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Modeling and control for rotating pretwisted
thin-walled beams with piezo-composite

Xiao Wang, Marco Morandini, Pierangelo Masarati

Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, Via LaMasa 34,
20156 Milano, Italy

Abstract

In this paper, a rotating thin-walled beam theory incorporating fiber-reinforced

and piezo-composite is developed and used to study the active control for vi-

bration suppression. The structural model accounts for transverse shear strain,

primary and secondary warpings, pretwist and presetting angles. In addition,

the centrifugal stiffening effect, tennis-racket effect, flapping-lagging-transverse

shear and extension-twist couplings are accounted as well. Based on a nega-

tive velocity feedback control algorithm, the effective damping performance is

optimized by studying anisotropic characteristics of piezo-actuators and elas-

tic tailoring of the host structure. Moreover, relations between damping control

authority and design factors, such as rotor speed, presetting and pretwist angles

are investigated in detailed.

Keywords: rotary thin-walled beam, fiber-reinforced, piezocompsoite,

dynamical control

Nomenclature

aij 1-D global stiffness coefficients

AXi piezo-actuator coefficients, see Eq. 22

bw bimomnt of the external force per unit span

bij inertial coefficients

2b, 2d width and depth of the beam cross-section, see Fig. 2

Bw bimoment
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Fw, a(s) primary and secondary warping function, respectively

ki control gains in the velocity feedback control in Eqs. 39 and 40

L length of the beam, see Fig. 2

mx,my,mz external moments per unit span, about x−, y− and z−axes, respectively

Mx,Mz bending moments about x and z axes, respectively

My torque about y axis

Nhp, Nh, Np numbers of all layers, host layers and piezo-composite layers, respectively

px, py, pz external forces per unit span

P (y) distribution function along span for the actuator

Q̄ij reduced elastic coefficients

Qx, Qz transverse shear forces in the x− and z−directions

R0 radius of the hub, see Fig. 2

R position vector of a point on the deformed beam, see Eq. 3

(s, y, n) local coordinate system on the cross-section, see Fig. 2

Ty axial force in the y−direction

u0, v0, w0 displacement components of the cross-section along x, y, z axes, see Fig. 2

Vi voltage parameters, see Eqs. 23

(x, y, z) rotating axis system located at the blade root, see Fig. 1

(xp, yp, zp) local coordinate system for an arbitrary beam cross-section, see Fig. 2.

(X,Y, Z) inertial reference system attached to the center of hub

β(y) pretwist angle, see Eq. 2

β0, γ0 pretwist angle at beam tip and presetting angle at beam root, respectively

ρ(k) mass density of the kth layer in Eq. 15a

Γt nonlinear force related to twist motion

θh, θp ply-angles of host structure and piezo-actuator

θx, φ, θz rotations of the cross-section about the x, y and z axes, see Fig. 2

Ω rotating speed of hub

δ variation operator

δp, δs tracers that take the value 1 or 0

(̇), (̈),()′, ()′′ ∂()/∂t, ∂2()/∂t2, ∂()/∂y, ∂2()/∂y2
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XT transpose of the matrix or vector X∮
c
,
∫ L

0
integral along the cross-section and the span, respectively

1. Introduction

In recent years a large amount of work are devoted to the modeling and

behavior of composite rotor blades [1, 2, 3, 4, 5]. Among there works, Rehfield

et al. [6] discussed the non-classic behavior of a closed cross-section composite5

thin-walled beam. Chandra et al. [7] investigated the vibration characteristics

of rotating composite box beams on both experimental and theoretical aspects.

Song et al [8, 9] developed a rotating composite thin-walled beam theory feath-

ering lateral bending-vertical bending elastic coupling effect. Oh et al discussed

effects of pretwist and presetting on coupled bending vibrations [10]. He also10

investigated the twist-extension elastic coupling effect on rotary composite struc-

ture [11].

Rotor blades operate in a unsteady and complex aerodynamic environment.

They are also characterized by a complex structural behavior. For these rea-

sons active control is deemed to te a promising technology for the design of new15

high performing blades [12, 13]. Because piezoelectric materials have a series

of desirable characteristics, such as self-sensing, structure embeddability, fast

response and covering a broad range of frequency, they are often proposed for

the design of active blades [14, 15, 16]. In order to overcome the drawbacks

of the typical piezoceramic actuator, such as the vulnerable ability to damage20

and the fact that they can hardly conform to a curved surface, piezo-composite

actuators, e.g., Active Fiber Composite (AFC) [17] and Macro-Fiber Compos-

ite (MFC) [18] were developed. In the existing literatures, a lot publications on

modeling or studying adaptive thin-walled structure are based on a piezoelectric

bending moment control system [19, 20, 21, 22, 23, 24], but they lack explicit25

discussions for transverse shear force and twist moment actuations. Thus a

comprehensive study allowing to get a better insight into the influence of piezo-
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electric extension, transverse shear, twist, bimoment and bending actuations on

rotary thin-walled structures is still interesting.

In this paper, a geometrically nonlinear rotating thin-walled beam theory in-30

corporating piezo-composite is developed. In addition, transverse shear strain,

primary and secondary warping inhibitions, three-dimensional strain, centrifu-

gal stiffening and tennis-racket effects [25] are taken into account. The circum-

ferentially uniform stiffness (CUS) [26] lay-up configuration that yields lateral

bending-vertical bending and twist-extension couplings is applied for the rotary35

structure [11, 27, 28]. The governing equations and the boundary conditions are

derived via Hamilton’s principle. Numerical studies are based on the Extended

Galerkin’s Method. Based on a negative velocity feedback control methodology,

active control for vibration suppression is optimized via the study of tailoring

technology and anisotropic characteristic of piezo-composite. In addition, the40

influences of design parameters, such as rotor speed, presetting and pretwist

angles are investigated, and pertinent conclusions are outlined.

2. Basic assumptions and kinematics

2.1. Basic assumptions

The geometric configuration and the chosen coordinate systems of the rotary

thin-walled beam are shown in Figs 1 and 2. The inertial reference system

(X,Y, Z) is attached to the center of the hub O (considered to be rigid), while

the rotating axis system (x, y, z) is located at the blade root with an offset

R0 from the rotation axis O, see Fig. 1. The unit vectors associated with the

frame coordinates (X,Y, Z) and (x, y, z) are defined as (I,J,K) and (i, j,k),

respectively. Besides the rotating coordinate system (x, y, z), a local coordinate

system (xp, y, zp) is also defined, where xp and zp are the principal axes of

an arbitrary beam cross-section, see Fig. 2. In addition, a surface coordinate

system (s, y, n) on the mid-line contour of the cross-section is considered in

Fig. 2. Coordinate systems (x, y, z) and (xp, y, zp) are related by the following
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Figure 1: A schematic description of the blade.
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Figure 2: Geometry of the pretwisted beam with a rectangular cross-section (CUS lay-ups).
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transformation x(s, y) = xp(s) cosβ(y) + zp(s) sinβ(y),

z(s, y) = −xp(s) sinβ(y) + zp(s) cosβ(y),

(1)

where the linear pretwist angle β(y) can be assumed as

β(y) = γ0 + β0y/L, (2)

in which γ0, β0 and L denote the presetting angle, the pretwist angle of the45

cross-section at the beam tip and the length of the beam, respectively.

The rotary thin-walled structure is modeled assuming that the cross-section

is preserved during the deformation. Beside this assumption, already adopted

e.g. in Ref. [29], no other significant assumptions to the kinematic descrip-

tion are introduced; in particular, both the primary and secondary (thickness)50

warping effects are included and the transverse shear effect are taken into ac-

count. Note also that the centrifugal stiffening and tennis-racket effects [25] are

accounted for in the present approach.

