeneities and spatial coupling mechanisms (Gurarie and King, 2005) in schistosomiasis

transmission dynamics, with a special emphasis for the integration of field data and the analysis of

strategies for disease control. Recent modeling studies have also focused on spatial heterogeneity arising90

from the pathogens’ dispersal mechanisms (such as human mobility for adult schistosomes and hydrological

transport for their larval stages), as well as on the implications for parasite endemism (e.g. Gurarie and

Seto, 2009; Perez-Saez et al., 2015; Ciddio et al., 2017). Although less frequently than transmission/spatial

heterogeneity, temporal heterogeneity in schistosomiasis transmission has sometimes been also accounted

for in both applied (e.g. Liang et al., 2002, 2005; Remais, 2010; Gurarie et al., 2017) and theoretical95

(Zhang et al., 2014; Ciddio et al., 2015) studies.

In this work we aim to provide a comprehensive – yet as-simple-as-possible – account of the major

sources of heterogeneity that can be relevant to schistosomiasis transmission. To that end, we make

use of suitable extensions of the seminal Macdonald’s (1965) model, whose main characteristics are

briefly reviewed in the next section. Then, we analyze a general transmission model (after Barbour,100

1978) accounting for heterogeneities in both the human host population (expressed as differential expo-

sure/contamination risk associated with different sub-groups within a community) and in the available

water sources (as resulting from specific water contact patterns and the distribution of the snail host

population). A threshold condition for the multi-group/multi-source model is worked out based on the

dominant eigenvalue of a generalized reproduction matrix accounting for multiple sources of heterogene-105

ity. The cases of heterogeneity in the human host population and in the available water sources are then

analyzed separately through simple numerical examples, so as to single out the specific effects of the differ-

ent sources of heterogeneity on schistosomiasis transmission dynamics. The case of spatial heterogeneity

(which can be thought of as a special combination of mixed host/source heterogeneity) is also analyzed

in some detail. Finally, a seasonally-forced version of the basic Macdonald’s (1965) model is studied,110

and conditions for long-term parasite establishment in periodic environments are obtained. A discussion

about the most important epidemiological consequences of heterogeneity in schistosomiasis dynamics,

with special focus on application to field data and disease control, closes the paper.

The basic homogeneous model

The simplest model for schistosomiasis was proposed by Macdonald in 1965. It describes transmission115

dynamics through two state variables, namely the average parasite burden in the human population (P )
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and the prevalence of infection in snails (Y ). Population dynamics are neglected in human and snail hosts,

assuming instead demographic equilibrium for both. Also, the model does not include the dynamics of

cercariae and miracidia, whose abundances are considered to be proportional to Y and P , respectively.

The model thus reads as follows:120

dP

dt
= βNY − γP

dY

dt
= χHP (1− Y )− µY ,

(1)

where β is the snail-to-human transmission rate, N is the abundance of the snail population, γ is the

mortality rate of adult parasites in human hosts, χ is the human-to-snail transmission rate, H is the abun-

dance of the human population and µ is rate at which infected snails die and are replaced by uninfected

ones. The parameters γ and µ can be evaluated as the inverse of the average lifespans of adult worms and125

infected snails (around five years and two months, respectively; see e.g. Feng et al., 2004), whereas β and χ

represent aggregated parameters accounting for several epidemiological and socioeconomical processes.

Model (1) has two steady-state solutions. The first one is the so-called disease-free equilibrium (DFE),

i.e. a state of the system in which the parasite is not present (thus P̄ = 0 and Ȳ = 0). The second one

is the endemic equilibrium (EE), i.e a state of the system in which parasite transmission is permanent,130

namely

P̄ =
βNχH − γµ

γχH
, Ȳ =

βNχH − γµ
βNχH

.

By standard linear stability analysis arguments (Appendix A online), it can be shown that the DFE is

stable if γµ−βNχH > 0, also corresponding to the parameter region in which the EE is not feasible (i.e.

characterized by negative components). This stability condition can be equivalently stated in terms of135

the so-called basic reproduction number

r0 =
βNχH

γµ
,

i.e. the average number of established and reproductively mature offspring produced by a mature parasite

during its lifetime in a population of uninfected hosts (Anderson and May, 1992). Specifically, if r0 < 1 the

DFE is asymptotically stable, while the EE is unfeasible and unstable. Conversely, if r0 > 1 the DFE is140

unstable, while the EE is feasible and stable (see again Appendix A). Fig. 1 illustrates the basic properties

of the equilibria of model (1). In particular, the shape of the contour lines for the average parasite burden

in human hosts explains why preventing water contamination (i.e. decreasing the overall human-to-snail

transmission rate, χH) might be less an effective measure for disease control (namely for decreasing P̄ )

than preventing human water contact (i.e. decreasing the overall snail-to-human transmission rate, βN),145

as already suggested by Macdonald (1965) in his seminal work (see also Grimes et al., 2015, for discussion).
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Figure 1 around here

A general model for heterogeneous schistosomiasis transmission

The basic Macdonald’s (1965) transmission model (1) does not account for any of the different sources

of heterogeneity that may be relevant to schistosomiasis transmission. Specifically, it does not include150

heterogeneities arising, for instance, from the presence of sub-groups in the human population, each of

which may be endowed with different exposure/contamination rates, and/or from the availability of several

water sources, whose characteristics (inclusive of local snail abundances) may possibly yield differential

transmission risk. A general, multi-group model for schistosomiasis transmission was proposed by Barbour

in 1978. Following his approach, we consider a community subdivided in G groups (e.g. according to age,155

sex or occupation, or to any other trait that may be relevant to schistosomiasis transmission) with access

to S different water sources, all of which can possibly host snail populations. The model can be stated as

dPg
dt

= β

S∑
s=1

EgsNsYs − γPg

dYs
dt

= χ
G∑
g=1

CgsHgPg(1− Ys)− µYs ,

(2)

where the subscript g [s] indicates variables or parameters pertaining to different human groups [water

sources], while Egs [Cgs] represents one entry of the human exposure [contamination] matrix, which de-160

scribes the specific snail-to-human [human-to-snail] transmission risk associated with people from group g

being in contact with water at source s. Clearly, a fully mechanistic description of the interwined processes

that ultimately determine actual exposure/contamination risk for humans may be – at best – impractical.

