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Abstract. In this paper we will prove that the supremum and infimum of
good solutions of the Dirichlet problem for elliptic and parabolic equations in
non divergence form with measurable coefficients, are good solutions to the
same problem.

1. Introduction

Let D ⊂ R n be a bounded domain with smooth boundary ∂D and I = (0, T )
be an interval; then Q will be the cylinder Q = D×I in R n+1. In this paper L will
be either an elliptic operator defined in D or a parabolic operator defined in Q and,
to point out that proofs of the main results are basically the same in both cases, we
will use a notation that will not distinguish (unless necessary) among them. More
precisely let x = (x1, ..., xn) and t ∈ R ; then we will use the same letter z for the
variable understanding that z = x in the context of elliptic operators or z = (x, t)
in the context of parabolic operators. From know on we will also use N meaning
N = n in the elliptic context and N = n + 1 in the parabolic one. So e.g. we will
write z ∈ R N . The operator L will have either the form

(1.1) L =

n
∑

i,j=1

aij(z) Dij

for z ∈ D or the form

(1.2) L =

n
∑

i,j=1

aij(z) Dij − ∂t

for z ∈ Q. Here we use the notation Dij = ∂2

∂xi∂xj
In both cases aij = aji are

measurable functions such that

(1.3) λ|ξ|2 ≤

n
∑

i,j=1

aij(z)ξiξj ≤ Λ|ξ|2
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for all ξ ∈ R n and with λ,Λ positive constants.
With the purpose of unifying even more the two contexts, when it is not neces-

sary to distinguish we will use the same name Ω for the domain of the operators,
understanding that Ω = D in the elliptic context and Ω = Q in the parabolic one.
We will call L(λ,Λ,Ω) the class of either elliptic or parabolic operators defined
above.

Finally let the parabolic boundary of Q be ∂pQ = ∂bQ ∪ ∂xQ, where ∂bQ =

D × {0} and ∂xQ = ∂D × I. Accordingly, we will use the notation ∂dΩ to mean
∂D in the elliptic context and to mean ∂pQ in the parabolic one.

For g continuous on ∂dΩ and f ∈ Lp consider the following Dirichlet problem (D.P):

(1.4)

{

Lu = f on Ω
u = g on ∂dΩ

If the coefficients aij are at least continuous functions in Ω the problem has a
unique solution u ∈ W 2

p (Ω
′) if L is elliptic or u ∈ W 2,1

p (Ω′), p > 1 if L is parabolic,

for any Ω′ ⊂ Ω
′
⊂ Ω.

For discontinuous aij it has been shown that Sobolev spaces are not suitable
for the solvability of the above D.P., whereas counterexamples showed that either
existence or uniqueness may fail, and such solutions may not satisfy basic properties,
such as the maximum principle.

Therefore in several papers in the ’90’s (see e.g. [3],[8], [18]) a different notion
of solution (good or weak solution) has been introduced. For sake of completeness
we recall it in the following

Definition 1.1. A function u(z) ∈ C(Ω) is a good solution to problem (1.4) with
p = n in the elliptic case and p = n+ 1 in the parabolic, if

• there exist a sequence of operators Lk ∈ L(λ,Λ,Ω) with coefficients akij ∈

C(Ω) such that akij → aij a.e. in Ω (as k → ∞, i, j = 1, . . . , n). We will say

LK → L.
• there exists a sequence of smooth functions uk, solutions of the D.P.’s for
the operators Lk (defined respectively either as in (1.1) or as in (1.2) with
coefficients akij), i.e.

(1.5)

{

Lkuk = f in Ω
uk = g on ∂dΩ

and such that uk → u uniformly in Ω.

Recall that Krylov-Safonov uniform Hölder estimates hold for the uk’s indepen-
dently of the regularity of the coefficients. This implies that the functions uk are
uniformly bounded and equicontinuous in Ω and by Ascoli-Arzela’s theorem, there
exists a convergent subsequence. Therefore good solutions always exist.

