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Abstract—The possibility of flexibly assigning spectrum re-
sources with channels of different sizes greatly improves the
spectral efficiency of optical networks. The drawback of this
flexibility is the risk of spectrum fragmentation. We study
this problem in the two-service scenario. Our first contribution
consists of exact Markov models for different assignment policies.
Since these exact models do not scale to large systems, we then
extend an approximate, reduced-state model that is available in
the literature. In addition, we introduce a Markov model that
uses imprecise probabilities, which allows us to derive upper and
lower bounds on blocking probabilities without needing to specify
an assignment policy. The obtained imprecise Markov chain can
be used to evaluate the precision of approximate reduced-state
models as well as to provide policy-free performance bounds.

Index Terms—Two-Service Optical Link; Blocking Probability;
Imprecise Continuous-Time Markov Chain;

I. INTRODUCTION

Flexi-grid optical networks [1] have been envisioned as
a novel paradigm to cope with the ever-growing Internet
traffic: spectral resources are divided in small frequency slices
(e.g. 12.5 GHz width, according to the ITU-T standard [2])
and groups of contiguous slices are adaptively assigned to
different traffic requests (forming the so-called superchan-
nels) according to their volume, the optical bandwidth of the
transceivers in use and the adopted modulation format. Adja-
cent superchannels are separated by guardbands, constituted
by one or multiple contiguous slices that are left unused.
The advantages of flexi-grid networks have been quantified
in terms of spectrum utilization reductions up to 30% with re-
spect to traditional Wavelength Division Multiplexing (WDM)
systems [3]. However, the flexi-grid approach requires more
advanced and costly optical devices such as ROADMs with
colorless/directionless/contentionless add/drop functionalities
equipped with dedicated tunable filters supporting coherent
detection [4]. Moreover, the flexible spectrum allocation tech-
niques enabled by flexi-grid networks typically increase the
spectrum fragmentation (i.e. the presence of groups of con-

tiguous slices that cannot be assigned to incoming traffic flows
because the superchannel they could form would be too narrow
to accommodate the demands). This issue is further increased
by the spectrum continuity constraint, which requires that the
same spectrum portion is allocated to a traffic flow along all the
physical links it traverses. Therefore, several studies have been
performed to identify fragmentation-aware spectrum allocation
policies and to evaluate the corresponding blocking probabili-
ties for traffic requests of different sizes [5]. Analytical models
based on Markov Chains (MCs) have also been proposed [6].
Unfortunately, for exact solutions to realistic scenarios, these
models require unaffordable computational resources due to
the high number of chain states that are required to correctly
capture the degrees of freedom offered by the flexible grid,
thus introducing scalability limitations.

In order to alleviate the spectrum fragmentation issue and
limit the costs of equipment installation without renouncing
to the benefits of flexi-grid networks in terms of spectrum oc-
cupation reduction, alternative semi-flexible approaches have
been proposed: traffic requests are grouped according to
the number of slices required for transmission and requests
belonging to the same group are placed along a dedicated
fixed grid, with one edge of their superchannel anchored at a
specific frequency [7]. Alternatively, a small set of predefined
superchannel widths is defined and traffic flows are allocated
in the smallest superchannel they fit in, at the price of leaving
some spectrum slices unused [8]. Such scenarios allow for
more scalable MC models: in [9] and [10], an approximate
MC is proposed for quantifying blocking probabilities in a
two-service semi-flexible optical link with a random spectrum
allocation policy.

In this contribution, we first introduce an exact MC model
for various spectrum allocation policies and then develop
approximate versions based on the model in [9]. Finally,
and most importantly, we compute bounds on the blocking
probabilities that correspond to any arbitrary allocation policy.



To this aim, we adopt imprecise continuous-time MCs, a
generalization of MCs obtained by applying the framework of
imprecise probabilities [11], [12]. To the best of our knowl-
edge, this is the first attempt to adopt such a mathematical
tool in the context of optical networks modelling.

The remainder of this contribution is organized as follows.
Section II presents an overview of the related scientific litera-
ture, whereas in Section III we provide some basic background
on imprecise probabilities and their application to imprecise
continuous-time MCs. Next, our proposed models are pre-
sented in Section IV and numerically assessed in Section V.
Section VI concludes this contribution.