For the sake of simplicity, we thus describe human exposure/contamination as the product of three terms

each, namely165

Egs = εEg ωgsφ
E
s and Cgs = εCg ωgsφ

C
s ,

in which εEg [εCg ] is a group-specific relative exposure [contamination] risk, ωgs represents the fraction of

water contacts occurring at source s for people belonging to group g (so that 0 ≤ ωgs ≤ 1 and
∑

s ωgs = 1)

and φEs [φCs ] is a source-specific relative factor contributing to exposure [contamination]. Group-specific

scores reflect differences in transmission risk related to demographic and socioeconomic traits. As an170

example, groups consisting prevalently of fishermen vs. blue- or white-collar workers may be endowed

with different values of εEg and εCg . Source-specific scores, instead, quantify differential transmission risk

associated with the environmental characteristic of the water bodies. For instance, a shallow ephemeral
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pond may have intrinsically different values of φEs and φCs than a permanent river site. From a technical

perspective, we assume that the union of the graphs associated with the exposure and contamination175

matrices (E = [Egs] and C = [Cgs], respectively) is strongly connected, so as to prevent human groups

and/or water sources from possibly being isolated as far as water contact is concerned.

Equilibrium solutions of model (2) include a DFE, in which P̄g = 0 for all groups and Ȳs = 0 for

all sources, and an EE, whose components can be determined analytically only in some particular cases

(Barbour, 1978). It can be shown (Appendix B) that the stability of the DFE of model (2) depends on180

the generalized reproduction matrix

R = r0C
ThEn ,

in which h and n are diagonal matrices whose non-zero elements correspond, respectively, to the fraction

hg = Hg/H of the total human host population (H) belonging to each sub-group (
∑G

g=1 hg = 1) and

to the fraction ns = Ns/N of the overall snail population (N) that can be found at each water site185

(
∑S

s=1 ns = 1), and the superscript T indicates matrix transposition. Specifically, the DFE of model (2)

is asymptotically unstable if the dominant eigenvalue of matrix R (RGS0 = λmax(R), where the superscript

GS indicates that the threshold parameter refers to a system with G human groups and S water sources)

is larger than one, stable otherwise. This condition thus generalizes the analogous threshold based on the

basic reproduction number r0 that is found for the basic Macdonald (1965) model (see Barbour, 1978;190

Gurarie and King, 2005). If RGS0 > 1, numerical simulations of model (2) show that the EE is stable and

characterized by strictly positive components.

In general, establishing parasite invasion/establishment conditions in the presence of transmission

heterogeneity requires the numerical evaluation of RGS0 . In the next sections we analyze two important

special cases of model (2) for which the threshold parameter can be derived analytically.195

Group heterogeneity: G human groups, one water source

We first analyze the case in which G (> 1) sub-groups can be identified in a human population with access

to one single water source (S = 1). In this case, ω = [ωgs] = iG, where iG is a column vector of length G

with all elements equal to one. With no loss of generality, we can assume φEs = φCs = 1, as changes

in the source-specific exposure/contamination risk factors can be absorbed – with one water source –200

into the transmission rates β and χ. To allow a fair comparison with the results of the homogeneous

model (1), we assume that the total human population abundance evaluated over all groups and the

average exposure/contamination risk of the heterogeneous multi-group community are the same of an

equivalent homogeneous community (i.e.
∑

g hg = 1 and
∑

g hgε
E
g =

∑
g hgε

C
g = 1).

In the presence of group heterogeneity, the DFE is unstable, thus allowing for parasite invasion and205
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long-term establishment in the community, if

RG1
0 = r0

G∑
g=1

hgε
E
g ε

C
g > 1 ,

(details in Appendix C). As already noted by Woolhouse et al. (1998), under the additional hypothesis

that for each group the relative exposure risk is equal to the relative contamination risk (εEg = εCg = εg),

it is possible to show that heterogeneous multi-group communities sharing one water source cannot be210

less prone to long-term parasite establishment than homogeneous ones, i.e. that RG1
0 ≥ r0, all else

being equal (see again Appendix C). Indeed, RG1
0 = r0 only in the case of a homogeneous multi-group

community (εg = 1 for all groups). Note that the simplification εEg = εCg may indeed be reasonable for

a disease, like schistosomiasis, in which exposure and contamination are both tightly related to water

contact (Chandiwana and Woolhouse, 1991; Woolhouse et al., 1998; Gurarie and Seto, 2009). People215

spending more time at water sources where they can be exposed to the pathogen are also more likely

to contribute to water contamination with their excreta. Therefore, the same behavior that increases

exposure risk is also likely to increase contamination risk.

If RG1
0 > 1, the DFE is unstable and endemic schistosomiasis transmission is possible (stable EE).

Three noteworthy results emerge for the EE of a heterogeneous multi-group community with one water220

source (details in Appendix C): a) the prevalence of infected snails cannot be smaller than in an equivalent

homogeneous community (Ȳ G1 ≥ Ȳ ); b) even some groups whose exposure/contamination risk is not

larger than that of an equivalent homogeneous community (εg ≤ 1) may have a parasite load not smaller

than that of an equivalent homogeneous community (P̄G1
g ≥ P̄ for εg ≥ ε?, with ε? ≤ 1); and c) the

average parasite burden is not smaller than in an equivalent homogeneous community (
∑

g hgP̄
G1
g ≥ P̄ ).225

These three results depend on the fact that
∑

g hgε
2
g ≥ 1 in a heterogeneous multi-group community with

one water source.