A result by N. Nadirashviili for elliptic operator (see [13]), states that uniqueness
for good solutions may fail if n ≥ 3. He constructs two sequences of operators with

smooth coefficients a0,kij and a1,kij which satisfy the ellipticity condition with the same

constants and converge to the same aij a.e., as k → ∞, in the unit ball B1 ⊂ R3,
while the corresponding sequences of solutions converge to two different functions
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u0 and u1. Because of the probabilistic nature of Nadirashvili’s counterexample, it
is reasonable to think that it can be slightly modified to provide a counterexample
also in the parabolic setting.

In this paper we show that, if uniqueness does not hold, the supremum and
the infimum of good solutions are still good solutions. The result is not new for
the elliptic case, since it is known to hold for viscosity solutions and Jensen in [7]
shows that good solutions in this case coincide with viscosity solutions. Our result,
though, besides being new for parabolic equations, provides a unifying proof for
both cases and a direct method also for elliptic case.

We hope that this result could be helpful in improving the known results about
uniqueness. In fact Nadirashvili’s example did not settle completely the matter,
since the set of discontinuities of his operators is ”very large”. Several results
for uniqueness (see i.g. [3] and [18] for elliptic equations and [4] for parabolic
equations) have been proved that when the set of discontinuities is not too bad,
but many problems still remain open such as that of discontinuities along a general
line segment or a general hyperplane.

The main result is proved in section 4 and a main role in the proof is played
by the parabolic version of Pucci’s extremal operators, whose definitions and main
properties are recalled in section 2.

We wish to thank professor Paolo Manselli for very helpful suggestions and dis-
cussions.

2. Definitions and preliminary results

A main role in the proofs is played by Pucci’s extremal operators (see [14]) that
we recall here. We will as well introduce the parabolic version of these operators.

For a symmetric matrix M ∈ S (space of real n× n symmetric matrices), with
eigenvalues e1, ..., en, define

M−(M,λ,Λ) = M−(M) = λ
∑

ei>0

ei + Λ
∑

ei<0

ei

and

M+(M,λ,Λ) = M+(M) = Λ
∑

ei>0

ei + λ
∑

ei<0

ei.

Let Aλ,Λ be the set of symmetric matrices with eigenvalues in [λ,Λ]. Define the
linear functional LA on S by

LAM = tr(AM)

It is well known (see [2]) that

M−(M) = infA∈A LAM and M+(M) = supA∈A LAM .

Elliptic Pucci’s extremal operators are defined as:

L+u = M+(D2u) and L−u = M−(D2u)

while parabolic Pucci’s extremal operators as:

L+u = M+(D2u)− ut and L−u = M−(D2u)− ut.
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We’ll also need Hölder and Sobolev spaces and their parabolic counterpart that
we’ll recall below.

Given 0 < α ≤ 1 the subspace of C(Ω) of α-Hölder continuous functions is
defined as the space of functions u such that the norm

(2.1) ‖u‖Cα(Ω) = sup
z∈Ω

|u(z)|+ sup
z1,z2∈Ω

|u(z1)− u(z2)|

d(z1, z2)α

is finite, with d the usual Euclidean distance.
For the parabolic context, we recall a definition of parabolic distance between

z1 = (x1, t1) , z2 = (x2, t2):

d(z1, z2) =

{

max
{

|x1 − x2|, |t1 − t2|
1/2

}

t1 ≤ t2
∞ t1 > t2

Now given 0 < α ≤ 1, the subspace of C(Ω) of parabolic α-Hölder continuous
functions is defined as the space of functions u that satisfy (2.1) with d the parabolic
distance.

As before, throughout the paper, the space Cα(Ω) will mean either the space of
classical or that of parabolic Hölder continuous functions.

Moreover in what follows, let W (Ω) be the Sobolev space W 2
n(Ω) in the elliptic

context and W 2,1
n+1(Ω) for the parabolic one.

The space Wloc(Ω) is the space of functions f defined on Ω such that f ∈ W (Ω′)

for every Ω′ ⊂ Ω
′
⊂ Ω.

Finally BR(z0) =
{

z ∈ R N
∣

∣ d(z, z0) < R
}

will be the Euclidean ball of radius

R in the elliptic context and a parabolic cylinder otherwise.

