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Abstract. We outline the development of theory to describe, dense, collisional shearing flows of identical 
compliant spheres. We begin with two simple theories: one for rigid, nearly elastic spheres that interact through 
instantaneous, binary collisions; the other for compliant spheres that interact through multiple, enduring 
contacts. We then join the two extremes by adding compliance to the collisions and collisions to the spheres in 
enduring contact. Finally, we compare the predictions of the resulting theory with the results of discrete numerical 
simulations of steady, homogeneous shearing of compliant frictional spheres.

1 Introduction 
 
In steady, homogeneous shearing flows of identical 
spheres at volume fractions less than about 0.49, spheres 
interact through collisions that can be regarded as 
instantaneous, binary, and uncorrelated. In this case, 
methods from the kinetic theory of dense gases that take 
into account the energy loss in a collision [1-3] can be 
used to predict the relationship between the forces 
necessary to maintain the flow and the rate of shearing. 
[4-6]  

Above a volume fraction of 0.49, at which a first-
order phase transition between disordered and ordered 
states in an equilibrated system of colliding hard spheres 
is first possible [7,8], molecular dynamics simulations 
show that correlations between collisions begin to 
influence the relationship between the components of the 
stress and the shear rate [9-11]. The introduction of an 
additional length scale in the relation for the rate of 
collisional dissipation of fluctuation energy associated 
with the size of clusters of interacting spheres modifies 
the stress relations in an appropriate way [12-15]. The 
length scale is determined by the competition between 
the orienting influence of the flow and the randomizing 
influence of the collisions, using a local balance between 
the rates of production and dissipation of fluctuation 
energy. This approach has been tested against discrete 
element simulations of steady flows in a variety of flow 
configurations [16–19]. 

These extended stress relations apply until the mean 
separation distance between the edges of the spheres 
vanishes, at least along the direction of principal 
compression, at which point, the stresses for hard 
spheres become singular [19]. The volume fraction at 
which this occurs is less than that for random close 
packing,   φc = 0.64,  and is seen in numerical simulation 
to depend on the coefficient of sliding friction [20].  

Replacing a rigid contact with a compliant contact 
has three consequences: it permits the introduction of a 

time associated with the duration of a collision before 
the hard-sphere singularity [21]; it relaxes the singularity 
of the stresses; and it allows prediction of the stresses at 
volume fractions greater than that at the singularity. The 
stresses at volume fractions beyond the hard-sphere 
singularity have parts that depend on the shear rate and 
parts that depend on the deformation of the contact. We 
refer to these as the rate-dependent and rate-independent 
parts of the stress [22,23]. 

Here, we focus on continuous, steady, homogeneous 
shearing of a dense aggregate of identical spheres over a 
range of solid volume fraction, ,φ  above 0.49. We first 
consider theories that are appropriate in limits on either 
side of, but distant from, the critical volume fraction cφ
at which chains of spheres first span the flow.  
 

 
Fig. 1: Steady, homogeneous shearing maintained by shear 

stress s and pressure p. 
 

For   φ < φc ,  we outline the simplest theory for rigid 
spheres that interact through instantaneous, frictionless 
binary collisions [24]. Then, we indicate how this theory 
must be modified to apply to realistic situations. For 

     
 

DOI: 10.1051/, 01004   (2017) 714001004140EPJ Web of Conferences epjconf/201
Powders & Grains 2017

© The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of  the Creative Commons Attribution
 License 4.0 (http://creativecommons.org/licenses/by/4.0/). 



 

,> cφ φ  we treat deformable spheres that interact through 
a constantly changing network of longer lasting contacts 
with multiple neighbors [25]. Finally, we join the two 
extremes over the entire range of dense volume fractions 
by incorporating contact deformation in the collisional 
regime and impulsive momentum transfer in the 
deformational regime [26]. 