The case of two groups

To elucidate the implications of heterogeneity associated with differential transmission risk, we analyze

the simplest case of between-group heterogeneity, namely a community in which human hosts can be230

divided in two sub-populations (i.e. G = 2), and where for each group the relative exposure risk is equal

to the relative contamination risk (εEg = εCg = εg). Let f be the fraction of human hosts belonging to

the higher-risk group (say group 1, h1 = f and h2 = 1 − f , 0 < f < 1) and let k be the relative ex-

posure/contamination risk of group 1 compared to group 2 (ε1/ε2 = k, k ≥ 1). To bettere contrast the

effects of heterogeneous vs. homogeneous transmission, it is convenient to impose that the average expo-235
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sure/contamination risk in the heterogeneous two-group community is the same as in the homogeneous

one, that is h1ε1 + h2ε2 = 1, thus obtaining

ε1 =
k

fk − f + 1
and ε2 =

1

fk − f + 1
.

A few quantitative examples can help elucidate to what extent a two-group heterogeneous community

can be more prone to the establishment of endemic schistosomiasis transmission than an equivalent240

homogeneous community. For instance, if a small fraction of the population (say 10%) is characterized by

relatively large exposure/contamination risk (say 10 times higher) compared to the rest of the population,

then R21
0 ≈ 3r0. If heterogeneity is even more pronounced (say 0.5% of the population with a 500-fold

higher infection risk), then the parasite can establish in the whole community (i.e. also in the lower-

risk group, albeit with a low average burden) even if r0 is as low as ≈ 0.01. Fig. 2A generalizes these245

results and shows that a common feature of heterogeneous multi-group communities is sub-threshold

endemic transmission (van den Driessche and Watmough, 2002), i.e. the long-term establishment of the

parasite (R21
0 > 1) under conditions that would prevent it in an equivalent homogeneous community

(r0 < 1, for which P̄ = 0 and Ȳ = 0). Panel B of Fig. 2 shows the steady-state components of the

EE in a heterogeneous two-group community in the case of sub-threshold transmission (r0 = 0.9). The250

three theoretical results described above (namely, Ȳ 21 ≥ Ȳ , P̄ 21
2 ≥ P̄ for ε2 ≤ 1, and

∑
g hgP̄

21
g ≥ P̄ ) are

immediately recovered. Furthermore, we note that both the average parasite burden in the high-risk group

and the prevalence of infected snails can attain very large values in case of pronounced heterogeneity. Not

surprisingly, the average parasite burden in the low-risk group can be much (indeed, k-times) smaller

than in the high-risk one; however, because of the different group sizes, most parasites may actually be255

hosted within the members of the low-risk group.

Figure 2 around here

More complex scenarios, i.e. describing communities with several (possibly many, G� 2) risk groups

relative to exposure and/or contamination risk and a single water source are discussed in Appendix C.

Source heterogeneity: Homogeneous human population, S water sources260

We now turn to the study of a homogeneous human community (G = 1) with access to a set of S (> 1)

different water sources. In this case, matrix ω reduces to a row vector u = [ω1 · · ·ωS ], whose elements ωs

represent the fraction of water contacts that take place at each source s. With no loss of generality, we can

set εEg = εCg = 1, as changes in group-specific exposure/contamination risk factors could be incorporated

– with just one group – into the transmission rates β and χ. For the sake of parameter parsimony, and265
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to avoid possible confounding effects, we also assume φEs = φCs = 1, i.e. that water sources share the

same characteristics leading to exposure/contamination, including their accessible water volume. On the

other hand, heterogeneity is granted by the distribution of the overall snail population among different

water sources, as well as by the distribution of water contacts. To allow a fair comparison with the

homogeneous case of model (1), the total snail abundance and the overall frequency of human-water270

contacts evaluated over all water points are assumed to be the same as in an equivalent homogeneous

system (i.e.
∑

s ns =
∑

s ωs = 1).

In the presence of source heterogeneity, the DFE is unstable and endemic transmission is possible if

R1S
0 = r0

S∑
s=1

nsω
2
s > 1 .

Details are reported in Appendix D, where it is also shown that R1S
0 ≤ r0 for all water contact and snail275

distribution patterns. Therefore, as already noted by Woolhouse et al. (1991), a dilution effect induced by

the parcelling of the overall snail population and the human water contacts among the available sources

exists. This dilution effect can decrease the risk of schistosomiasis endemicity, all else being equal. If

R1S
0 > 1, the DFE is unstable. In this case, although a compact analytical expression for its coordinates

is not readily available, the stability of the EE can easily be tested via numerical simulation.280

The case of two water sources

To better analyze parasite establishment in a community with access to S water sources we refer to the

simplest setting, namely the case in which S = 2. Fig. 3 illustrates the dilution effect induced by the

presence of multiple water sources, in terms of both infection intensity and endemicity risk. Specifically,

panels A–C shows a comparison between the equilibrium values of the state variables describing the het-285

erogeneous two-source community at equilibrium (obtained via numerical simulation) and the equivalent

homogeneous case of model (1). Both the prevalence of infection in snails and the average parasite bur-

den in human hosts are found to be smaller in the two-source community. In particular, super-threshold

parasite extinction (i.e. occurring for r0 > 1) is possible if a large share of water contacts occur at a

water source hosting a small fraction of the overall snail population (or equivalently, if a small share290

of water contacts occur at a water source hosting a large fraction of the overall snail population; gray-

shaded parameter combinations). Panel D of Fig. 3 shows instead that R1S
0 approaches r0 only if n1

and ω1 are either both large or both small, i.e. in cases in which heterogeneity is practically negligible.

Conversely, R1S
0 progressively decreases compared to r0 as more water contacts are made at relatively

snail-free sources (i.e. if n1 is large and ω1 is small or, viceversa, if n1 is small and ω1 is large). In case of295
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uniform snail distribution (n1 = n2 = 1/2), endemicity risk decreases (higher values of r0 are needed for

the DFE to become unstable) as the heterogeneity of human-water contact also decreases (|ω1−ω2| → 0).