2.2. Kinematics

It is useful to express the position vector R of an arbitrary point M(x, y, z)

belonging to the deformed beam, measured from a fixed origin O (coinciding

with the center of the hub), described in the rotating coordinate system (x, y, z).

In the sense we have

R = R0 + r + ∆, (3)

where R0, r and ∆ denote the position vector of the beam root point o (hub

periphery), the undeformed position vector of point M(x, y, z), and its displace-

ment vector, respectively. Their expressions are

R0 = R0j, r = xi + yj + zk, ∆ = ui + vi + wk, (4)

where the components u, v and w in the displacement vector ∆ are [29]

u(x, y, z, t) =u0(x, t) +

[
z(s) + n

dx

d s

]
sinφ(y, t)−

[
x(s)− nd z

d s

]
[1− cosφ(y, t)] ,

(5a)
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v(x, y, z, t) =v0(y, t) +

[
x(s)− nd z

d s

]
θz(y, t) +

[
z(s) + n

dx

d s

]
θx(y, t)

− [Fw(s) + na(s)]φ′(y, t),

(5b)

w(x, y, z, t) =w0(y, t)−
[
x(s)− nd z

d s

]
sinφ(y, t)−

[
z(s) + n

dx

d s

]
[1− cosφ(y, t)],

(5c)

where Fw(s) and na(s) play the role of primary and secondary warping func-

tions. u0(y, t), v0(y, t), w0(y, t), φ(y, t), θx(y, t), θz(y, t) represent the 1-D dis-

placement measures (see Fig. 2), and constitute the basic unknowns of the

problem. If we assume that the rotation takes place in the plane (X,Y ) with

the constant angular speed, i.e., Ω = ΩK = Ωk, the velocity and acceleration

vectors of point M(x, y, z) can be given as:

Ṙ(x, y, z) =u̇(x, y, z)i− [R0 + y + v(x, y, z)]Ωi + v̇(x, y, z)j

+ [x+ u(x, y, z)]Ωj + ẇk,
(6)

R̈(x, y, z) =ü(x, y, z)i− 2v̇(x, y, z)Ωi− [x+ u(x, y, z)]Ω2i + v̈(x, y, z)j

+ 2u̇(x, y, z)Ω− [R0 + y + v(x, y, z)]Ω2j + ẅk.
(7)

3. Constitutive Relations55

The fiber-reinforced composite material (e.g. Graphite-Epoxy) in host struc-

ture and the piezo-composite material (e.g. AFC or MFC) in actuator can both

be modeled using the linear piezoelectric constitutive equation [30, 31]

σ11

σ22

σ33

τ23

τ31

τ12


=



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





ε11

ε22

ε33

γ23

γ31

γ12


−



e11

e12

e13

0

0

0


E1. (8)
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If we assume constant electric filed through the actuator thickness, then E1 =

−(V/ĥ), where V and ĥ are the applied voltage and electrode spacing of the

interdigitated electrode for the actuator layer, respectively.

Thus for kth layer, Eq. (8) referred to the surface coordinate system (s, y, n)

in Fig. 2 can be reduced to the plane stress condition σnn = 0 as

σss

σyy

τyn

τsn

τsy


(k)

=



Q̄11 Q̄12 0 0 Q̄16

Q̄12 Q̄22 0 0 Q̄26

0 0 Q̄44 Q̄45 0

0 0 Q̄45 Q̄55 0

Q̄16 Q̄26 0 0 Q̄66


(k)



εss

εyy

γyn

γsn

γsz


(k)

−



ess

eyy

0

0

esy


(k)

E1(k),

(9)

in which the expressions of reduced elastic coefficients Q̄ij and reduced piezo-

electric stress coefficients ess, eyy, esy can be found in Refs. [31, p. 575] and [32],60

respectively.

Based on the assumption that the stress resultants Nss and Nsn are negligi-

bly small when compared with the remaining ones [29, 33], the stress resultants

and stress couples reduce to the following expressions

Nyy

Nys

Lyy

Lsy


=


K11 K12 K13 K14

K21 K22 K23 K24

K41 K42 K43 K44

K51 K52 K53 K54





ε0yy

γ0
ys

φ′

ε1yy


−



Ñyy

Ñsy

L̃yy

L̃sy


, (10)

and

Nyn =

(
A44 −

A45
2

A55

)
γyn. (11)

The explicit expressions of the local stiffness coefficients Kij and the associated

strains (ε0yy, ε
1
yy, γ

0
ys, γyn) can be found in Ref. [29]. As for the piezo-actuator

induced stress resultant( Ñyy, Ñsy) and stress couple (L̃yy, L̃sy), they are defined

8



as

Ñyy(s, y) =
∑m
k=1

(
eyy −

A12

A11
ess

)
E1(k)(nk2 − nk1)Pk(s)Pk(y)

Ñsy(s, y) =
∑m
k=1

(
esy −

A16

A11
ess

)
E1(k)(nk2 − nk1)Pk(s)Pk(y)

L̃yy(s, y) =
∑m
k=1

[
1

2
eyy(nk1 + nk2)− B12

A11
ess

]
E1(k)(nk2 − nk1)Pk(s)Pk(y)

L̃sy(s, y) =
∑m
k=1

[
1

2
esy(nk1 + nk2)− B16

A11
ess

]
E1(k)(nk2 − nk1)Pk(s)Pk(y),

(12)

where Aij and Bij are the standard local stiffness quantities [30] based on the

total number of constituent layers Nhp = Nh +Np, for the host layers (Nh) and

piezo-composite (Np). The actuator distribution function P (·) are given as (see

Fig. 3)

Pk(n) = H(n− nk1)−H(n− nk2), (13a)

Pk(s) = H(s− sk1)−H(s− sk2), (13b)

Pk(y) = H(y − yk1)−H(y − yk2), (13c)

in which H(·) denotes Heaviside’s distribution.

4. Formulation of the governing system

The governing equations and the associated boundary conditions are derived

from Hamilton’s principle. This can be stated as (see e.g. Ref. [29])

δJ =

∫ t1

t0

[δT + δV − δWe] d t = 0, (14)

where t0 and t1 denote two arbitrary motions of time; We denotes the virtual

work of the external forces; and the kinetic energy T and strain energy V can

be given as

T =
1

2

∫ L

0

∮
c

Nhp∑
k=1

∫ nk2

nk1

ρ (k)(Ṙ · Ṙ) dnd sd y, (15a)

9
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Figure 3: Piezo-actuator location.

V =
1

2

∫ L

0

∮
c

[
Nyyε

0
yy +Nysγ

0
sy + Lyyε

1
yy + Lsyφ

′ +Nnyγny

]
d sd y. (15b)

After a lengthy variation process and collecting the terms associated with

the same variations, the governing equations can be obtained,

δu0 : [(Ty + T̃y)u′0 − (Mz + M̃z)φ
′ sinφ+ (Mx + M̃x)φ′ cosφ+ (Qx + Q̃x) cosφ

+ (Qz + Q̃z) sinφ]′ + px − b1[ü0 − 2Ωv̇0
::::

− Ω2u0] = 0,

(16a)

δv0 : (Ty + T̃y)′ + py − b1[v̈0 + 2Ωu̇0
::::

− Ω2(R0 + y + v0)] = 0, (16b)

δw0 : [(Ty + T̃y)w′0 − (Mz + M̃z)φ
′ cosφ− (Mx + M̃x)φ′ sinφ

− (Qx + Q̃x) sinφ+ (Qz + Q̃z) cosφ]′ + pz − b1ẅ0 = 0,
(16c)

10



δφ : (My + M̃y)′ − (Bw + B̃w)′′ + [(Mx + M̃x)(u′0 cosφ− w′0 sinφ)

− (Mz + M̃z)(w
′
0 cosφ+ u′0 sinφ) + (Γt + Γ̃t)φ

′]′

+ (Mx + M̃x)(u′0φ
′ sinφ+ w′0φ

′ cosφ)− (Mz + M̃z)(w
′
0φ
′ sinφ− u′0φ′ cosφ)