II. RELATED WORK

A rich body of research work on flexi-grid optical networks
has appeared in the last few years. The reader is referred to
[13] and [14] for a thorough overview. More specifically, both
the static and the dynamic Routing and Spectrum Assignment
(RSA) problem in flexi-grid networks has been extensively
addressed: [15] surveys the most relevant literature. In this
paper, we focus on a single-link dynamic scenario, where the
arrival and departure processes of traffic requests are random
and requests are either accommodated in a spectrum portion
of the link or rejected in real-time.

Different semi-flexible approaches have been proposed to
mitigate the issue of spectrum fragmentation: in [8], the
authors propose to partition the flexible grid in blocks of a
fixed number of slices and to assign one block to each traffic
request, regardless of its size, possibly leaving some unused
slices within the block. If a single block is not sufficient to
accommodate the whole traffic demand, multiple contiguous
blocks are assigned to it. Alternatively, the authors of [16]
propose to reserve a dedicated spectrum portion to high bit-
rate signals, whereas in [7] each specific bit-rate signal uses
its own dedicated fixed grid and starts from predefined anchor
frequencies. In this paper, we adopt the latter approach.

A few studies investigate the unfairness of blocking proba-
bilities in semi-flexible optical networks, under an assumption
that traffic demands are categorized in two types according
to their bit-rate (high or low, respectively): [9] proposes
an approximate MC model for the calculation of blocking
probabilities of the two types of traffic requests along a single
optical link, assuming that spectrum assignment is performed
randomly. This model has been refined in [10], [17], [18] to
include spectrum portions exclusively reserved for each of the
two connection types. In this paper, we generalize that model
by means of an imprecise MC, which is am MC that allows for
imprecise—i.e. partially specified—probabilities. In this way,
we are able to provide guaranteed lower and upper bounds on
the performance of any spectrum allocation policy.

A general introduction to the theory of imprecise proba-
bilities can be found in [12]. This theory has been used to
generalise both discrete-time and continuous-time MCs, the
latter more recently than the former. A basic treatment of
imprecise continuous-time MCs can be found in [19]–[21].
For their discrete-time version, see for example [22], [23].

III. CONTINUOUS-TIME MARKOV CHAINS

A continuous-time Markov chain is a type of continuous-
time stochastic process that is often used to model queueing
systems. Since we will not consider the discrete-time version
here, we can drop the prefix ‘continuous-time’ and can simply
refer to them as Markov Chains (MCs). We start this section
by recalling some well-established notation and terminology
on MCs. After a brief introduction to imprecise probabilities,
we then end by explaining the basics of imprecise MCs.

A. Precise continuous-time Markov chains

We use (Xt)t∈R≥0
to denote a generic continuous-time

stochastic process, where for all t ∈ R≥0 the state Xt is a
random variable that takes values x in the finite state space
X . Such a stochastic process (Xt)t∈R≥0

is called an MC if it
satisfies the so-called Markov property, i.e. if

P(Xt = xt|Xs = xs, Xt1 = x1, . . . , Xtn = xn)

= P(Xt = xt|Xs = xs) =: T t
s(xs, xt),

where n ≥ 0 is an integer and {t1, . . . , tn, s, t} is a strictly
increasing sequence of non-negative time points. If we provide
the state space X with an ordering—which, from now, we
assume to be the case—then the operator T t

s can be interpreted
as a matrix, the (xs, xt)-component of which is the transition
probability P(Xt = xt|Xs = xs). As a consequence of the
Markov property, the transition matrices of an MC satisfy the
following convenient property:

T tn
t1 = T t2

t1 T
t3
t2 · · ·T

tn
tn−1

. (1)

Moreover, if we use the ordering of X to interpret a real-valued
function f on X as a column vector, then the xs-component

[T t
sf ](xs) := E(f(Xt)|Xs = xs) (2)

of the column vector T t
sf is the expected value of f at time t,

conditional on starting in the state xs at time s. In particular,
if we let IA be the indicator IA : X → {0, 1} of the event
A ⊆ X , defined by IA(x) := 1 if x ∈ A and IA(x) := 0
otherwise, then

[T t
sIA](xs) = P(Xt ∈ A|Xs = xs). (3)

An MC is called stationary if it satisfies T t+∆
t = T∆

0 for
all t,∆ ∈ R≥0, in the sense that

P(Xt+∆ = x|Xt = y) = P(X∆ = x|X0 = y).