We will need the following results :

Theorem 2.1. (ABP/ABPKT-Maximum principle)(see [1] and [15] for elliptic
operators and [9] and [19] for parabolic; a more general version for both cases in
[5]). Let L be either the elliptic operator (1.1) or the parabolic opertor (1.2), u ∈
Wloc(Ω) ∩ C(Ω̄), then there exists C = C(λ,Λ, N,Ω) such that

(2.2) sup
Ω

|u| ≤ sup
∂dΩ

|u|+ C‖Lu‖LN (Ω).

Theorem 2.2. (Hölder estimate, see i.e. [16] and [6] for elliptic, [10] and [12] for
parabolic) Let L be either an elliptic or a parabolic operator with smooth coefficients,
u ∈ Wloc(Ω), BR0

(z) ⊂ Ω, then there exist constants K(N, λ,Λ, R0) and α(N, λ,Λ),
such that for R < R0

(2.3) ‖u‖Cα(BR) ≤ K(‖u‖∞ + ‖Lu‖N).

Moreover, if u ∈ W (Ω) and u = 0 on ∂dΩ, there exists C2 = C2(λ,Λ, N,Ω) such
that

‖u‖
Cα(Ω) ≤ S2 (‖u‖∞ + ‖Lu‖N)

Theorem 2.3. (see [6] and [12]) Let L be a finite or countable family of operators
Lk with coefficients C1(Ω). Define

FL(u) = sup
L∈L

Lu.
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Then there exists β = β(N, λ,Λ) ∈ (0, 1) such that, if f ∈ C1(Ω), g ∈ C(∂dΩ), the
problem

{

FL(u) = f in Ω
u = g on ∂dΩ

has a unique solution u ∈ C2,β
loc (Ω) ∩ C(Ω).

3. Properties of good and classical solutions

Let µ > 0, Ωµ ={z ∈ Ω : dist(z, ∂dΩ) > µ} ⊂ Ω.

Lemma 3.1. Let L ∈ L(λ,Λ,Ω) and aij ∈ C(Ω), u ∈ W (Ω) ∩ C(Ω). If Lu = f ,
u|∂dΩ = g and f ∈ LN (Ω), g ∈ C(∂dΩ), then there exists σµ > 0, σµ → 0 as µ → 0,
satisfying:

(3.1) sup
zµ∈∂dΩµ

inf
ξ∈∂dΩ

|g(ξ)− u(zµ)| ≤ σµ

The number σµ = σ(λ,Λ,Ω, µ,N, ‖f‖LN (Ω), g).

Proof. Assume for the moment f = 0 a.e. Let L∗ = {L ∈ L: L has rational
constant coefficients in Ω} and consider Pucci’s maximal and minimal operators:

L+u = FL∗(u) and L−u = −FL∗(−u).

By Theorem 2.3 there exist u+
µ , u

−
µ ∈ C2,β(Ω) ∩ C(Ω) satisfying:

(3.2)

{

L+(u+
µ ) = 0 in Ω

u+
µ = g on ∂dΩ

and

(3.3)

{

L−(u−
µ ) = 0 in Ω

u−
µ = g on ∂dΩ

As u+
µ and u−

µ are continuous functions, then:

σ−
µ = sup |g(ξ)− u−

µ (zµ))| → 0 as µ → 0

σ+
µ = sup |u+

µ (zµ)− g(ξ)| → 0 as µ → 0

where zµ ∈ ∂dΩµ and ξ ∈ ∂dΩ
As Lu+

µ ≤ 0 and analogously Lu−
µ ≥ 0 we have L(u− u+

µ ) ≥ 0 and L(u−
µ − u) ≥ 0

in Ω. By the Maximum Principle:

supΩ(u− u+
µ ) ≤ 0

supΩ(u
−
µ − u) ≤ 0.

We can write:
u(zµ)− g(ξ) ≤ sup(u− u+

µ ) + σ+
µ ≤ σ+

µ

g(ξ)− u(zµ) ≤ σ+
µ + sup(u−

µ − u) ≤ σ−
µ ,

i.e.

|u(zµ)− g(ξ)| ≤ max(σ+
µ , σ

−
µ ).