+ (Qx + Q̃x)(u′0 sinφ+ w′0 cosφ)− (Qz + Q̃z)(u
′
0 cosφ− w′0 sinφ)

+my + b′w − (b4 + b5)φ̈+ 2Ω
[
(b4 cosφ− b6 sinφ)θ̇x + (b6 cosφ− b5 sinφ)θ̇z

]
:::::::::::::::::::::::::::::::::::::::::::

+ Ω2 [(b4 − b5) sinφ cosφ+ b6 cosφ(cosφ− sinφ)]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ b10(φ̈′′ − Ω2φ′′) = 0,

(16d)

δθx : (Mx + M̃x)′ − (Qz + Q̃z) +mx − b4θ̈x − b6θ̈z

− 2Ω(b4 cosφ− b6 sinφ)φ̇
:::::::::::::::::::

+ Ω2(b4θx + b6θz) = 0,
(16e)

δθz : (Mz + M̃z)
′ − (Qx + Q̃x) +mz − b5θ̈z − b6θ̈x

− 2Ω(b6 cosφ− b5 sinφ)φ̇
:::::::::::::::::::

+ Ω2(b5θz + b6θx) = 0,
(16f)

and the essential boundary conditions at y = 0 are

u0 = v0 = w0 = φ = φ′ = θx = θz = 0, (17)

the natural boundary conditions at y = L are

δu0 : Tyu
′
0 −Mzφ

′ sinφ+Mxφ
′ cosφ+Qx cosφ+Qz sinφ = Q̄x, (18a)

δv0 : Ty = T̄y, (18b)

δw0 : Tyw
′
0 −Mzφ

′ cosφ−Mxφ
′ sinφ−Qx sinφ+Qz cosφ = Q̄z, (18c)

δφ : −B′w +My +Mx(u′0 cosφ− w′0 sinφ)

−Mz(w
′
0 cosφ+ u′0 sinφ) + Γtφ

′ + Γtφ
′ + b10(φ̈′ − Ω2φ′) = M̄y,

(18d)

11



δφ′ : Bw = B̄w, (18e)

δθx : Mx = M̄x, (18f)

δθz : Mz = M̄z. (18g)

In these equations, the terms associated with (1) the centrifugal acceleration,

(2) the Coriolis, (3) the tennis-racket, (4) the centrifugal warping and (5) the65

centrifugal-rotatory effects are underscored by (1) a solid line ( ), (2) a

wavy line (
::::

), (3) a dotted line ( . . . . ), (4) a dashed line ( ) and (5)

two superposed solid lines ( ) respectively. More details about these high

rotating speed induced effects can be found e.g. in Refs. [31, 25, 8]. The inertial

coefficients bij are defined in Appendix A; px, py, pz and mx, my, mz are the70

external forces and moments per unit span, respectively; bw is the external

bimoment of the surface traction. As for the 1-D stress resultants, Ty is the

axial force, Qx the transverse shear force in the x−direction, Qz the transverse

shear force in the z−direction; Mx the bending moment around x−axis, My

the torque, Mz the bending moment around z−axis, Bw the bimoment. The75

nonlinear stress couple is Γt. Terms without and with over-tilde (̃ ) identify the

pure mechanical and piezo-actuator contributions, respectively. The terms with

over-bar (̄ ) are external excitations on the beam tip. Their explicit expressions

will be discussed in the following section.

5. Governing equations for circumferentially uniform stiffness lay-up80

configuration

A special structural configuration, viz., circumferentially uniform stiffness

(CUS) configuration was firstly proposed by Rehfield and Atilgan [34] and is

considered here. For the thin-walled beam with rectangular cross-section as

shown in Fig. 2, a CUS configuration implies the ply-angle distribution θ(z) =85
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Figure 4: Circumferentially uniform stiffness (CUS) configuration

θ(−z) of the top and bottom walls and θ(x) = θ(−x) of the left and right walls,

see Fig. 4.

5.1. Force-displacement relationship

The expressions of pure mechanical stress resultants and stress couples in

Eqs. (16) and (18) can be written as [29]:

Ty

Mz

Mx

Qx

Qz

Bw

My

Γt



= [aij(y)]



v′0 +
1

2
(u′0)2 +

1

2
(w′0)2

θ′z − w′0φ′ cosφ− u′0φ′ sinφ

θ′x + u′0φ
′ cosφ− w′0φ′ sinφ

θz + u′0 cosφ− w′0 sinφ

θx + u′0 sinφ+ w′0 cosφ

φ′′

φ′

1

2
(φ′)2



, (19)

in which the global stiffness quantities aij(y) can be expressed in local stiffness

quantities apij , the details are given in Appendix B. For a general anisotropic
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material, the stiffness matrix [aij(y)] is fully populated, implying all motions

(flapping, lagging, twist) are coupled. However, applying circumferentially uni-

form stiffness (CUS) lay-up configuration will yield [aij(y)] decoupling into two,

viz, extension-twist coupling,

Ty

My

Bw

Γt


=


a11 a17 0 a18

a17 a77 0 a78

0 0 a66 0

a18 a78 0 a88





v′0 +
1

2
(u′0)2 +

1

2
(w′0)2

φ′

φ′′

1

2
(φ′)2


, (20)

and bending-transverse shear coupling,

Mz

Mx

Qx

Qz


=


a22(y) a23(y) a24(y) a25(y)

a23(y) a33(y) a34(y) a35(y)

a24(y) a34(y) a44(y) a45(y)

a25(y) a35(y) a45(y) a55(y)





θ′z − w′0φ′ cosφ− u′0φ′ sinφ

θ′x + u′0φ
′ cosφ− w′0φ′ sinφ

θz + u′0 cosφ− w′0 sinφ

θx + u′0 sinφ+ w′0 cosφ


.

(21)

Note that, aij in Eq. (20) are independent of spanwise coordinate, i.e., aij(y) =

apij . While in Eq. (21), ap23, ap24, ap35 and ap45, these four local stiffness quantities90

are all zero in the expressions of aij(y).

5.2. Force-voltage relationship

The relation between stress resultants, couples induced by piezo-actuators

and applied voltages described in the local coordinate system (xp, y, zp) can be

given as 

T̃y(y, t)

M̃y(y, t)

B̃w(y, t)

Γ̃t(y, t)

M̃z(y, t)

M̃x(y, t)

Q̃x(y, t)

Q̃z(y, t)



=



ATy1 ATy2 ATy3 ATy4

AMy
1 AMy

2 AMy
3 AMy

4

ABw1 ABw2 ABw3 ABw4

AΓt
1 AΓt

2 AΓt
3 AΓt

4

AMz
1 AMz

2 AMz
3 AMz

4

AMx
1 AMx

2 AMx
3 AMx

4

AQx1 AQx2 AQx3 AQx4

AQz1 AQz2 AQz3 AQz4





V1(t)

V2(t)

V3(t)

V4(t)


P (y), (22)
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where P (y) of Eq. (13c) denotes the span location of the piezo-actuator. The

local piezo-actuator coefficients AXi (i = 1, 2, 3, 4) are defined in Appendix C.