It is well-known that for any stationary MC, there exists a
unique matrix Q such that T t+∆

t = e∆Q, where e∆Q denotes
the matrix exponential of ∆Q. This matrix Q is called the
transition rate matrix of the MC because, for all x, y ∈ X
such that x 6= y, and for sufficiently small ∆ ∈ R≥0,

P(Xt+∆ = x|Xt = y) ≈ ∆Q(x, y). (4)

and
P(Xt+∆ = x|Xt = x) ≈ 1 + ∆Q(x, x), (5)



with Q(x, x) = −
∑

y 6=xQ(x, y). In practice, a rate matrix
Q is specified by providing numerical values for its non-
zero rates, that is, for the non-zero off-diagonal elements. For
example, if for some x 6= y, we say that the transition from x
to y occurs with rate λ, this means that Q(x, y) = λ.

By combining (4) and (5), we find that T t+∆
t can be

approximated by (I+ ∆Q), and therefore, it follows from (1)
that

T t
s = lim

n→∞

(
I +

t− s
n

Q

)n

. (6)

Throughout this contribution, we are interested in proba-
bilities of the form limt→∞ P(Xt ∈ A|X0 = x0), where
A ⊆ X and x0 ∈ X . If this probability does not depend
on the initial state x0, then we call it the limit probability of
the event A and denote it with πA. If every event A ⊆ X
has such a limit probability πA, the MC is called ergodic. In
practice, checking ergodicity does not require us to actually
compute these limit probabilities. There are several well-
known equivalent conditions that are easier to verify.

Provided that the MC is ergodic, πA can be computed in
two ways. On te one hand, (3) and (6) imply that

πA = lim
t→∞

lim
n→∞

[(
I +

t

n
Q

)n

IA
]

(x0),

which allows us to compute πA by choosing t and n suffi-
ciently large. On the other hand, it is well known that for an
ergodic MC the limit distribution π—when interpreted as a
column vector whose components are the limit probabilities
πx of the states—is the unique probability mass function on
X that satisfies πQ = 0. Solving this linear system provides
us with π, and πA is then given by πA =

∑
x∈A πx.

B. Imprecise probabilities

Whenever it is impossible or impractical to provide, obtain
or compute exact values for the probability of some event,
or the expectation of some function, the theory of impre-
cise probabilities allows for these quantities to be described
‘imprecisely’, using lower and upper bounds. For a detailed
treatment of this theory, the interested reader is referred to
[11] and [12]. For our present purposes, and in the context
of stochastic processes, it suffices to understand the following
basic concepts.

Mathematically, the most important notion is that of a con-
ditional lower expectation, which is simply a lower bound on
a conditional expectation. More formally, for any s, t ∈ R≥0

such that t ≥ s, any xs ∈ X and any function f : X → R, the
lower expectation of f at time t, conditional on Xs = xs, is

E(f(Xt)|Xs = xs) := min
E∈E

E(f(Xt)|Xs = xs),

where E is the set of conditional expectations that corresponds
to some set of stochastic processes P—see Section III-C for
a concrete example of such a set of processes P.

The reason why we can focus on lower expectations, and not
on upper expectations or lower/upper probabilities, is because
the latter can all be obtained as special cases. On the one hand,

upper expectations are conjugate to lower expectations, in the
sense that

E(f(Xt)|Xs = xs) = −E(−f(Xt)|Xs = xs). (7)

On the other hand, lower and upper probabilities are special
cases of lower and upper expectations, in the sense that for
any event A ⊆ X :

P(Xt ∈ A|Xs = xs) = E(IA(Xt)|Xs = xs), (8)

and

P(Xt ∈ A|Xs = xs) = E(IA(Xt)|Xs = xs). (9)

Lower and upper probabilities are also conjugate, in the sense
that P(Xt ∈ A|Xs = xs) = 1− P(Xt 6∈ A|Xs = xs).

C. Imprecise continuous-time Markov chains

Recently, several authors have applied the theory of im-
precise probabilities to develop the notion of an imprecise
continuous-time Markov chain, which we will here abbreviate
as ‘imprecise MC’ [19], [20], [24]. Instead of a single precisely
specified transition rate matrix Q, an imprecise MC considers
a (closed and convex) set Q of transition rate matrices. In
practice, this is typically useful in cases where the values of
the transition rates Q(x, y) cannot be determined exactly, as
will for example be the case in Section IV-C further on.

More formally, instead of a single stationary MC, an impre-
cise MC considers the set PQ of all MCs that are consistent
with Q, in the sense that at every point in time t ≥ 0, and
for ∆ ∈ R≥0 sufficiently small, the transiton matrix T t+∆

t

is approximately equal to I + ∆Qt, for some Qt ∈ Q. Note
that the Markov chains in this set PQ are not assumed to be
stationary, in the sense that Qt is not required to be constant.
The only thing that is assumed about Qt is that it is an—
unknown—function of time that takes values in Q.