Figure 3 around here

Similar analyses can be performed with reference to more complex case studies, i.e. communities with

access to several (possibly many, S � 1) water sources. Some examples are discussed in Appendix D.300

Spatial heterogeneity: multiple goups and water sources

Model (2) can be used to study the effects of heterogeneity also in a spatially-explicit setting. The G

human groups could in fact belong to different villages; also, they could have access to a set of S water

sources arranged in a network endowed with a well-defined spatial structure (see e.g. Gurarie and King,

2005; Gurarie and Seto, 2009; Perez-Saez et al., 2015; Ciddio et al., 2017). In this case, the water contact305

matrix ω can be thought of as a human mobility matrix, at least as far as water use is concerned. Here

we limit our attention to the simplest case of spatial heterogeneity, namely a metacommunity with two

sub-groups (G = 2) living in two geographically distinct locations, each of which has one preferential

water source (S = 2). If we assume that water contacts occur not only at the source that is closest to the

home site, but also when people travel between the two sites, the water contact matrix can be defined as310

ω =

1−m1 m1

m2 1−m2

 ,
where the anti-diagonal elements represent the fraction of water contacts occurring away from the home

site. The only spatial coupling process considered in the model is human mobility, which seems to be

appropriate if water sources are not hydrologically connected, or if they are quite distant from each other.

To allow a fair comparison with the (spatially) homogeneous case, we use the same human and snail315

total population abundances as in the homogeneous case. Furthermore, we assume that εEi = εCi = εi

and φEi = φCi = 1 for both i = 1, 2, and define ε1 and ε2 so that the average exposure/contamination

risk in the (spatially) heterogeneous metacommunity is the same as in the homogeneous community.

Finally, we set m1 = m2 = m for the sake of simplicity. The stability of the DFE ([0 0 0 0]T ) can be

assessed through the evaluation of the dominant eigenvalue of matrix R, which can be easily performed320

numerically. However, in spite of its simplicity, the spatially explicit version of the transmission model

still holds many degrees of freedom, namely: the values of the average exposure and contamination rates

(whose product concurs to the definition of the basic reproduction number in the equivalent homogeneous

community); the level of human mobility, as measured by the fraction of water contacts occurring away
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from the home site; the distributions of the human/snail populations in the two sites; and the spatial325

heterogeneity of exposure/contamination risk. This makes a complete study of the endemicity threshold

quite cumbersome. Fig. 4 thus reports the analysis of parasite establishment conditions for four selected

settings.

Figure 4 around here

In the first example (Fig. 4A), exposure/contamination risk is the same in the two sites and the330

snail population is uniformly distributed between the two water sources. The endemicity boundary is

symmetric with respect to h1 = h2 = 1/2 and m = 1/2, which means that the values of R22
0 evaluated

for hi = h̄ or hi = 1 − h̄, and for m = m̄ or m = 1 − m̄ coincide. Therefore, only results obtained for

0 ≤ h1 ≤ 1/2 and 0 ≤ m ≤ 1/2 are shown. In this case, mobility shows a well-defined dilution effect,

with increasing m values playing against long-term pathogen establishment. The endemicity boundary335

generally (i.e. except for m = 1/2, corresponding to complete spatial mixing) moves rightward as the

fraction of residents of site 1 increases from 0 to 1/2, which indicates that more homogeneous population

distributions are less conducive to the establishment of endemic parasite transmission. For instance, if the

total human population were uniformly distributed between the two sites, the parameters combinations

yielding R22
0 > 1 would give r0 > 4 (note that, in this case, each village/water source would host exactly340

half of the human/snail population of an equivalent homogeneous community).

The second example (Fig. 4B) accounts for spatial heterogeneity in terms of exposure/contamination

risk. This might represent the (quite common) case of a village composed by different neighborhoods that

share the same water contact points but are composed of a diversified human population, with people

characterized by distinct socioeconomic traits. Such differences in demographic composition could indeed345

yield a correspondence between spatial and transmission heterogeneities, as mediated by different water-

related behavior (which would most likely be preserved during movement, especially over relatively short

spatial scales). For instance, Pinot de Moira et al. (2007) found an approximately 10-fold difference in the

overall duration of water contacts (mostly related to fishing activities) between groups of adult males with

different tribal backgrounds living in separated neighborhoods of a community in rural Uganda. Because350

of the spatial heterogeneity in exposure/contamination, the endemicity boundary is no longer symmetric

about h1 = h2 = 1/2, while it still is about m = 1/2. Therefore, only results obtained for 0 ≤ m ≤ 1/2

are shown. Interestingly, it turns out that R22
0 is maximum compared to r0 for intermediate values of h1

(actually, for 0 < h1 < 0.2). In other words, the likelihood of endemicity is maximum if a relatively small

fraction (≈ 10% in this example) of the human population lives in the village where the most-at-risk water355

source is located. Mobility is again associated with a dilution effect. For some population distributions

and mobility levels (i.e. for h1 = 0.1 and m = 0.05), R22
0 can indeed be larger than one even if r0 is not
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(sub-threshold parasite establishment), which suggests that the spatial heterogeneity of the transmission

parameters can strongly favor endemic transmission also in the presence of human mobility.

The third example (Fig. 4C) differs from the first one in that snail population abundance is spatially360

heterogeneous. Specifically, the spatial distribution of snail hosts is assumed to be linked to that of

the human population (ni = hi). This might be reasonable, for instance, should a positive feedback

between larger human groups and larger snail populations exist, as it may be expected in rural contexts

where man-made alterations of the environment (such as the construction of reservoirs and irrigation

schemes for agricultural development) can contribute to creating new habitat for the snails (Steinmann365

et al., 2006). Because of the spatial heterogeneity of snail distribution, the endemicity boundary is no

longer symmetric with respect to m = 1/2, while it still is about h1 = h2 = 1/2. Therefore, only results

obtained for 0 ≤ h1 ≤ 1/2 are shown. High levels of human mobility are typically associated with parasite

extinction (possibly except for h1 = h2 = 1/2). It is also interesting to note that the endemicity boundary

moves rightward for increasing values of h1 = n1 only if m < 1/2, leftward otherwise (m > 1/2).370