The voltage parameters Vi (i = 1, 2, 3, 4) are defined as

V1(t) =
1

2
[VT (t)− VB(t)] , V2(t) =

1

2
[VT (t) + VB(t)] , (23a)

V3(t) =
1

2
[VL(t)− VR(t)] , V4(t) =

1

2
[VL(t) + VR(t)] , (23b)

in which four voltage parameters VT , VB , VL and VR denote voltages applied

on actuators located at the top, bottom, left and right plates of the beam,

see Fig. 3. Applying CUS lay-up configuration and described in the rotating

coordinate system (x, y, z), Eq. (22) will be reduced as two actuating groups,

viz., extension-twist actuating coupling

T̃y(y, t)

M̃y(y, t)

B̃w(y, t)

Γ̃t(y, t)


=


ATy2 ATy4

AMy
2 AMy

4

0 0

AΓt
2 AΓt

4


V2(t)

V4(t)

P (y), (24)

and bending-transverse shear actuating coupling

M̃z(y, t)

M̃x(y, t)

Q̃x(y, t)

Q̃z(y, t)


=


AMx

1 sinβ(y) AMz
3 cosβ(y)

AMx
1 cosβ(y) −AMz

3 sinβ(y)

AQx1 cosβ(y) AQz3 sinβ(y)

−AQx1 sinβ(y) AQz3 cosβ(y)


V1(t)

V3(t)

P (y). (25)

5.3. Linear governing equations

In view of physically evidence fact that the blade is much stiffer in the

longitudinal direction than in the flapping and lagging ones, the effect of the

axial inertia is much smaller than the others. Thus discarding axial inertial term

b1v̈0 and Coriolis effect term 2b1Ωv̇0 (which is negligibly small for this particular

blade orientation [35]), the direct integration of Eq. (16b) in conjunction with

boundary condition at the free end, stipulating zero external forces (py = 0,
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T̃y = 0) yields

Ty(y, t) ≈ −
∫ L

y

{
−b1Ω2(R0 + y + v0)

}
d y = b1Ω2R(y) = T̂y(y, t), (26)

where over-hat (̂·) denotes the force induced by dynamical (centrifugal) stiffening

effect and

R(y) = R0(L− y) +
1

2
(L2 − y2). (27)

Note that, for high angular speed Ω, this dynamic stiffening effect will be sig-

nificant and should be included in the linear system. In addition, as concerns

Eq. (16d) governing the twist-extension motion, Γ̂t which plays the role of a

torsional stiffness induced by the centrifugal force field should also be consid-

ered [8],

Γ̂t = (b4 + b5)Ω2R(y). (28)

Taking Eqs. (20), (21), (24) and (25) into the governing equations and the

associated boundary conditions (Eqs. (16)-(18)) in conjunction with Eqs. (26)95

and (28), the system can be linearized in the CUS lay-up configuration. Actually

the linear system can be split into two subsystems, one governs the lateral

bending-vertical bending coupling motion (flap-lag) and the other governs the

twist-extension coupling motion.

BB-subsystem (Lateral Bending-Vertical Bending coupling).

δu0 : [a24θ
′
z + a34θ

′
x + a44(u′0 + θz) + a45(w′0 + θx)]

′
+ px + b1Ω2[R(y)u′0]′

− b1[ü0 − 2Ωv̇0
::::

− Ω2u0] + δpP
′(y)

[
AQx1 V1 cosβ +AQz3 V3 sinβ

]
+ β′P (y)

[
−AQx1 V1 sinβ +AQz3 V3 cosβ

]
= 0,

(29a)

δw0 : [a25θ
′
z + a35θ

′
x + a45(u′0 + θz) + a55(w′0 + θx)]

′
+ b1Ω2[R(y)w′0]′

− b1ẅ0 + pz + δpP
′(y)

[
AQz3 V3 cosβ −AQx1 V1 sinβ

]
− β′P (y)

[
AQz3 V3 sinβ +AQx1 V1 cosβ

]
= 0,

(29b)
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δθx :
[
a23θ

′
z + a33θ

′
x + a34(u′0 + θz) + a35(w′0 + θx)

]′ − [a25θ
′
z + a35θ

′
x

+ a45(u′0 + θz) + a55(w′0 + θx)
]

+mx − b4θ̈x − b6θ̈z − 2Ωb4φ̇
:::::

+ Ω2(b4θx + b6θz) + δpP
′(y)

[
AMx

1 V1 cosβ −AMz
3 V3 sinβ

]
+ P (y)

[
(−AMx

1 β′ +AQx1 )V1 sinβ − (AMz
3 β′ +AQz3 )V3 cosβ

]
= 0,

(29c)

δθz :
[
a22θ

′
z + a23θ

′
x + a24(u′0 + θz) + a25(w′0 + θx)

]′ − [a24θ
′
z + a34θ

′
x

+ a44(u′0 + θz) + a45(w′0 + θx)
]

+mz − b5θ̈z − b6θ̈x − 2Ωb6φ̇
:::::

+ Ω2(b5θz + b6θx) + δpP
′(y)

[
AMz

3 V3 cosβ +AMx
1 V1 sinβ

]
− P (y)

[
(AMz

3 β′ +AQz3 )V3 sinβ − (AMx
1 β′ −AQx1 )V1 cosβ

]
= 0,

(29d)

the boundary conditions are

at y = 0:

u0 = w0 = θx = θz = 0, (30)

and at y = L:

δu0 : a24(L)θ′z + a34(L)θ′x + a44(L)(u′0 + θz) + a45(L)(w′0 + θx)

+ δs

[
AQx1 V1 cosβ(L) +AQz3 V3 sinβ(L)

]
= Q̄x,

(31a)

δw0 : a25(L)θ′z + a35(L)θ′x + a45(L)(u′0 + θz) + a55(L)(w′0 + θx)

+ δs

[
AQz3 V3 cosβ(L)−AQx1 V1 sinβ(L)

]
= Q̄z,

(31b)

δθx : a23(L)θ′z + a33(L)θ′x + a34(L)(u′0 + θz) + a35(L)(w′0 + θx)

+ δs
[
AMx

1 V1 cosβ(L)−AMz
3 V3 sinβ(L)

]
= M̄x,

(31c)

δθz : a22(L)θ′z + a23(L)θ′x + a24(L)(u′0 + θz) + a25(L)(w′0 + θx)

+ δs
[
AMz

3 V3 cosβ(L) +AMx
1 V1 sinβ(L)

]
= M̄z.

(31d)
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TE-subsystem (Twist-Extension coupling).

δv0 : a11v
′′
0 + a17φ

′′ + py + δpP
′(y)[ATy2 V2 +ATy4 V4]

− b1[v̈0 + 2Ωu̇0
::::

− Ω2(R0 + y + v0)] = 0,
(32a)

δφ : a17v
′′
0 + a77φ

′′ − a66φ
(iv) +my + b′w + δpP

′(y)[AMy
2 V2 +AMy

4 V4]

− (b4 + b5)φ̈+ b10φ̈
′′ + 2Ω(b4θ̇x + b6θ̇z)

:::::::::::::
+ Ω2 [b6 + (b4 − b5 − b6)φ]

. . . . . . . . . . . . . . . . . . . . . . . .

+ Ω2[(b4 + b5)R(y)φ′]′ − b10Ω2φ′′ = 0,

(32b)

the boundary conditions are

at y = 0:

v0 = φ = φ′ = 0, (33)

and at y = L:

δv0 : a11v
′
0 + a17φ

′ + δs[ATy2 V2 + ATy4 V4] = T̄y, (34a)

δφ : a17v
′
0 + a77φ

′ − a′′′66φ+ b10(φ̈′ − Ω2φ′)

+ δs[AMy
2 V2 + δsAMy

4 V4] = M̄y,

(34b)

δφ′ : a66φ
′′ = B̄w, (34c)

In these equations, for the cases (a) the actuator is spread over the entire beam100

span (b) the actuator is a single patch, the traces have to be taken as (a) δp = 0

and δs = 1 (b) δp = 1 and δs = 0, respectively. Note that, the two subsystems

are independent when Coriolis effects are discarded.