As we consider a set of MCs, the transition matrices T t
s are

no longer uniquely known, as was the case for precise MCs.
Instead, an imprecise MC is characterised by a lower transition
operator T t

s. Analogous to (2), for any f : X → R and any
s, t ∈ R≥0 such that t ≥ s, the vector T t

sf is defined by

[T t
sf ](xs) := E(f(Xt)|Xs = xs) for all xs ∈ X , (10)

where E(f(Xt)|Xs = xs) is the minimum of the conditional
expectations that are induced by the set of consistent processes
PQ. Of course, determining the set of all consistent processes
in PQ explicitly and then computing the minimum of the
corresponding expectations is infeasible, if not impossible.
However, fortunately, this is not necessary because the lower
transition operator T t

s can often also be characterised by

T t
s = lim

n→∞

(
I +

t− s
n

Q

)n

, (11)

where Q is the so-called lower transition rate operator of Q,
which transforms any real-valued function f on X into a new
function Qf : X → R, defined by

[Qf ](x) := min {[Qf ](x) : Q ∈ Q} for all x ∈ X . (12)
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Fig. 1: Example of a semi-flexible optical grid with n1 = 2,
n2 = 3 and S = 36.

As proved in [24], a sufficient condition for this to be possible
is that Q has separately specified rows, which basically means
that for every f : X → R, there is some Q ∈ Q such that
[Qf ](x) = [Qf ](x) for all x ∈ X .

Now recall from Section III-A that in this contribution, for
precise MCs, we are interested in the value of P(Xt ∈ A|X0 =
x0) as t approaches infinity. Similarly, for imprecise MCs, we
are interested in providing lower and upper bounds on this
value as t approaches infinity, that is, we are interested in

lim
t→∞

P(Xt ∈ A|X0 = x0) and lim
t→∞

P(Xt ∈ A|X0 = x0).

As shown in [24], these limits always exist. If they furthermore
do not depend on x0 ∈ X , then we call them the lower and
upper limit probability of A, and denote them by πA and πA,
respectively. Ergodicity is again a sufficient condition for the
existence of πA and πA. For imprecise MCs, a definition for
ergodicity and a simple method for checking whether it is
verified can be found in [24].

Provided that the imprecise MC is ergodic and that Q has
separately specified rows, it follows from (7)–(11) that

πA = lim
t→∞

lim
n→∞

[(
I +

t

n
Q

)n

IA
]

(x0)

and

πA = − lim
t→∞

lim
n→∞

[(
I +

t

n
Q

)n

(−IA)

]
(x0),

which allows us to compute them both by choosing t and n
sufficiently large.

IV. THE PROPOSED MARKOV CHAIN MODELS

This section provides a detailed description of the specific
Markov chain models that we use. One the one hand, in
Section IV-B, we introduce an exact MC that is able to model
various spectrum assignment policies, but which does not scale
to realistic scenarios. On the other hand, in Section IV-C, we
provide models that do scale, at the cost of being approximate,
and then use imprecise MCs to provide guaranteed bounds on
these approximations. We start in Section IV-A by introducing
some assumptions that are common to both types of models.

A. General Assumptions

We consider a single optical fibre link with overall spectrum
availability of T . The spectrum is partitioned in slices of width
F , for a total number of S = T/F slots. For the sake of
easiness, we assume that T is an integer multiple of F . Slices
are sequentially numbered from 1 to S.

i0, . . . , ik, . . . , in2

i0 + 1, . . . , ik, . . . , in2
i0, . . . , ik−1 + 1, ik − 1, . . . , in2

i0, . . . , ik − 1, ik+1 + 1, . . . , in2i0 − 1, . . . , ik, . . . , in2

(m2 − I)µ2

kikµ1

λP

λ2

(if i0 > 0)

Fig. 2: State transition diagram of the proposed precise and
exact Markov chain

Traffic requests of two different sizes are generated ac-
cording to a Poisson random process with arrival rate λ1

(respectively λ2) and cease after a holding time with nega-
tive exponential distribution and average service time 1/µ1

(respectively 1/µ2). Traffic demands of type 1 require n1 ≥ 1
slices, whereas demands of type 2 require n2 × n1 slices.