In the fourth example (Fig. 4D) both the exposure/contamination risk and the snail distribution are

assumed to be spatially heterogeneous. As a result, the endemicity boundary is symmetric about neither

h1 = h2 = 1/2 nor m = 1/2. The most interesting result pertaining to this case is the appearance of

backward-bending endemicity boundaries. Of particular importance is the region identified by m < 1/2,

where mobility is found to play a significant role. Specifically, for 0 < h1 < 1/2, R22
0 is minimum for375

intermediate values of m. Therefore, depending on hi and r0, increasing human mobility can either hinder

or promote endemic parasite transmission. With h1 = 0.2 and r0 = 2, for example, parasite establishment

is possible for m = 0 or m = 0.4, but not for m = 0.2. Interestingly, even relatively low values of the

ε1/ε2 ratio are sufficient to recover qualitatively similar results (e.g. ε1/ε2 = 2; see Appendix E for some

examples). Finally, we note that cases in which more abundant snail populations are associated with380

less abundant human communities (e.g. ni = 1 − hi) might instead be found in different socioeconomic

contexts and/or spatial scales, such as in the case of a spatially explicit setting encompassing both urban

and rural environments. Note that results for this latter scenario can be recovered from the former’s,

as the values of R22
0 evaluated for m = m̄ under the assumption ni = 1 − hi would coincide with those

evaluate for m = 1− m̄ with ni = hi.385

A special case of heterogeneity: time-varying transmission

So far we have been dealing with heterogeneity arising from two basic factors, namely differential in-

fection risk among different sub-groups within a human community, and/or differential transmission

related to the distribution of water contacts and snail hosts among the available water sources – with
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spatial heterogeneity representing a particular (yet noteworthy) combination of these two factors. In390

all cases, we have (mostly) focused on the relationship between transmission heterogeneity and parasite

invasion/establishment. One possible source of heterogeneity that is not accounted for in models (1)

and (2) (hence also in the special cases analyzed above) is the temporal variability of the parameters that

are relevant to schistosomiasis dynamics. Some seasonally-forced models for schistosomiasis transmission

have recently been proposed. For instance, Zhang et al. (2014) analyzed a model in which the human395

population is split into susceptible/infected hosts, without accounting for the average parasite burden in

the community, as it is instead customary in models for macroparasite transmission. For this reason, their

approach lies somewhat outside Macdonald’s (1965) modeling framework. Ciddio et al. (2015), instead,

proposed a Macdonald-like model accounting for the demographic dynamics of the snail population. They

showed that the interplay between density dependence and temporal forcing may lead to complex (and400

realistic) transmission dynamics, yet they did not specifically focus on the conditions leading to endemic

schistosomiasis transmission. Finally, other temporally-forced models (e.g. Liang et al., 2002, 2005; Re-

mais, 2010; Gurarie et al., 2017) were mainly tailored to analyze real case studies, hence they are not

fully amenable to theoretical investigation.

The effects of time-varying transmission on parasite invasion/establishment can be analyzed with the405

following time-varying version of model (1), i.e.

dP

dt
= β̃(t)Ñ(t)Y − γ̃(t)P

dY

dt
= χ̃(t)H̃(t)P (1− Y )− µ̃(t)Y ,

(3)

where

β̃(t) = β

[
1 + αβ sin

(
2π

τβ
(t+ ψβ)

)]
and χ̃(t) = χ

[
1 + αχ sin

(
2π

τχ
(t+ ψχ)

)]
are the seasonally varying snail-to-human and human-to-snail transmission rates,410

Ñ(t) = N

[
1 + αN sin

(
2π

τN
(t+ ψN )

)]
and H̃(t) = H

[
1 + αH sin

(
2π

τH
(t+ ψH)

)]

are the seasonally varying population abundances of snails and humans, and, finally,

γ̃(t) = γ

[
1 + αγ sin

(
2π

τγ
(t+ ψγ)

)]
and µ̃(t) = µ

[
1 + αµ sin

(
2π

τµ
(t+ ψµ)

)]

are the seasonally varying mortality rates of adult parasites and infected snails, respectively. In the above

expressions, αx represents the amplitude of seasonal fluctuations (0 ≤ αx ≤ 1), τx is the period of the415

oscillations and ψx represents the phase of environmental fluctuations (x ∈ {β, χ,N,H, γ, µ}).
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To simplify the analysis of model (3), we assume that the fluctuations of the transmission rates are

mostly associated with seasonal variations of the human-water contact rate, so that β̃(t) and χ̃(t) are

characterized by the same amplitude (αβ = αχ = αω) and phase (ψβ = ψχ = ψω). Also, because

of the long lifespan of schistosomes within human hosts, it is reasonable to neglect fluctuations of the420

mortality rate of adult parasites (αγ = 0). Seasonal variations of the mortality rate of infected snails

are not considered either (αµ = 0), as they are better addressed in schistosomiasis transmission models

that include a detailed description of the snail host ecology (see e.g. Ciddio et al., 2015; Sokolow et al.,

2015; Gurarie et al., 2017). The period of oscillations is assumed to be one year for all the seasonal

environmental signals (τx = τ = 365 [d], x ∈ {β, χ,N,H}). Without loss of generality, we can also set425

ψω = 0 and study the effects of possible lags ψx between the phase of the transmission rates and the other

parameters’ (0 ≤ ψN , ψH ≤ τ). A simplified version of model (3) incorporating all these assumptions is

given in Appendix F.