6. Solution methodology

6.1. The Extend Galerkin’s Method105

The Extend Galerkin’s Method (EGM) [36, 37, 33] is applied to discretize the

system for numerical study. The underlying idea of EGM is to select weighting
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(or shape) functions that exactly satisfy only the geometric boundary conditions

(y = 0). The terms arising as a result of the non-fulfillment of natural boundary

conditions (y = L) remain as residual terms in the energy functional itself, which

are then minimized in the Galerkin sense [38], thus yielding excellent accuracy

and rapid convergence [37]. Let

u0(y, t) = ΨT
u (y)qu(t), v0(y, t) = ΨT

v (y)qv(t), w0(y, t) = ΨT
w(y)qw(t),

φ(y, t) = ΨT
φ (y)qφ(t), θx(y, t) = ΨT

x (y)qx(t), θz(y, t) = ΨT
z (y)qz(t),

(35)

where the shape functions ΨT
u (y), ΨT

v (y), ΨT
w(y), ΨT

φ (y), ΨT
x (y) and ΨT

z (y)

are required to fulfill the geometric boundary conditions. Thus the discretized

forms of the BB- and TE-subsystems follow as

MB/T q̈B/T + [KB/T + Ω2K̂B/T ]qB/T +AB/TVB/T = QB/T , (36)

where

qB =
{

qTu qTw qTx qTz

}T
, qT =

{
qTv qTφ

}T
, (37)

VB =
{
V1 V3

}T
, VT =

{
V2 V4

}T
. (38)

The subscript B and T denote the matrix/vector of BB- and TE-subsystems,

respectively. The expressions for mass matrix MB/T , stiffness matrix KB/T , ad-

ditional stiffness matrix K̂B/T , actuating matrix AB/T and external excitation

vector QB/T are given in Appendix D.

6.2. Negative velocity feedback control110

We assume the sensor can offer the velocity information at the beam span y =

Ys, then the actuating voltage vector VB/T for the negative velocity feedback

control algorithm [39, 31] can be rewritten as

VB =

V1

V3

 =

−k1[−θ̇px(Ys, t)]

−k3[θ̇pz(Ys, t)]


=

 k1[θ̇x(Ys, t) cosβ + θ̇z(Ys, t) sinβ]

−k3[−θ̇x(Ys, t) sinβ + θ̇z(Ys, t) cosβ]

 = PB(Ys)q̇B(t),

(39)
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VT =

V2

V4

 =

−k2φ̇
p(Ys, t)

−k4φ̇
p(Ys, t)

 =

−k2φ̇(Ys, t)

−k4φ̇(Ys, t)

 = PT (Ys)q̇T (t), (40)

where, ki (i = 1, 2, 3, 4) are defined as feedback control gains. The expressions

of control matrices PB/T are given in Appendix D. As a result, the closed-loop

dicretized system Eq. (36) becomes

MB/T q̈B/T (t) +AB/TPB/T q̇B/T (t) + [KB/T + Ω2K̂B/T ]qB/T (t) = QB/T (t).

(41)

7. Model validations

The model validation is implemented on two aspects, viz., frequency and

actuating performance. At first, Table 1 compares the frequency predictions

of an unpretwisted rotating beam with the FEM results in Ref. [40] and the

experimental data in Ref. [7], showing good agreements. The geometry and115

material properties of the box beam used in this validation are shown in Table 2.

Table 3 further compares the frequency predictions of a pretwisted and un-

rotating beam. The characteristics of the beam are given as [31, p. 275]

ap22 = 487.9 N ·m2, ap33 = 2.26 N ·m2, ap44 = ap55 = 3.076× 106 N ·m2

ap25 = ap34 = 0, bp1 = 0.3447 kg/m, bp4 = 8.57× 10−8 kg ·m,

bp5 = 0.19× 10−4 kg ·m, bp6 = 0, L = 0.1524 m.

The present displayed predictions are in good agreement with the results of

Ref. [10].

Next, a 1/16th scale blade with NACA 0012 airfoil cross-section of Fig. 5 is

used for actuating performance validation. Material properties of E-glass and120

AFC layers are shown in Table 4. Fig. 6 plots the tip twist angle varying with

applied voltage, showing a good agreement with Ref. [41].
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Table 1: Frequencies at Ω = 1002 rpm for CUS lay-up configuration (Hz) a.

[75]6 [90/60]3

Mode Exp. [7] FEM [40] Present Exp. [7] FEM [40] Present

Flap 1 36.49 34.63 36.65 39.54 38.71 39.26

Lag 1 53.73 47.31 55.79 56.42 54.38 56.44

Flap 2 202.2 188.0 202.45 222.3 215.8 220.3

a γ0 = β0 = 0, Ω = 1002 rpm, R0 = 0

Table 2: Details of thin-walled composite box beam for validation [7]

E11 1.42× 1011 N/m
2

Density (ρ ) 1.442× 103 Kg/m
3

E22 = E33 9.8× 109 N/m
2

Width (2ba) 2.268× 10−2 m

G12 = G13 6.0× 109 N/m
2

Depth (2da) 1.212× 10−2 m

G23 4.83× 109 N/m
2

Number of layers (Nh) 6

µ12 = µ13 0.42 Layer thickness 1.270× 10−4 m

µ23 0.50 Length (L) 0.8446 m

a Inner dimensions of the cross section.

Table 3: Comparison of coupled flapping-lagging frequencies of a pretwisted beam a (Hz).

Mode 1BB 2BB 3BB 4BB

Ref. [10] 62.0 305.1 949.0 1206.1

Present 62.1 305.3 951.3 1209.2

a γ0 = 0, β0 = 45o, Ω = 0, R0 = 0

8. Numerical study and discussion

Although the governing equations are valid for a thin-walled beam with an

arbitrary closed-cross section, for the sake of illustration, the beam with a typical125

rectangular cross-section of Fig. 2 is considered here. Material properties and

geometric specifications of the host structure are shown in Table 5. The piezo-

actuator is manufactured by signal crystal MFC, whose material properties are

given in Table 4. We assume the piezo-actuators are spread over the entire

beam span and bonded outside the host structure. The lay-up configurations130
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Figure 5: NACA0012 airfoil cross-section (unit: m)

Table 4: Material properties of E-glass, AFC, and single crystal MFC (S-MFC)

Material property E-Glass [41] AFC [41] S-MFC [42]

E1 (Gpa) 14.8 30.54 6.23

E2 (Gpa) 13.6 16.11 11.08

G12 (Gpa) 1.9 5.5 2.01

µ12 0.19 0.36 0.229

d11 (×10−12 m/V) N/A 381 1896.5

d12 (×10−12 m/V) N/A -160 -838.2

ρ (Kg m−3) 1700 4810 5338.3

Thickness (×10−4 m) 2.032 1.689 17

Electrode spacing (×10−3 m) N/A 1.143 1.7

for the host structure and the piezo-actuator are listed in Table 6. The sensor

is located at the beam tip, i.e., Ys = L.

8.1. Study of piezo-actuator coefficients

The piezo-actuator coefficients AXi appearing in Eqs. (24) and (25) are plot-

ted as a function of piezo-actuator ply-angle θp in Figs. 7 and 8. Note that, the135
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Figure 6: Tip deflection for NACA 0012 airfoil

Table 5: Material properties (Graphite-Epoxy) and geometric specifications of the thin-walled

box beam

Material Value Geometric Value

E11 206.8× 109 N/m2 Width (2ba) 0.254 m

E22 = E33 5.17× 109 N/m2 Depth (2da) 0.0681 m

G12 = G13 2.55× 109 N/m2 Wall thickness (h) 0.0102 m

G23 3.10× 109 N/m2 Number of layers (Nh) 6

µ12 = µ13 = µ23 0.25 Layer thickness 0.0017 m

ρ 1.528× 103 Kg/m3 Length (L) 2.032 m

a The length is measured on the mid-line contour.

piezo-actuator coefficients appearing in BB- and TE-subsystems are indicated

by solid and dashed lines, respectively. Two distinct trends can be concluded in
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Table 6: CUS lay-up configurations (deg) a

Flanges Webs

Layer Material Top Bottom Left Right

CUS (7) Piezo-actuator [θp] [θp] [θp] [θp]

CUS (1-6) Host structure [θh]6 [θh]6 [θh]6 [θh]6
a θp and θh denote the ply-angles in piezo-actuator and host structure.

the results of Figs. 7 and 8. One including bending coefficients (AMx
1 , AMz

3 ) 1

and extension coefficients (ATy2 , ATy4 ) shows a symmetric dependence centered

around θp = 90o. The other characterizing transverse shear coefficients (AQx1 ,140

AQz3 ) and twist coefficients (AMy
2 andAMy

4 ), instead, presents an anti-symmetric

trend. Moreover, their values equal to zero when θp = 0o, 90o, 180o, and their

maximum absolute values reached for θp ≈ 42, 138o.
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Figure 7: Actuating moment coefficients as a function of piezo-actuator ply-angle θp in CUS

lay-up configuration.