As depicted in Fig. 1, we consider two overlapping grids of
coarser granularity. The first predefines a sequence of adjacent
superchannels of width n1×F : the first superchannel includes
slices 1, . . . , n1, the second comprises slices n1 + 1, . . . , 2n1,
and so on. Similarly, the second grid defines a sequence of
adjacent superchannels of width n2×n1×F . The number of
superchannels of size n1×F is thus m1 = S/n1, whereas the
number of superchannel of size n2×n1×F is m2 = m1/n2.
As before, for the sake of easiness, we assume that S is an
integer multiple of n1 × n2.

A type 1 request must be assigned to a free superchannel
of width n1 × F , whereas a type 2 request must be placed in
a free superchannel of width n2×n1×F . If no superchannel
of the required size is available, the traffic request is blocked.

B. A Precise and Exact MC Model

Let (i0, i1, . . . , in2
) be the state description of the MC,

where ik counts the number of type 2 superchannels occupied
with k type 1 requests and no type 2 requests. Let I be defined
as I =

∑n2

k=0 ik. Then m2 − I is the number of type 2
superchannels that are occupied by a type 2 request. To ensure
feasibility, it must hold that I ≤ m2 and that ik ≥ 0 for all
k in [0, n2]. Note that i0 counts the number of empty type 2
superchannels, whereas R =

∑n2−1
k=0 ik(n2 − k) is the total

number of free type 1 superchannels. If i0 = 0 and a type 2
request arrives, it must be blocked. However, a type 1 request
can then still be allocated in an unused type 1 superchannel
as long as R > 0. The total number of states of the chain
exhibits an O(mn2

2 ) dependency on the total number of type
2 superchannels and on the number of type 1 superchannels
contained in a type 2 superchannel.

As reported in Fig. 2, when a type 2 request arrives and finds
an available type 2 superchannel (i.e., i0 > 0), the following
transition takes place with rate λ2: (i0, i1, . . . , in2

) → (i0 −
1, i1, . . . , in2). Conversely, when a type 2 request departs
after expiration of its holding time, the following transition



occurs: (i0, i1, . . . , in2
) → (i0 + 1, i1, . . . , in2

). The rate of
this transition is (m2 − I)µ2.

Similarly, when a type 1 request departs, the state transition
(i0, . . . , ik, . . . , in2) → (i0, . . . , ik−1 + 1, ik − 1, . . . , in2)
occurs for all k in [1, n1] with rate kikµ1. The state transition
rate λP due to the arrival of type 1 requests depends on
the adopted spectrum allocation policy P. This model can
implement any policy that does not depend on the specific
ordering of the type 1 superchannels allocated along the grid,
but only on the number of type 1 superchannels in use within
each type 2 superchannel. As exemplificative cases, here we
report on three such policies.

If we adopt a Random spectrum Assignment policy (RA),
then a new type 1 request is placed in any free superchannel
of type 1 with equal probability. Therefore, the state transition
(i0, . . . , ik, . . . , in2

) → (i0, . . . , ik − 1, ik+1 + 1, . . . , in2
)

occurs for all k in [0, n2−1] with rate λRA = λ1ik(n2−k)1/R,
provided that R > 0. If R = 0, the request is rejected (i.e.,
λRA = 0).

Alternatively, if we adopt a policy that assigns the incoming
type 1 request to the partially occupied type 2 superchannel
that contains either the lowest number of type 1 superchannels
already assigned (Least-Filled, LF) or the highest number of
type 1 superchannels already assigned (Most-Filled, MF), we
obtain the following transitions. As before, if R = 0, the
request is rejected (i.e., λLM = λMF = 0). If R > 0, the state
transition (i0, . . . , ikP

, . . . , in2
) → (i0, . . . , ikP

− 1, ikP +1 +
1, . . . , in2

) occurs with rate λLF = λMF = λ1, where kP de-
pends on the policy P. If there exists at least one superchannel
of type 2 partially occupied by one or more type 1 requests
(i.e., if ∃k ∈ [1, n2 − 1] : ik > 0), then kLF = min{k ∈
[1, n2−1] : ik > 0} and kMF = max{k ∈ [1, n2−1] : ik > 0}.
Otherwise, that is, if all the type 2 superchannels are either
completely free or completely occupied (i.e., ik = 0 for all
k ∈ [1, n2 − 1]), then kLF = kMF = 0.