Like in model (1), the DFE of model (3) is a state in which P̄ = 0 and Ȳ = 0. However, determining

the stability properties of the DFE (or, equivalently, the conditions under which the parasite can establish430

in the community) is relatively more complex in this case, because Floquet theory (instead of basic linear

stability analysis) has to be applied (see e.g. Bacaër and Guernaoui, 2006; Klausmeier, 2008; Bittanti and

Colaneri, 2009; Mari et al., 2014). Specifically, the DFE is unstable (thus allowing parasite invasion and

the establishment of periodic tramsmission cycles) if and only if RF0 , the maximum Floquet multiplier of

system (3) linearized in a neighborhood of the DFE, is larger than one. Floquet multipliers are defined as435

the eigenvalues of the monodromy matrix M(τ), which can be obtained by solving the matrix differential

equation

dM(t)

dt
= J0(t)M(t) =

 −γ̃(t) β̃(t)Ñ(t)

χ̃(t)H̃(t) −µ̃(t)

M(t) =

 −γ β̃(t)Ñ(t)

χ̃(t)H̃(t) −µ

M(t)

over one period (i.e. over 0 ≤ t ≤ τ), with the identity matrix as initial condition (see again Klausmeier,

2008). Note that RF0 is equal to r0 in the time-constant case (αx = 0 for all x’s).440

The results concerning parasite invasion in seasonal environments are reported in Fig. 5. Seasonal

fluctuations can make the instability of the DFE either less or more likely, depending on the parameter

(panel A) or combination of parameters (panels B and C) that is assumed to vary over time. Specifically, if

the abundance of one of the two host populations fluctuates periodically (0 < αN ≤ 1 or 0 < αH ≤ 1, e.g.

because of seasonal variations of snail demography, or human migrations linked to seasonal activities), then445

RF0 < r0. In these two cases, pathogen persistence requires larger average values of the time-varying pa-

rameters than in the time-constant case. On the contrary, RF0 > r0 if the human exposure/contamination
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varies seasonally (0 < αω ≤ 1). In this latter case, endemic transmission is favored by seasonal forcing

(Fig. 5A). Coupled fluctuations of the human-water contact rate and the population abundance of either

snails or humans are associated with the largest deviations from the endemicity threshold r0 = 1 of the450

time-homogeneous case. Phase shifts between the two periodic signals are of paramount importance to

qualify such deviations: on the one hand, synchronous fluctuations (ψN = 0 or ψH = 0, i.e. more frequent

human-water contact when snails or human hosts are more abundant) promote sub-threshold endemicity,

with parasite invasion and establishment being possible for r0 < 1; on the other hand, periodic signals

that are in antiphase with each other (ψN = τ/2 or ψH = τ/2, e.g. more frequent human-water contact455

when snails or human hosts are less abundant) hinder endemicity, with parasite extinction being possible

for r0 > 1. Similar results are obtained with coupled fluctuations of the two hosts’ population abundances,

although with smaller deviations from the time-homogeneous case (Fig. 5B). The relative amplitude of

fluctuations also matters in case of coupled seasonal forcing (Fig. 5C).

Figure 5 around here460

Discussion and conclusions

In this work we have analyzed a flexible modeling framework to describe schistosomiasis transmission dy-

namics in the presence of various sources of heterogeneity, including differential transmission risk linked

to the demographic or socioeconomic traits of the human host population, availability of multiple water

sources characterized by non-homogeneous water contacts and snail host distribution, spatially explicit465

water contact patterns, and temporal fluctuations of the eco-epidemiological parameters relevant to dis-

ease transmission. Overall, a clear picture emerges where heterogeneity plays a highly non-trivial role in

the definition of epidemiological patterns. Specifically, between-group heterogeneity in transmission risk

is typically associated with larger infection prevalence in snails and average parasite burden in humans, as

well as with a higher likelihood of long-term parasite invasion. On the other hand, heterogeneity induced470

by the presence of different water sources may produce opposite effects, namely lower infection intensity

in humans and snails, and lower chances of endemic parasite transmission compared to a homogeneous

situation. All these results conform with and extend previous findings on heterogeneous schistosomiasis

dynamics (Barbour, 1978; Woolhouse et al., 1991, 1998). Results concerning the spatially heterogeneous

case reveal that the epidemiological implications of human mobility may be different in different contexts.475

Interestingly, there are cases in which the likelihood of endemic transmission is maximum for intermediate

levels of human mobility. A similar scenario has been discussed in a recent modeling study of the geog-

raphy of schistosomiasis transmission in Burkina Faso (Perez-Saez et al., 2015). Therefore, despite the
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highly simplified setting used in this work, our analysis suggests that the interplay between transmission

heterogeneity and spatial heterogeneity can provide a theoretical background to results found in real or480

realistic case studies. Finally, the analysis of temporal heterogeneity in schistosomiasis transmission has

revealed that the effects of seasonal forcing are context-dependent too. In fact, temporal heterogeneity

can either promote or play against long-term parasite persistence in the community, depending on the

eco-epidemiological parameters that are affected by environmental fluctuations.

Although these results are noteworthy per se, the greater goals of mathematical epidemiology lie in485

the applicability of theoretical tools to real case studies and in the pursuit of opportunities for disease

control. As far as parasite control is concerned, heterogeneity associated with differential transmission

risk (group heterogeneity) seems to be the most critical and targetable factor that unambiguously favors

schistosomiasis transmission. In this case, in fact, the presence of sub-threshold endemic dynamics suggests

that it may be very difficult to break transmission in highly heterogeneous human communities, unless490

suitable interventions aimed at the most-at-risk share of the population (e.g. children, fishermen, or

women, in the case of schistosomiasis) are implemented. The prototypical case of a two-group community

with access to one single water source can be used again to get a handle on the importance of tracking down

heterogeneity to design effective disease control strategies. As an example, let us consider a community

where, prior to any intervention, 10% of the population has a 10-fold transmission risk and R21
0 = 2.5.495

Suppose that there exists some action (be it sustained chemoteraphy administration, improved hygiene or

education; see e.g. Rollinson et al., 2013) by which a fraction η of the total population can be effectively

removed from being susceptible to infection (independently of the risk group they belong to). Also,

assume that the implementation of the interventions can be either evenly spread within the population or

targeted (i.e. high-risk group members are prioritized). In the former case, the allocation of the population500

between the two risk groups does not change; in the latter, the high-risk share of the population is reduced

to max(0, (f − η)/(1 − η)). The top panels of Fig. 6 show that bringing R21
0 below one, thus breaking

transmission, would require treatment for 7% or 60% of the overall human population with targeted or

untargeted interventions, respectively.