1The reason for AMx
1 and AMz

3 exhibiting the opposite trends is the reverse definition of

θx in Fig. 2.
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lay-up configuration.

8.2. Study of anisotropic characteristic of piezo-composite

8.2.1. BB-subsystem145

Considering that the lateral bending-vertical bending elastic coupling has a

significant effect on flapping and lagging motions, the weak and strong elastic

coupling cases should be investigated separately. For an unpretwisted beam,

the elastic coupling is just related to stiffness coefficients a25 = ap25 and a34 =

ap34 [33]. Fig. 9 depicts all non-zero stiffness coefficients apij in BB-subsystem as150

a function of host ply-angle θh. It can be seen that ap25 and ap34 are negligible

during 0o < θh < 30o or 150o < θh < 180o. Thus, θh = 15o and θh = 75o are

selected to study the weak and strong elastic coupling cases, respectively.

Figures 10 and 11 plot damping ratios of the first four modes as a function

of piezo-actuator ply-angle θp for the weak and strong elastic coupling cases,155

respectively. The damping ratios in Figs. 10 and 11 follow the trend of coef-

ficients (AMx
1 , AMz

3 ) in Fig. 7 and (AQx1 , AQz3 ) in Fig. 8, respectively. This

implies that bending moment actuation and transverse shear force actuation
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Figure 9: Stiffness coefficients apij as a function of host structure ply-angle θh in BB-subsystem;

units: ap22 (N ·m2), ap25 (N ·m), ap33 (N ·m2), ap34 (N ·m), ap44 (N) and ap55 (N).

play the dominate role in weak and strong elastic coupling cases, respectively.

As a result, the optimum piezo-actuator ply-angle for θh = 15o and θh = 75o160

cases are θp = 90o and θp = 130o, respectively.

8.2.2. TE-subsystem

Figure 12 depicts damping ratios of the first three twist modes as a function

of θp for selected two host structure cases, i.e., θh = 15o and θh = 75o. It can

been seen that θp ≈ 135o yields the best twist control authority.165

8.3. Study of host structure tailoring

8.3.1. BB-subsystem

Figure 13 plots frequencies of the first four modes of BB-subsystem as a

function of host ply-angle θh. According to the weak and strong elastic coupling

cases, it is reasonable to split the domain of θh into ”Decoupling” and ”Couping”170

two parts, see Fig. 13. Note that, according to their mode shapes, the first four

modes of BB-subsystem can also be denoted as Flap1, Lag1, Flap2 and Lag2 for
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Figure 10: Damping ratios of BB-subsystem (θh = 15o) as a function of piezo-actuator ply-
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Figure 12: Damping ratios of TE-subsystem as a function of piezo-actuator ply-angle θp;

k2 = k4 = 10, Ω = 0, γ0 = β0 = 0.

weak elastic coupling cases. However, there will be no pure flapping or lagging

modes for strong elastic coupling cases.

Damping ratios of the first four modes of BB-subsystem are highlighted in175

Figs. 14 and 15 for selected two piezo-actuator ply-angle cases, viz., θh = 90o

(bending moment actuation dominated) and θp = 130o (transverse shear force

actuation dominated). It can be seen that host ply-angle θh has a significant

effect on damping ratios. θp = 90o and θp = 130o would be the better choice

for weak and strong elastic coupling cases, respectively.180

8.3.2. TE-subsystem

A typical extension mode cross phenomenon can be seen in Fig. 16, which

depicts frequencies of TE-subsystem as a function of θh. The results of Fig. 17

show that host ply-angle θh has a significant effect on damping ratios of the twist

modes. Note that, the damping ratios change suddenly during the mode cross185

regions in Fig. 17, and this can be seen more clearly in Fig. 18 that depicts the

damping ratios for θp = 90o case. In θp = 90o case, the direct twist actuations
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γ0 = β0 = 0.
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Figure 15: Damping ratios of BB-subsystem as a function of host structure ply-angle θh;

k1 = k3 = 100, Ω = 0, γ0 = β0 = 0.

(AMy
2 , AMy

4 ) are immaterial. Damping ratios of the twist modes are induced by

the extension actuations (ATy2 , ATy4 ) via the twist-extension elastic coupling.

8.4. Study of rotor speed and presetting angle190

8.4.1. BB-subsytem

Figures 19 plots frequencies of the first three modes of BB-subsystem as a

function of rotating speed Ω for the weak elastic coupling case. Since centrifugal

stiffening effect is more significant in flapping modes than in lagging modes, a

frequency crossing of fundamental lagging and flapping modes can be seen in195

Fig. 19 for the un-presetting beam (γ0 = 0). In addition, both in Figs. 19

and 20, it can be found that depending on the flapping and lagging modes,

the increase of presetting angle γ0 yields either an enhance or weaken effect

on centrifugal stiffening effect, respectively. The results of Fig. 21 present that

with the increase of Ω, damping ratios of the flapping modes decrease more200

significantly than the lagging mode does.

For the strong elastic coupling case, frequencies and damping ratios of the
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Figure 16: Frequencies of TE-subsystem as a function of host structure ply-angle θh; Ω = 0,
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Figure 18: Damping ratios of TE-subsystem as a function of host structure ply-angle θh;
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γ0; θh = 15o, θp = 90o, k1 = k3 = 100, R0 = 0.1L.
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Figure 20: Frequencies of BB-subsystem vs. presetting angle γ0; θh = 15o, θp = 90o, k1 =

k3 = 100, R0 = 0.1L.
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Figure 21: Damping ratios of BB-subsystem vs. rotating speed Ω for selected presetting angles

γ0; θh = 15o, θp = 90o, k1 = k3 = 100, R0 = 0.1L.
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first three modes are shown in Figs. 22 and 23, respectively. Since the elastic

coupling will be further enhanced by the centrifugal stiffening effect, in Fig. 22,

there is no typical flapping-lagging frequency crossing phenomenon as shown in205

Fig. 19. During the region near Ω ≈ 500 rad/s, the frequencies of 1BB and 2BB

modes are very close but not cross for the un-presetting beam (γ0 = 0). And

their damping ratios present sudden changes during this region, see Fig. 23.

The influence of presetting angle γ0 on the damping ratios for the strong elastic

coupling case can be seen more clearly in Fig. 24.
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Figure 22: Frequencies of BB-subsystem vs. rotating speed Ω for selected presetting angles

γ0; θh = 75o, θp = 130o, k1 = k3 = 100, R0 = 0.1L.