For each of the three spectrum assignment policies that
we consider, the rates that were specified above determine a
unique transition rate matrix Q. These transition rate matrices
can furthermore be shown to be ergodic, and therefore, for
every event A ⊆ X , they each determine a unique limit
probability πA, which can be computed using the methods
in Section III-A. The limit blocking probability BP1 expe-
rienced by type 1 traffic requests corresponds to choosing
A = {(i0, . . . , in2

) ∈ X : R = 0}, whereas the limit blocking
probability BP2 experienced by type 2 traffic requests is
obtained by choosing A = {(i0, . . . , in2

) ∈ X : i0 = 0}.

C. An Imprecise and Scalable MC Model

The drawback of the model in Section IV-B is its limited
scalability, which is due to the O(mn2

2 ) dependency on the
superchannel sizes. In order to remedy this problem, we now
present an alternative model that adopts the more compact—
though less informative—state representation proposed in [9],
thereby making it more scalable. This time, the state is
described by the triplet (i, j, e), where 0 ≤ i ≤ m1 (resp.
0 ≤ j ≤ m2) counts the number of type 1 (resp. type 2)

i, j, ei− 1, j, e+ 1

i, j − 1, e+ 1 i+ 1, j, e

i+ 1, j, e− 1

i, j + 1, e− 1i− 1, j, e

µ+
1

jµ2

λ1 − λP

λP

(if R > 0)

λ2 (if e > 0)
µ=

1

Fig. 3: State transition diagram of the precise but approximate
Markov chain and of the proposed imprecise and scalable
Markov chain

requests currently allocated, and 0 ≤ e ≤ m2 counts the
number of free superchannels of type 2. To ensure feasibility,
it must hold that i + (j + e)n2 ≤ m1. The total number of
states of the chain exhibits an O(m1m

2
2) dependency on the

total number of type 1 and type 2 superchannels.
As depicted in Fig. 3, when a type 2 request arrives and finds

an available type 2 superchannel (i.e., e > 0), the following
transition takes place with rate λ2: (i, j, e)→ (i, j+ 1, e− 1).
Conversely, when a type 2 request departs after expiration of
its holding time, the following transition occurs: (i, j, e) →
(i, j − 1, e+ 1). The rate of this transition is equal to jµ2.

When a type 1 request departs, two transitions can occur:
(i, j, e) → (i − 1, j, e) or (i, j, e) → (i − 1, j, e + 1), the
rates of which we will denote by µ=

1 and µ+
1 , respectively.

The second transition corresponds to a type 1 request that is
the only allocated type 1 request in its type 2 superchannel,
whereas the first transition corresponds to a type 1 requests that
shares its type 2 superchannel with other type 1 requests. If
i = m2−j−e, then µ=

1 = 0 and µ+
1 = iµ1 (i.e. a departure will

always free a superchannel of type 2), whereas if i ≥ n2(m2−
j − e − 1) + 2 then µ=

1 = iµ1 and µ+
1 = 0 (i.e. a departure

will never free a superchannel of type 2). Unfortunately, in the
remaining cases (i.e. if m2−j−e < i < n2(m2−j−e−1)+2),
since the state representation is not sufficiently informative to
capture the distribution of the allocated type 1 requests across
the type 1 superchannels, it is not possible to determine µ=

1 and
µ+

1 as a function of (i, j, e), and they are then both unknown
functions of (i, j, e, t), where t is the time of the transition.
All we can say for sure is that they are both non-negative, that
their sum is equal to iµ1 and that

µ+
1 (i, j, e, t) ∈ [imin(i, j, e)µ1, imax(i, j, e)µ1], (13)

where imin(i, j, e) := max{0, 2(m2 − j − e) − i} is the
minimum number of allocated type 1 requests that are alone
in their type 2 superchannel and

imax(i, j, e) := min

{
m2 − j − e,

⌊
n2(m2 − j − e)− i

n2 − 1

⌋}
is the maximum number of such type 1 requests.



In order to deal with this indeterminacy, the authors of [9]
replace (13) with an approximate estimate for µ+

1 (i, j, e, t),
which is based on an assumption that all the possi-
ble situations—that is, all possible distributions of type 1
requests—that are represented by the state (i, j, e) are equally
probable. The approximation error introduced by these esti-
mates will be numerically evaluated in Section V, by com-
paring them with exact results from the model in Section
IV-B. Secondly, we will also compare the approximation in
[9] to a scalable approach that does not make any assumptions
about µ+

1 (i, j, e, t), by considering an imprecise MC whose
set of transition rate matrices Q contains all the transition rate
matrices Q that are compatible with (13).