We treat spheres with a diameter, ,σ  mass, m, 
Young’s modulus, E, Poisson’s ratio, ,ν  friction 
coefficient: ,μ  Normal restitution, e, and tangential 
restitution, .β  The aggregate has a  number density 

( )3/ / 6 ,=n φ πσ  mass density ,= = pmnρ ρ φ  where 

pρ is the mass density of the material of the spheres, and 
is sheared at a rate .′u  
 
2 Simple kinetic theory 
 
The simplest kinetic theory [24] assumes instantaneous 
binary collisions, between a typical pair of frictionless, 
rigid spheres, with an impulse J exerted by sphere 2 
upon sphere 1, and the change in velocities of the two 
spheres in a collision given by 
 
   ′c1 = c1 + J / m  and   ′c2 ≡ ′c2 − J / m  (1) 
 
where the prime denotes values after the collision. The 
component of the relative velocity   ′c12 ≡ ′c1 − ′c2 ,  along 
the unit vector k directed from the center of sphere 1 to 
that of 2 is related to that before the collision by a 
coefficient of restitution e, with 0 1≤ <e : 
 
 ( )12 12e .′ ⋅ = − ⋅c k c k  (2) 
 

Then, the impulse may be determined as 
 

 12
1 m(1 e)( ) .
2

= + ⋅J k c k  (3) 

 
The impulse figures in the calculation of the shear stress 
and pressure. The kinetic energy of the pair, 
 

 ( )2 2
1 2

1E m c c ,
2

≡ +   (4) 

 
experiences the change 
 

 ( ) ( )22
12

1E E E m 1 e k c .
4

′Δ ≡ − = − − ⋅  (5) 

 
The change in kinetic energy is important when 
calculating the rate of collisional dissipation. 

Averages over the exchanges of momentum and 
energy in collisions are carried out by integrating over a 
complete pair particle distribution that governs the 
likelihood of collisions between pairs of spheres. In the 
simplest dense theory, the positions and velocities of 

colliding pairs are assumed to be completely 
uncorrelated - the assumption of Molecular Chaos - and 
the distribution is assumed to be expressed as the 
product of single particle velocity distributions and a 
correction to the collision frequency that incorporates the 
distance between edges, rather than centers. 

The single particle velocity distribution is 
 

 
( )

2
(1)

3/2( , ) exp ,
22

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
c r n Cf

TTπ
 (6) 

 
where the velocity fluctuation ( ) ( )≡ −C r c u r  is given in 
terms of the local average velocity   u(r), 2 ,≡ ⋅C CC  at 

the point of contact r and the measure 2 / 3≡T C  of 
the strength of the velocity fluctuations is often referred 
to as the granular temperature. The frequency correction 
is given in terms of the volume fraction dependence of 
the radial distribution function for a contacting pair in a 
dense aggregate [8]: 
 

 0
0.85( ) .

0.64
g φ

φ
=

−
 (7) 

 
With these, the averages are carried out using the 
distribution function 
 
 (1) (1)

0 1 2( ) ( , / 2) ( , / 2),− +r c r k c r kg f fσ σ  (8) 
 
in which care is taken to distinguish between the 
locations of the enters of the colliding pairs and, in the 
simplest theory, spatial gradients of the average fields 
enter the theory through series expansions of these about 
the point of contact. 

Integration yields expressions for the pressure 
  
 2(1 ) ;p e GTρ= +  (9) 
 

where 0 ,≡G gν  the shear stress 
 

 1/2
/2

4(1 ) ;
5

es G T uρ σ
π

+ ′=

 

(10) 

 
and the rate of collisional dissipation 
 

 

2
3/2

1/2

12 1 .eG Tγ ρ
σπ

−=

 

(11) 

 
The last of these may be written as 
 

 
  
γ = n 1− e2( ) 1

2
mT  24

π 1/2

GT 1/2

σ
,  (12) 

 
to emphasizes that it is the product of the number of 
spheres per volume, the energy lost per collision, and the 
collision frequency. The inverse of the collision 
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frequency is the average time of flight, ,fτ  between 
collisions: 
 

 
1/2

1/2 .
24

=f GT
π στ  (13) 

 
In a steady, homogeneous shearing flow, the granular 

temperature is determined through the energy balance: 
 
 0.′ − =su γ  (14) 
 

When the expressions for shear stress and the rate of 
dissipation are employed in this, it may be solved for T: 

 ( )
( )

2

2

2 .
15 1

′
=

−

u
T

e

σ
 (15) 

 
Then, the shear stress and the pressure can be expressed 
in terms of the shear rate: 
 

 

( )
( )

21/2

1/2 1/22

4(1 ) 2
155 1

ues G
e

σ
ρ

π
′+ ⎛ ⎞= ⎜ ⎟⎝ ⎠ −

 

(16) 

 
and 
 

 

( )2

2

4(1 ) .
15 (1 )

′+=
−
uep G
e

σ
ρ

 

(17) 

 
We note for later comparison that the ratio s/p is 
independent of φ  in the simplest theory. 