The thesis follows, if f vanishes a.e.
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If f is non-identically zero, we can write u = u1 + u2, where u1 ∈ W (Ω), Lu1 = f
in Ω and u1 = 0 on the boundary ∂dΩ, u2 ∈ W (Ω), Lu2 = 0 in Ω and u2 = g on
the boundary. Then u1 satisfies Hölder estimates of Theorem 1, namely

sup
zµ∈∂dΩµ

|u(zµ)| ≤ µαK(1 + C)‖f‖LN(Ω)

The thesis follows with σµ = max(σ+
µ , σ

−
µ , µαK(1 + C)‖f‖LN(Ω)). �

As a consequence, an equicontinuity result follows:
∀z1, z2 ∈ Ω such that d(z1, z2) ≤ δ and for any u ∈ W (Ω)∩C(Ω) with ‖Lu‖LN ≤

F and u = g on the boundary; there exists ω(δ) → 0 as δ → 0, such that:

(3.4) u(z1)− u(z2)| ≤ ω(δ)

Remark 3.2. If the D.P.(1.4) has a strong solution u ∈ W (Ω), then u is also the
unique good solution to this problem.

Proof. Let Lk ∈ L(λ,Λ,Ω), k = 1, 2, . . . , with coefficients akij that are smooth in Ω,

Lk → L as k → ∞ and let {uk} be a sequence of solutions to the problems (1.5).
Then

{

Lk(uk − u) = (L− Lk)u on Ω
uk − u = 0 on ∂dΩ

Since uk − u ∈ W , by the A.B.P.K.T Theorem 2.1, we have

sup
Ω

|uk − u| ≤ K‖(L− Lk)u‖LN (Ω) = K





∫

Ω

|
∑

i,j

(aij − akij)Di,ju|
Ndxdt





1/N

with constant K independent of k. Since the argument in the integral converges to
0 a.e. in Ω as k → ∞, we have

lim
k→∞

sup
Ω

|uk − u| = 0.

This means that u(z) is the only good solution to the problem (1.4). �

Remark 3.3. Let L, Lk ∈ L , f, fk ∈ LN (Ω) g ∈ C(∂dΩ), L
k → L and fk → f a.e.

(meaning the coefficients akij of Lk converge a.e. to aij of L as in Definition 1.1) in

Ω and let uk ∈ C(Ω) be good solutions to

(3.5)

{

Lkuk = fk on Ω
uk = g on ∂dΩ

then, there exists a subsequence of uk uniformly convergent in Ω to a function
u ∈ C(Ω) good solution to (1.4).

Proof. The operators L
k
can be chosen with coefficients in C1(Ω). As {‖fn‖LN(Ω}

is a bounded sequesnce, by Theorem 2.1, the equicontinuity (3.4) of the uk’s and
Ascoli-Arzelá theorem, a subsequence of {uk} (still named {uk}) converges uni-
formly in Ω̄ to a function u ∈ C(Ω̄. Since uk’s are good solutions to the problem

(3.5) there exist L
k
with akij ∈ C1(Ω), satisfying
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∑

i,j

‖akij − akij‖L(Ω)
≤ 1/k

and functions vk ∈ W (Ω) ∩ C(Ω), satisfying

(3.6)

{

L
k
vk = fk on Ω
vk = g on ∂dΩ

and sup
Ω

|vk − uk| ≤ 1/k; as L
k
→ L and (a subsequence of) vk → u uniformly in Ω.

Consider now functions wk ∈ W (Ω) ∩ C(Ω) such that

(3.7)

{

L
k
wk = f on Ω

wk = g on ∂dΩ

(3.8)

{

L
k
(wk − vk) = f − fk on Ω
wk − vk = 0 on ∂dΩ;

by A.B.P.K.T Theorem 2.1 we have

sup
Ω

|wk − vk| ≤ K‖f − fk‖LN

As a consequence wk → u uniformly in Ω and u is a good solution to problem (1.4)

(with approximating operators L
k
). �

From Remark 3.2 and Remark 3.3 if u ∈ C(Ω) is a good solution to problem
(1.4) with f ∈ C1 then u is a good solution to the same problem with akij ∈ C1(Ω)

and functions uk ∈ C2,α(Ω) ∪ C(Ω), 0 < α < 1.