When a type 1 requests arrives and finds an available type 1
superchannel (i.e., R := m1− i− jn2 > 0), the following two
transitions can occur: (i, j, e)→ (i+ 1, j, e− 1) or (i, j, e)→
(i+ 1, j, e), the rates of which are equal to λP and λ1 − λP,
respectively, where λP depends on the state (i, j, e) and the
implemented spectrum allocation policy P. For an arbitrary
spectrum allocation policy P, all we can say for sure is that

λP(i, j, e) ∈ [0, λ1]. (14)

For the random allocation policy, we have that λRA =
λ1((en2)/(m1−i−jn2)), whereas for the other two policies that
are considered in this paper, we have that λLF = λMF = λ1 if
i = (m2−j−e)n2 and λLF = λMF = 0 if i < (m2−j−e)n2.
We will compare these three policies against an approach
that does not make any assumptions about the policy P, by
considering an imprecise MC whose set of transition rate
matrices Q contains all the transition rate matrices Q that are
compatible with (14).

On the one hand, for each of the spectrum assignment
policies RA, LF and MF, the approximation for µ+

1 in [9]
leads to a unique transition rate matrix Q, and therefore to a
unique MC that can furthermore be shown to be ergodic. In
this way, for every event A ⊆ X , each of these policies leads
to a unique approximate limit probability πA, which can be
computed using the methods in Section III-A. On the other
hand, by considering the set Q of all transition rate matrices
that are compatible with (13) and (14), we obtain an imprecise
MC. This imprecise MC can also be shown to be ergodic, and
therefore, for every A ⊆ X , it determines unique lower and
upper limit probabilities πA and πA, which can be computed
using the methods in Section III-C. In these computations,
evaluating Equation (12) is linear in the number of states—
hence O(m1m

2
2)—because, for every state x ∈ X , Fig. 3

implies that [Qf ](x) is a linear function with at most six non-
zero coefficients, which we need to minimise with respect to
the simple inclusions in (13) and (14). The resulting bounds
πA and πA do not require any approximation, nor do they
require us to specify a spectrum assignment policy. For all of
the above (precise and imprecise) MCs, the approximate and
lower/upper limit blocking probability BP1 (respectively BP2)
experienced by type 1 (respectively type 2) traffic requests
corresponds to choosing A = {(i, j, e) ∈ X : R = 0}
(respectively A = {(i, j, e) ∈ X : e = 0}).
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Fig. 4: Blocking probability for a system with S = 45 slices
and n2 = 5. Random Assignment policy.

V. NUMERICAL ASSESSMENT

We consider the spectrum assignment problem over a
link with an available spectrum T , subdivided in slices of
F = 12.5 GHz, for a total number of S = T/F slices.
Type 1 superchannels are formed by n1 = 3 contiguous
slices (including guardbands), whereas type 2 superchannels
consist of n1×n2 = 3n2 slices, where n2 varies according to
the considered scenario. In each scenario, the offered traffic
load, ρ, varies in the range 0.1 ≤ ρ ≤ 50, we assume
ρ = λ1/µ1 = λ2/µ2 and we set µ1 = µ2 = 1.

A. Comparison to Exact Markov Chains

The exact MC has a large number of states. Therefore it can
be solved only for small instances. Fig. 4 shows the blocking
probability for type 1, BP1, and type 2, BP2, connections for
a system having T = 562.5 GHz, S = 45 slices, n2 = 5 and a
RA policy. The blocking probabilities calculated with the exact
MC and with the approximate MC are almost overlapping,
providing empirical evidence that the approximations used to
reduce the number of states are very good in the case of the RA
policy. Additionally, Fig. 4 shows the bounds obtained with
an imprecise MC, which models a system with an unspecified
assignment policy. In case of type 2 connections, these bounds
are close for any traffic load, showing that changing the policy
could provide some improvement, but that the RA policy
already yields reasonably good performance. In case of type
1 connections, the bounds are very tight for low loads and
for high loads, showing that the assignment policy has no
impact on the performance. On the other hand, in the central
region, for a traffic load 2 ≤ ρ ≤ 10, where the blocking
probability has non-monotonic behaviour, the bounds become
looser, suggesting that the policy might have a significant
impact on the performance. Also in this case, the RA policy
settles halfway between the upper and lower bounds.