Figure 6 around here505

The dual case of heterogeneity associated with non-homogeneous water contact patterns and/or snail

distributions (source heterogeneity) may be seen as relatively less critical, in general, because the di-

lution effect induced by the availability of multiple water sources typically hinders long-term parasite

establishment. However, one could still investigate possible differences between targeted (priority is given

to the most used and/or snail-rich water sources) and homogeneous snail removal (be it by means of510

focal molluscicides or biological control; see King and Bertsch, 2015; Sokolow et al., 2015). We refer to
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the prototypical case of a single well-mixed human community with access to two water sources. As an

example, let us consider a community in which, prior to any intervention, the overall snail population

is evenly split between the two water points but access to water sources is heterogeneous, with 75% of

contacts being made at one site (say site 1), and R12
0 = 2.5. In this case, interventions are assumed to515

be able to reduce snail abundance by a fraction ξ of the total population. The distribution of the snail

population between the two water sources does not change in case of a homogeneous intervention. With

a targeted intervention, instead, the fraction of snail present at the most used water source is reduced

to max(0, (n1 − ξ)/(1 − ξ)). The bottom panels of Fig. 6 show that endemic transmission could be in-

terrupted by removing about 34% of the overall snail population with a targeted intervention, instead of520

60% in the case of a blanket intervention. Unsurprisingly, then, interventions to reduce schistosomiasis

transmission are increasingly more efficient (and possibly cost-effective) if targeted to the most-at-risk

groups of the human population (transmission hubs) or, to a lesser extent, to the most critical water

sources (transmission hotspots; see Woolhouse et al., 1991, 1998, for similar prescriptions). Remarkably,

both examples show that targeted actions can interrupt endemic transmission even if transmission hubs525

or hotspots cannot be treated completely.

Therefore, not only does our study affirm that accounting for heterogeneity may be of paramount im-

portance for a correct characterization of epidemicity thresholds, infection intensity patterns, and other

quantities of chief epidemiological interest; it does also suggest that control measures designed under

the assumption of homogeneity – of hosts’ population abundances, transmission rates and/or mobility530

patterns – could be misleading, and that evaluating control strategies (and their implementation) using

homogeneous modeling tools could severely over- or under-estimate their effectiveness. In real-world com-

munities, many (if not all) of the sources of heterogeneity explored in this work are likely to be in play

– possibly simultaneously. These considerations raise a crucial question about how the different types of

heterogeneity can be quantified from field data. To answer this question, we note that proxies of trans-535

mission risk heterogeneity can be estimated via census data, which provide details on the demographic,

social and economic structure of a community, as well as on its access to safe water and sanitation (see

e.g. Mari et al., 2012, 2017). This type of information could be usefully complemented with in situ surveys

to unveil (possibly season-dependent) water-related habits and behaviors (see e.g. Woolhouse et al., 1991,

1998). Water-contact patterns can be assessed via interviews on the use of water sources, which in turn540

require a detailed mapping of water access points. The spatiotemporal distribution of the snail population

in different water bodies can be evaluated via malacogical surveys and habitat suitability studies based

on remote sensing and geospatial analysis (e.g. Brooker, 2007; Simoonga et al., 2009; Stensgaard et al.,

2013; Pedersen et al., 2014; Perez-Saez et al., 2015). Human mobility patterns (daily commutes and
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seasonal migrations) can be inferred from ad hoc questionnaires or, on a larger scale, from the analysis545

of mobile phone data (see e.g. Wesolowski et al., 2012; Bengtsson et al., 2015; Finger et al., 2016; Ciddio

et al., 2017; Mari et al., 2017, for epidemiological applications). Tapping one or more of these sources of

information could help identify transmission hubs and hotspots, thus paving the way for more effective

intervention tactics. On a cautionary side, however, we note that targeting heterogeneity may but just

one (yet possibly important) piece of the jigsaw puzzle that is schistosomiasis control, and that many550

other crucial factors (e.g. type(s) of intervention, timing, cost-effectiveness) must be properly taken into

consideration as well (see e.g. Rollinson et al., 2013).

The modeling approach analyzed in this work is clearly not exempt from limitations. One additional

source of heterogeneity that is neglected in Macdonald-like models for schistosomiasis transmission is

the assumption that the average parasite burden in the human community (or in a relevant subset) is555

an informative measure of parasite distribution in the population. Individual variations in parasite load,

which are often observed in field data, could be addressed by introducing a proper stratification of infection

intensity (Gurarie et al., 2010; Gurarie and King, 2014; Gurarie et al., 2016), at the expense of a relatively

more complicated modeling framework. Also, human demographic dynamics, that are typically neglected

in Macdonald-like models, can bear important implications for schistosomiasis dynamics and control.560

Human communities in developing countries may be far from demographic equilibrium (Bongaarts, 2009),

thus a static stratification of the population into age-groups may be not sufficient to fully represent the

actual demographic dynamics. Given the much shorter time-scales involved, spatiotemporal variations

in snail demography (e.g. Perez-Saez et al., 2016; Gurarie et al., 2017) may perhaps play an even more

important role in determining transmission patterns, especially in highly seasonal environments, where565

fluctuations of different variables (such as snail densities and human exposure rates) may be remarkably

lagged. Indeed, when coupled to a realistic description of the snail intermediate hosts’ population ecology,

seasonal forcing can not only influence the likelihood of parasite establishment, but also induce a wide

range of endemic dynamics, including periodic, quasi-periodic and chaotic transmission patterns (Ciddio

et al., 2015). Spatial coupling mechanisms are also underrepresented in this modeling framework, which,570

in its present form, can accommodate neither hydrological transport of the larval forms of the parasite

(Maszle et al., 1998; Lowe et al., 2005) nor snail dispersal (Clennon et al., 2007; Wu et al., 2008). These

shortcomings could be overcome at the expense of a more complex modeling approach describing several

layers of spatial connectivity (Gurarie and Seto, 2009; Perez-Saez et al., 2015; Ciddio et al., 2017), possibly

also accounting for the geographical signatures of environmental fluctuations (Mari et al., 2014). We575

finally note that a careful consideration of the spatial scale of analysis that is relevant for the application

under study is crucial to determine what sources of heterogeneity are most likely to influence disease
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transmission.