4. Main Result

Lemma 4.1. Let L ∈ L , f ∈ C1(Ω). Let u1, u2, ..., uS be good solutions to (D.P.)
(1.4) with f ∈ C1. Then, there exists v, good solution to Lv = f in Ω, v|∂dΩ = g,
such that

(4.1) v(z) ≥ max{u1(z), ..., uS(z)}

in Ω.

Proof. We may assume, by previous observations, that ul(l = 1, 2, ...S) is a good
solution to D.P. (1.4) with Lk

l in the definition of good solution with coefficients in

C1(Ω); the corresponding uk
l ∈ C2,α(Ω) ∩ C(Ω), 0 < α < 1. Moreover, as recalled

above, if

F k(ω) = max(Lk
1ω,L

k
2ω, ...., L

k
Sω)

the Dirichlet problem

(4.2)

{

F k(vk) = f in Ω
vk = g on ∂dΩ

has a unique solution vk ∈ C2,β(Ω) ∪ C(Ω), 0 < β < 1.
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Notice that the equation F k(vk) = f can also be written as Lkvk = f , where
Lkvk(z) = Lk

l(z)v
k(z) and the operators Lk ∈ L and have measurable coefficients.

Moreover Lk → L a.e. in Ω. By A.B.P. or A.B.P.K.T Theorem 2.1 and Hölder
estimate Theorem 2.2, the sequence vk converges uniformly in Ω to v good solution
to (1.4).
As Lk

lv
k ≤ f = Lk

lu
k
l and uk

l = vk = g on the boundary, by the Maximum
Principle: vk ≥ uk

l . As k → ∞ (4.1) follows. �

Here is our main result:

Theorem 4.2. Let L, f, g be as in Lemma 4.1, and let H be the family of all good
solutions to the Dirichlet Problem: Lu = f in Ω and u = g on the boundary ∂dΩ.
Then

U0(z) = sup{u(z) : u ∈ H}
V0(z) = inf{u(z) : u ∈ H}

for z ∈ Ω are good solutions to the same problem.

Proof. Assume that H has more than one element (see [13]). Let us show that U0

exists and is continuous in Ω.
By ABPKT Theorem 2.1, U0 is bounded in Ω; ∀z0, z1 ∈ Ω let uk ∈ H sequence
such that uk(z0) → U0(z0) and by the equicontinuity result, we have

uk(z0)− uk(z1) ≤ ω(d(z0, z1)),

where ω = ω(λ,Λ,Ω, N, g).
Since U0(z1) ≥ uk(z1), we have

U0(z0)−U0(z1) ≤ U0(z0)−uk(z0)+uk(z0)−uk(z1) ≤ U0(z0)−uk(z0)+ω(d(z0, z1))

so, as k → ∞, U0 is continuous in Ω with the same modulus of continuity ω as uk.
Assume for the moment f ∈ C1(Ω). For every ǫ > 0, there exist zl ∈ Ω, l = 1, 2, ..S,
so that Ω is covered by sets Bǫ(zl) (defined in Section2.) in which osc U0 ≤ ǫ and
osc u ≤ ǫ for every u ∈ H.
Let now u1, u2, ..., uS ∈ H so that

(4.3) |ul(zl)− U0(zl)| < ǫ.

By Lemma 4.1, there exists vǫ ∈ H, such that vǫ ≥ ul in Ω and vǫ ≤ U0 in Ω.
Moreover U0 − ǫ ≤ ul(xl) ≤ vǫ(xl). Now choose z ∈ Ω in one of the Bǫ(zl), thus:

0 ≤ U0(z)− vǫ(z) =

[U0(z)− U0(zl)] + [U0(zl)− ul(zl)] + [ul(zl)− vǫ(zl)] + [vǫ(zl)− vǫ(z)] =

A+B + C +D.