Fig. 5 shows the blocking probabilities BP1 and BP2 for a
system having S = 45 slices, n2 = 5 and with either the LF or
the MF assignment policy. These two policies have a different
performance, which can be evaluated with the respective exact
MCs. On the other hand, the approximate model yields an
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Fig. 5: Blocking probabilities for a system with S = 45 slices
and n2 = 5. Least Filled (LF) and Most Filled (MF) policies.
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Fig. 6: Absolute error of the blocking probabilities BP1 and
BP2 calculated using the approximate Markov chain for the
various assignment policies.

identical approximate MC for the two policies. The figure
also reports the bounds obtained with an imprecise MC,
which are identical to those reported in Fig. 4. The blocking
probability for type 2 connections calculated for the two
policies either with the exact model or with the approximate
one are overlapping and also very near to the lower bound,
suggesting that the LF and MF policies treat these connections
in a similar way, also resulting in the best achievable perfor-
mance. Conversely, the blocking probabilities for the type 1
connections are slightly different for the two policies, with
the LF policy performing slightly better. This difference is
captured by the exact models, while the approximate model
yields results between the two. Additionally, both policies are
much nearer to the upper bound than the RA policy, suggesting
that the better treatment of type 2 connections results in a
worse treatment of type 1 connections.

Fig. 6 shows the absolute error between the blocking
probabilities calculated with the exact model and the same
probabilities calculated with the approximate MC. All the
models are accurate for a low traffic regime and for both
blocking probabilities. Since the blocking probability for type
1 connections is lower than the blocking probability for type
2 connections, the absolute error is also lower. As the load
grows, the error of the model becomes larger, with the MF
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Fig. 7: Blocking probabilities for a system with S = 120 slices
and n2 = 4

and LF model being less accurate than the model for the
random assignment for all blocking probabilities, and with
the maximum of 0.043 obtained for BP1 (MF) at ρ = 10.
At high load, the error drops for all the policies, with the
RA policy dropping much faster. While the accuracy of the
approximate MC for the RA policy was already shown by the
authors of [9] by means of numerical simulations, we show
that the approximation holds well also for the other policies,
though with a lesser accuracy. It is also worth noting that the
error for the LF and for the MF policies is similar. Therefore,
the approximate MC is a good approximation of both policies,
being slightly better for LF. This result was also seen in Fig. 5.

B. Application to Large Systems

Fig. 7 shows the blocking probabilities for a large system
with T = 1.5 THz, S = 120 slices and n2 = 4. For
each connection type, the figure shows the performance of
the RA policy and of the MF/LF policies, all obtained with
the approximate MC. In addition, the same figure shows the
bounds for an unspecified policy. For the type 2 connections,
the large bounds suggest that the policy has an impact on the
performance. In fact, the MF and LF policies are very close
to the lower bound, confirming that these policies are among
the best ones for type 2 connections, whereas the RA policy is
situated more or less in the middle of the two bounds. On the
other hand, the blocking probabilities for type 1 connections
show that the performance of the MF and LF policies is very
close to the upper bound. Similarly to the small case discussed
above, the bounds for type 1 connections are closer for small
traffic and larger for medium traffic.

Fig. 8 shows the blocking probabilities for a large system
with S = 120 slices and n2 = 20. As before, the figure
shows, for each of the two connection types, the performance
of our three policies—again for the approximate MC—and the
bounds for an unspecified policy. For the type 2 connections,
the LF/MF policies again lie along the lower bound and the RA
policy is in the middle. Conversely, the blocking probabilities
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Fig. 8: Blocking probability for a system with S = 120 slices
and n2 = 20

for type 1 connections have tight bounds for low traffic and
loose bounds for medium to high traffic. The probabilities
calculated for the RA and LF/MF policies are very similar
except in the region where 10 ≤ ρ ≤ 20, in which the LF/MF
policies always have a larger blocking probability than the RA
policy and are in some cases very close to the upper bound.

VI. CONCLUSION

We have studied the problem of spectrum assignment in
a two-service flexi-grid optical link. First, we provided exact
Markov chain models for the cases of random, most-filled,
and least-filled assignment policies. The complexity of these
models is exponential in the number of slices though, so they
do not scale. Therefore, next, we evaluated an approximate,
reduced-state Markov chain model that is available in the
literature for a random assignment policy, and extended it
to the case of the most-filled and least-filled policies. The
comparison to the exact results in a small scale case shows
that the approximation is good, but it is difficult to obtain
an evaluation of its precision for large scale problems. For
this reason, finally, we introduced a Markov model that uses
imprecise probabilities. This model scales to large problems
and does not make assumptions about the assignment policy,
making it possible to provide guaranteed bounds on the
achievable blocking probabilities. This new model can be used
for two different purposes: to evaluate the precision of an
approximate Markov model in large scale problems, and to
provide policy-free performance bounds.
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