210

8.4.2. TE-subsystem

Figures. 25 and 26 plot frequencies and damping ratios of the first three

twist modes as a function of Ω, respectively. The additional torsional stiffness

induced by centrifugal force yields an increase of frequency in Fig. 25 and a

decrease of damping ratio in Fig. 26. Since the increase of presetting angle γ0215

will yield an increase of the softening tennis-racket term, the fundamental twist

frequency exhibits a significant decrease in Fig. 27. However this destiffening
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Figure 23: Damping ratios of BB-subsystem vs. rotating speed Ω for selected presetting angles

γ0; θh = 75o, θp = 130o, k1 = k3 = 100, R0 = 0.1L.
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effect is immaterial for higher twist modes. This conclusion can also be identified

in Fig. 28, which highlights the influence of γ0 on the twist damping ratios. In

Fig. 28, with the increase of γ0, damping ratio of the fundamental twist mode220

increases until γ0 ≈ 75o, then slightly decreases.
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Figure 25: Frequencies of TE-subsystem vs. rotating speed Ω for selected presetting angles

γ0; θh = 75o, θp = 130o, k2 = k4 = 10, R0 = 0.1L.

8.5. Study of pretwist angle

In order to model helicopter and tilt rotor blades, a special case of Eq. (2)

is assumed,

β(y) = β0 − β0y/L. (42)

This will make the pretwist angle at the beam tip equal to zero, i.e., β(L) = 0.

8.5.1. BB-subsystem

For fiber-reinforced blades, pretwist angle will make flapping and lagging225

motions coupled strongly, thus we just consider θh = 75o this case here. Fig. 29

depicts frequencies of the first three modes of BB-subsystem as a function of

pretwist angle β0. For the unrotating case, the fundamental frequency (1BB) is
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Figure 26: Damping ratios of TE-subsystem vs. rotating speed Ω for selected presetting angles

γ0; θh = 75o, θp = 130o, k2 = k4 = 10, R0 = 0.1L.
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Figure 27: Frequencies of TE-subsystem vs. presetting angle γ0; θh = 75o, θp = 130o,

k2 = k4 = 10, R0 = 0.1L.
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Figure 28: Damping ratios of TE-subsystem vs. presetting angle γ0; θh = 75o, θp = 130o,

k2 = k4 = 10, R0 = 0.1L.

not sensitive to pretwist angle β0. However it decreases significantly with the

increase of β0 for the high speed rotating case (Ω = 600 rad/s).230

In order to study the relationship between damping ratios and pretwist angle

β0, two piezo-actuator cases, i.e., θp = 130o (transverse shear force actuation

dominated) in Fig. 30 and θp = 90o (bending moment actuation dominated) in

Fig. 31 are considered. According to the previous discussion, we know for the

strong elastic coupling case, transverse shear force actuation is more efficient235

than bending moment actuation when the beam is unpretwisted. However for

a pretwisted beam, transverse shear force actuation may lose control for 2BB

mode, and even induce a negative damping ratio for the high speed rotating

case, see Fig. 30. On the other hand, bending moment actuation can guarantee

the balanced positive damping ratios for an arbitrary pretwisted angle β0, see240

Fig. 31.
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Figure 29: Frequencies of BB-subsystem vs. pretwist angle β0 for selected rotating speeds Ω;

θh = 75o, θp = 130o, k1 = k3 = 100, R0 = 0.1L.
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Figure 30: Damping ratios of the first three modes of BB-subsystem vs. pretwist angle β0 for

selected rotating speeds Ω; θh = 75o, θp = 130o, k1 = k3 = 100, R0 = 0.1L.
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Figure 31: Damping ratios of the first three modes of BB-subsystem vs. pretwist angle β0 for

selected rotating speeds Ω; θh = 75o, θp = 90o, k1 = k3 = 100, R0 = 0.1L.

8.5.2. TE-subsystem

The influence of pretwist angle β0 on frequencies and damping ratios of the

twist modes are illustrated in Figs. 32 and 33, respectively. It can be seen the

influences of β0 are negligible both in Figs. 32 and 33.245

9. Conclusions

A fiber-reinforced composite rotary thin-walled beam theory incorporating

piezo-composite actuators is developed. The circumferentially uniform stiffness

(CUS) lay-up configuration is adopted to decouple the system into two inde-

pendent subsystems, viz., flapping-lagging coupled BB-subsystem and twist-250

extension coupled TE-subsystem. Based on a simple negative velocity feed-

back control algorithm, the relationships between control authority and piezo-

actuator, host structure elastic tailoring, rotating speed, presetting and pretwist

angles are investigated. As shown in Figs. 14 and 15, piezoelectric transverse

shear force (in dashed lines) and bending moment (in solid lines) have the better255
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Figure 32: Frequencies of TE-subsystem vs. pretwist angle β0 for selected rotating speeds Ω;

θh = 75o, θp = 130o, k2 = k4 = 10, R0 = 0.1L.
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Figure 33: Damping ratios of TE-subsystem vs. pretwist angle β0 for selected rotating speeds

Ω, θh = 75o, θp = 130o, k2 = k4 = 10, R0 = 0.1L.
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control authority on strong and weak bending-bending elastic coupling cases,

respectively. Actually for the strong elastic coupling ( θh = 75o) case, damp-

ing ratios induced by piezoelectric transverse shear force are over twice those

induced by piezoelectric bending moment. The design factors, such as rotating

speed (see Figs. 21 and 23), presetting angle (see Fig. 24) and pretwist angle260

(see Figs. 30 and 31), all have significant effects on control authority of BB-

subsystem. However, the results of Figs. 26, 28 and 33 make clear that these

factors influence significantly only the fundamental twist mode of TE-subsystem.
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Appendix A. 1-D inertial coefficients bij

b1 = bp1, b10 = bp10, (A.1)

b4 = bp4 cos2 β + bp5 sin2 β − 2bp6 sinβ cosβ, (A.2)

b5 = bp5 cos2 β + bp4 sin2 β + 2bp6 sinβ cosβ, (A.3)

b6 = bp6(cos2 β − sin2 β) + (bp4 − b
p
5) sinβ cosβ, (A.4)

in which

(bp1, b
p
4, b

p
5, b

p
6, b

p
10) =

∮
c

(
1, z2, x2, xz, Fw

2
)Nhp∑

k=1

∫ nk2

nk1

ρ(k) dn

d s. (A.5)

Appendix B. Global stiffness quantities aij265

a11 = ap11, a16 = ap16, a17 = ap17, a18 = ap18, (B.1a)

a28 = ap28, a66 = ap66, a67 = ap67, a68 = ap68, (B.1b)

a77 = ap77, a78 = ap78, a88 = ap88. (B.1c)

a12 = ap12 cosβ + ap13 sinβ, a13 = aP13 cosβ − ap12 sinβ, (B.2)

a14 = ap14 cosβ + ap15 sinβ, a15 = ap15 cosβ − ap14 sinβ, (B.3)

a26 = ap26 cosβ + ap36 sinβ, a27 = ap27 cosβ + ap37 sinβ, (B.4)

a36 = ap36 cosβ − ap26 sinβ, a37 = ap37 cosβ − ap27 sinβ, (B.5)

a38 = ap38 cosβ − ap28 sinβ, a46 = ap46 cosβ + ap56 sinβ, (B.6)

a47 = ap47 cosβ + ap57 sinβ, a48 = ap48 cosβ + ap58 sinβ, (B.7)

a56 = ap56 cosβ − ap46 sinβ, a57 = ap57 cosβ − ap47 sinβ, (B.8)

a58 = ap58 cosβ − ap48 sinβ. (B.9)
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a22 = ap22 cos2 β + ap33 sin2 β + 2ap23 cosβ sinβ, (B.10)

a23 = ap23(cos2 β − sin2 β) + (ap33 − a
p
22) cosβ sinβ, (B.11)

a24 = ap24 cos2 β + ap35 sin2 β + (ap25 + ap34) cosβ sinβ, (B.12)

a25 = ap25 cos2 β − ap34 sin2 β + (ap35 − a
p
24) cosβ sinβ, (B.13)

a33 = ap33 cos2 β + ap22 sin2 β − 2ap23 cosβ sinβ, (B.14)

a34 = ap34 cos2 β − ap25 sin2 β + (ap35 − a
p
24) cosβ sinβ, (B.15)

a35 = aP35 cos2 β + ap24 sin2 β − (ap34 + ap25) cosβ sinβ, (B.16)

a44 = ap44 cos2 β + ap55 sin2 β + 2ap45 cosβ sinβ, (B.17)

a45 = ap45(cos2 β − sin2 β) + (ap55 − a
p
44) cosβ sinβ, (B.18)

a55 = ap55 cos2 β + ap44 sin2 β − 2ap45 cosβ sinβ. (B.19)

Note that, the definitions of local stiffness quantities apij are given in the Ap-

pendix of Ref. [29].