The terms A and D are ≤ ǫ by the oscillation property in Bǫ(zl), term B is ≤ ǫ by
(4.3), and term C is ≤ 0. Then

(4.4) 0 ≤ U0(z)− vǫ(z) ≤ 3ǫ.

Therefore the family vǫ ∈ H converges uniformly to U0 in Ω, as ǫ → 0 and U0 is a
good solution to Lu = f ∈ C1(Ω), u = g on the boundary ∂dΩ.

For f ∈ LN , let fν ∈ C1(Ω), fnu → f as ν → ∞, Hν the family of good solutions
to Lu = fν in Ω, f = g on the boundary ∂dΩ. Then U0

ν = supHν are good solutions
to the same problems, since the theorem is proved for fν ∈ C1(Ω). By Remark 3.3
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up to a subsequence unu converges uniformly to a function w0 good dolution to to
Lu = f in Ω, f = g.

In order to show that w0 = supH let u ∈ H and uν ∈ Hν with same approximat-
ing sequence Lk in the definition fo good solution (Definition 1.1). Now u0

ν ≥ uν

implies w0 ≥ u and since w0 ∈ H we have proved the theorem. �

The following result has been proved by Krylov in [8] for generalized Green’s
functions in the elliptic case.

Corollary 1. Let L ∈ L(λ,Λ,Ω), f ∈ LN(Ω), g ∈ C(∂dΩ). Let H, U0 and V0 be
as in Theorem 4.2 and assume U0 6= V0. Then for every θ ∈ (0, 1), we have that
tU0(z) + (1− θ)V0(z) ∈ H.

Proof. We’ll prove the result for f ∈ C1(Ω) as the result for general f follows as in
the proof of Theorem 4.2.

Being U0 and V0 good solutions by previous theorem, let respectively L
(1)
k , u

(1)
k

and L
(2)
k , u

(2)
k be approximating operators and funcions that appear in the definition

of good solution.
Let u+

k , u
−

k ∈ C2,α(Ω) ∩ C(Ω) be the solutions to the Dirichlet problems:

sup
(

L
(1)
k u+

k , L
(2)
k u+

k

)

= f in Ω u+
k

∣

∣

∂dΩ
= g

inf
(

L
(1)
k u−

k , L
(2)
k u−

k

)

= f in Ω u−

k

∣

∣

∂dΩ
= g

There exist L+
k , L

−

k ∈ L(λ,Λ,Ω) such that

L+
k u

+
k = f, L−

k u
−

k = f in Ω.

As L
(1)
k u+

k ≤ f , L
(2)
k u+

k ≤ f , L
(1)
k u−

k ≥ f , L
(2)
k u−

k ≥ f and on each point of Ω L+
k ,

L−

k equal either L
(1)
k or L

(2)
k we get that

L+
k u

−

k ≥ f, L−

k u
+
k ≤ f

Let t ∈ (0, 1), wn = tu+
k + (1 − t)u−

k ∈ C2,α(Ω) ∩ C(Ω); the wk’s satisfy

L+
k wk = t f + (1− t)L+

k u
−

k ≥ f, L−

k wk = t f + (1− t)L−

k u
+
k ≤ f.

Now let’s define Lk = θkL
+
k + (1− θn)L

−

k , where

θk =

{

1 if L+
k wk = L−

k wk = f
f−L−

k
wk

L+

k
wk−L−

k
wk

otherwise

θk is a measurable function, θk ∈ [0, 1], Lk ∈ L(λ,Λ,Ω) and Lkwk = f in Ω.
Observing that L+

k , L
−

k , Lk → L as k → ∞, Remarks 3.2 and 3.3 imply that there

exist susequences still named {u+
k }, {u

−

k } that converge uniformly to elements of

H. By the maximum principle u+
k ≥ u

(1)
k and u−

k ≤ u
(2)
k and therefore u+

k → U0

and u−

k → V0 and wk → tU0+(1− t)V0 uniformly in Ω. This proves that the latest
is in H.

�
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