Complemented with one or more of these possible extensions, the simple theoretical framework pro-

vided by Macdonald-like models can indeed be turned into a powerful operative tool to gain insight into the580

role of heterogeneity in schistosomiasis transmission dynamics, as well to analyze real-world intervention

strategies.
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Figure 1: Equilibria of Macdonald’s (1965) homogeneous model (1). The DFE is stable if r0 < 1 (gray-
shaded parameter combinations), while the EE is feasible and stable if r0 > 1. The black solid line
indicates the transcritical bifurcation through which the two equilibria collide and exchange stability
(endemicity boundary, r0 = 1). The gray dashed curves are contour lines for the prevalence of infected
snails, while the gray dash-dotted curves refer to the average worm burden in human hosts. Parameter
values: γ = 5.5 · 10−4, µ = 1.7 · 10−2. All rates are expressed in [day−1].
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Figure 2: Analysis of a two-group community with access to a single water source (model (2) with G = 2
and S = 1). The two groups differ for their relative abundance (h1 and h2, with h1 + h2 = 1) and
intrinsic transmission risk (ε1 and ε2). A) Endemicity boundaries: parasite establishment is possible
(R21

0 > 1) for parameter combinations lying above the bifurcation curves, which correspond to R21
0 = 1

and are obtained for different values of the basic reproduction number r0 of an equivalent homogeneous
community (labels). B) State variables at the stable equilibrium: the dashed curves are contour lines for
the prevalence of infected snails, while the dash-dotted curves refer to the average worm burden in human
hosts (dark gray: high-risk group; light gray: low-risk group). The DFE is stable if R21

0 < 1 (gray-shaded
parameter combinations), while the EE is feasible and stable if R21

0 > 1. The black solid line indicates
the endemicity boundary R21

0 = 1. In panel B, the overall exposure (βN) and contamination (χH) rates
are assumed to be equal, and their value is set so as to match that of a homogeneous community endowed
with a basic reproduction number r0 = 0.9 (thus, βN = χH =

√
r0γµ). Other parameters as in Fig. 1.
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Figure 3: Analysis of a single-group community with access to two water sources (model (2) with G = 1
and S = 2). The two sources differ for the relative abundance of snails they host (n1, bottom axes,
and n2, top axes, with n1 + n2 = 1) and the frequency of human-water contacts (ω1, left axes, and
ω2, right axes, with ω1 + ω2 = 1). A) Steady-state prevalence of infection in snails at water source 1
(Ȳ 12

1 ) divided by the steady-state prevalence of infected snails in an equivalent homogeneous community
(Ȳ ) with r0 = 3 (βN = χH =

√
r0γµ, other parameters as in Fig. 1). Black curves are contour lines

of Ȳ 12
1 /Ȳ . B) As in panel A, for the steady-state prevalence of infection in snails at water source 2

(Ȳ 12
2 ). Black curves are contour lines of Ȳ 12

2 /Ȳ . C) As in panel A, for the steady-state average parasite
burden in human hosts (P̄ 12). Black curves are contour lines of P̄ 12/P̄ (where P̄ is the steady-state
average parasite burden in the equivalent homogeneous community). The 0-level lines in panels A–C
(thick lines) correspond to the endemicity boundary R12

0 = 1, while the gray-shaded regions correspond to
parameter combinations for which the DFE of the heterogeneous model is stable (R12

0 < 1). D) Endemicity
boundaries in the heterogeneous community (R12

0 = 1) for different values of the basic reproduction
number of an equivalent homogeneous community (labels). Parasite establishment is possible (R12

0 > 1)
for parameter combinations lying within the region(s) including the homogeneous cases n1 = ω1 = 0
and/or n1 = ω1 = 1.
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Figure 4: Endemicity boundaries in a spatially heterogeneous metacommunity with two human groups
living in separate locations, each with one preferential water source (model (2) with G = 2 and S = 2).
The groups may differ for their relative abundance (h1 and h2, with h1+h2 = 1) and intrinsic transmission
risk (ε1 and ε2), while the two sources may differ for the relative abundance of snails they host (n1 and
n2, with n1 + n2 = 1) and the frequency of human-water contacts (for each community, the fraction of
contacts at the farthest water point is m, while 1−m is the fraction of contacts at the home site). Parasite
establishment is possible (R22

0 > 1) on the right of the bifurcation curves, which correspond to R22
0 = 1

and are obtained for different spatial distributions of the human host population (legend). A) Spatially
homogeneous transmission risk (ε1/ε2 = 1) and snail population distribution (n1 = n2 = 1/2). B) As in
panel A, with spatially heterogeneous transmission risk (ε1/ε2 = 10). C) As in panel A, with spatially
heterogeneous snail abundance (n1 = h1). D) Spatially heterogeneous transmission risk (ε1/ε2 = 10) and
snail population distribution (n1 = h1).
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Figure 6: Analysis of exemplificative strategies for schistosomiasis control in the presence of heterogeneity.
Top panels refer to the case of a two-group community with access to a single water source (as in Fig. 2
with f = 0.1 and k = 10). A) Reduction of the reproduction number R21

0 for increasing shares of the
human population being involved in the intervention. B) Reduction of the average parasite burden in
the two sub-groups (left axis: high-risk group; right axis: low-risk group). C) Reduction of infected snail
prevalence. Bottom panels refer to the case of a single community with access to two water sources (as
in Fig. 3, with ω1 = 3/4, ω2 = 1/4 and n1 = n2 = 1/2). D) Reduction of the reproduction number R12

0

for increasing shares of the snail population being removed. E) Reduction of the average parasite burden.
F) Reduction of infected snail prevalence at the two water sources. In all cases, βN = χH are set so that
the reproduction number in the heterogeneous community is equal to 2.5 prior to the intervention. Other
parameters as in Fig. 1. See text for details on the interventions.
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