Appendix C. The piezo-actuator coefficients AX
i

The subscript i = 1, 2, 3, 4 of piezo-actuator coefficients AXi denote the op-

eration

AX1 =

∫
T

AXT d s−
∫
B

AXB d s, AX2 =

∫
T

AXT d s+

∫
B

AXB d s, (C.1a)

AX3 =

∫
L

AXL d s−
∫
R

AXR d s, AX4 =

∫
L

AXL d s+

∫
R

AXR d s, (C.1b)

where T , B, L and R denote top, bottom, left and right wall, respectively. And

AX are given as

ATy =

Np∑
k=1

(
eyy −

A12

A11
ess

)
(nk2 − nk1)

ĥ
Pk(s), (C.2a)

AMz =

Np∑
k=1

{
x

(
eyy −

A12

A11
ess

)
(nk2 − nk1)

ĥ
Pk(s)

− d z

d s

[
1

2
eyy(nk1 + nk2)− B12

A11
ess

]
(nk2 − nk1)

ĥ
Pk(s)

}
,

(C.2b)
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AMx =

Np∑
k=1

{
z

(
eyy −

A12

A11
ess

)
(nk2 − nk1)

ĥ
Pk(s)

+
dx

d s

[
1

2
eyy(nk1 + nk2)− B12

A11
ess

]
(nk2 − nk1)

ĥ
Pk(s)

}
,

(C.2c)

AQx =

Np∑
k=1

dx

d s

(
esy −

A16

A11
ess

)
(nk2 − nk1)

ĥ
Pk(s), (C.2d)

AQz =

Np∑
k=1

d z

d s

(
esy −

A16

A11
ess

)
(nk2 − nk1)

ĥ
Pk(s), (C.2e)

ABw = −
Np∑
k=1

{
Fw

(
eyy −

A12

A11
ess

)
(nk2 − nk1)

ĥ
Pk(s)

+ a(s)

[
1

2
eyy(nk1 + nk2)− B12

A11
ess

]
(nk2 − nk1)

ĥ
Pk(s)

}
,

(C.2f)

AMy =

Np∑
k=1

{
ψ(s)

(
esy −

A16

A11
ess

)
(nk2 − nk1)

ĥ
Pk(s)

+ 2

[
1

2
esy(nk1 + nk2)− B16

A11
ess

]
(nk2 − nk1)

ĥ
Pk(s)

}
,

(C.2g)

AΓt =

Np∑
k=1

{
(x2 + z2)

(
eyy −

A12

A11
ess

)
(nk2 − nk1)

ĥ
Pk(s)

+ 2rn

[
1

2
eyy(nk1 + nk2)− B12

A11
ess

]
(nk2 − nk1)

ĥ
Pk(s)

}
.

(C.2h)

Appendix D. Matrix via the Extended Galerkin’s Method

Mass matrix

MB =

∫ L

0


b1ΨuΨ

T
u 0 0 0

0 b1ΨwΨT
w 0 0

0 0 b4ΨxΨ
T
x b6ΨxΨ

T
z

0 0 b6ΨzΨ
T
x b5ΨzΨ

T
z

d y. (D.1)
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MT =

∫ L

0

b1ΨvΨ
T
v 0

0 (b4 + b5)ΨφΨ
T
φ + b10Ψ

′
φΨ
′T
φ

d y. (D.2)

Stiffness matrix

KB =
∫ L

0


a44Ψ

′
uΨ
′
u
T

a45Ψ
′
uΨ
′
w
T

a34Ψ
′
uΨ
′
x
T

+ a45Ψ
′
uΨx

T a24Ψ
′
uΨ
′
z
T

+ a44Ψ
′
uΨz

T

a55Ψ
′
wΨ′w

T
a35Ψ

′
wΨ′x

T
+ a55Ψ

′
wΨx

T a25Ψ
′
wΨ′z

T
+ a45Ψ

′
wΨz

T

K55 K56

Symm K66

d y,

(D.3)

with
K55 = a33Ψ

′
xΨ
′
x
T

+ a35Ψ
′
xΨx

T + a35ΨxΨ
′
x
T

+ a55ΨxΨx
T ,

K56 = a23Ψ
′
xΨ
′
z
T

+ a34Ψ
′
xΨz

T + a25ΨxΨ
′
z
T

+ a45ΨxΨz
T ,

K66 = a22Ψ
′
zΨ
′
z
T

+ a24Ψ
′
zΨz

T + a24ΨzΨ
′
z
T

+ a44ΨzΨz
T .

(D.4)

KT =

∫ L

0

a11Ψ
′
vΨ
′
v
T

a17Ψ
′
vΨ
′
φ
T

a17Ψ
′
φΨ
′
v
T

a77Ψ
′
φΨ
′
φ
T

+ a66Ψ
′′
φΨ
′′
φ
T

d y. (D.5)

Additional stiffness matrix

K̂B =
∫ L

0


b1R(y)Ψ′uΨ

′
u
T − b1ΨuΨu

T 0 0 0

0 b1R(y)Ψ′wΨ′w
T

0 0

0 0 −b4ΨxΨx
T −b6ΨxΨz

T

0 0 −b6ΨzΨx
T −b5ΨzΨz

T

d y,

(D.6)

K̂T =
∫ L

0

−b1ΨvΨv
T 0

0 −(b4 − b5 − b6)ΨφΨφ
T + (b4 + b5)R(y)Ψ′φΨ

′
φ
T − b10Ψ

′
φΨ
′
φ
T

 d y.

(D.7)

Actuating matrix

AB =
∫ L

0


AQx1 Ψ′u cosβ AQz3 Ψ′u sinβ

−AQx1 Ψ′u sinβ AQz3 Ψ′w cosβ

AMx
1 Ψ′x cosβ −AQx1 Ψx sinβ −AMz

3 Ψ′x sinβ +AQz3 Ψx cosβ

AMx
1 Ψ′z sinβ +AQx1 Ψz cosβ AMz

3 Ψ′z cosβ +AQz3 Ψx sinβ

P (y) d y.

(D.8)
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AT =

∫ L

0

ATy2 Ψ′v ATy4 Ψ′v

AMy
2 Ψ′φ AMy

4 Ψ′φ

P (y) d y. (D.9)

External forces vector

QB =



∫ L
0
pxΨu d y + Q̄xΨu(L)∫ L

0
pzΨw d y + Q̄zΨw(L)∫ L

0
mxΨx d y + M̄xΨx(L)∫ L

0
mzΨz d y + M̄zΨz(L)


. (D.10)

QT =


∫ L

0
[Ω2(R0 + y) + py]Ψv d y + T̄yΨv(L)∫ L

0
(Ω2b6 +my + b′w)Ψφ d y + [M̄yΨφ(L) + B̄wΨ′φ(L)]

 . (D.11)

Control matrix270

PB =

0 0 k1 cosβ(Ys)Ψx
T (Ys) k1 sinβ(Ys)Ψz

T (Ys)

0 0 k3 sinβ(Ys)Ψx
T (Ys) −k3 cosβ(Ys)Ψz

T (Ys)

 , (D.12)

PT =

0 −k2Ψφ
T (Ys)

0 −k4Ψφ
T (Ys)

 . (D.13)
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