 
3 Simple deformation theory  
 
Pairs of spheres interact through contact forces that have 
normal and tangential components, P and T, parallel and 
perpendicular to their line of centers.  In the simplest 
linear theory these are, respectively, proportional to the 
normal and tangential displacements δ  and s of the 
contact. The normal force exerted by sphere 2 on sphere 
1 is 
 

 ,
4

=P Eπ σδ  (18) 

 
while the tangential force is 
 

 
, if   

4
, otherwise.

⎧ <⎪= ⎨
⎪⎩

T
T

E s P

P

π σ μ

μ
 (19) 

  
The distribution of the magnitudes of the contact forces 
is roughly exponential [27]; so, for example, 
 1( ) exp ,⎛ ⎞= −⎜ ⎟⎝ ⎠

Pf P
P P

 (20) 

 

where P is the average normal force. Discrete numerical 
simulations and physical experiments on photo-elastic 
disks indicate both the anisotropy and inhomogeneity of 
the distribution of contact forces in a sheared aggregate. 
 

 
 
Fig. 2: Shearing of a planar aggregate of circular photo-elastic 
disks in the Behringer laboratory at Duke University, 
http://behringer.phy.duke.edu/ 
 
The orientational distribution of contacts is described by 
a function A(k) of orientation k defined so that ( ) ΩkA d  
is the average number of contacts per particle within an 
element dΩ of solid angle centered at k [25]. The 
average total number of contacts per particle Z is called 
the coordination number and is given in terms of A(k) by 
 
 ( ) .

Ω
= Ω∫∫ kZ A d  (21) 

 
When the contact distribution is isotropic, 
 
 ( ) .

4
=k ZA

π
  (22) 

  
Anisotropic distributions of contacts are often described 
using a contact fabric tensor, :a  
 

 ( )( ) 1
4 ij i j
ZA a k k
π

= +k  (23) 

 
with 0.=iia  Then, 
  

 15 1 1( ) .
2 3Ω

⎛ ⎞= − Ω⎜ ⎟⎝ ⎠∫∫ij i j ija A k k d
Z

δk  (24) 

 
The stress, ,t  is defined in terms of the force 

transmitted across area element ΔΣ  with unit normal N 
by contacting pairs with orientations k within solid 
angle dΩ  [28]: 
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 ( ) ( ) ,Ω ⋅ ΔΣk F k NnA d σ  (25) 
 
for 0.⋅k N >  Similarly, for 0⋅k N < . Taking half the 
sum and integrating over all orientations k gives 
  

 ( )2 Ω
= Ω∫∫ kij i j

nt A F k dσ  (26) 

 
For example, for an isotropic contact distribution, an 

average volume strain, Δ, positive in compression, and 
the contact displacement assumed to be given by the 
average strain,  δ = σΔ / 3, [25] the

 

pressure is 
 

 1 .
12

= Δp Z Eφ  (27) 

 
In applying this result to continued shearing beyond the 
critical volume fraction, it’s natural to relate the average 
volume strain to the excess of the volume fraction above 
the critical: 
 

 ( )1 .
12

= − cp Z Eφ φ φ  (28) 

 
Numerical simulations of very slow, continuous, 

homogeneous shearing [29] indicate that the stress is 
given by 
 

 .= − +ij ij ijt p cpaδ  (29) 

 
Because only axy is nonzero, 
   
 ,xys t pη=≡  (30) 
 
With 
 

 ( )1 ,
12

= − cp Z Eφ φ φ  (31) 

 
and η yet to be determined. 
 
4 Corrections to simple kinetic theory 
 
In order to make realistic, quantitative predictions for 
dense, dissipative, shearing flows the simple kinetic 
theory whose derivation was outlined above has to be 
modified in a number of ways. 

First, a more realistic complete pair distribution 
function must be derived and employed. This has been 
done for elastic spheres [30]. The resulting modification 
to the theory for steady, homogeneous shearing outlined 
above for dissipative spheres [2] requires that in the 
shear stress (10), the factor 1+e be replaced by the scalar 
factor J: 

 

 ( )
2

2 2

2 (1 ) (3 1)1 .
96 24(1 ) 20 1

+ −≡ + +
− − − −

e eJ e
e e

π  (32) 

 
Second, we must take into account the rotational degrees 
of freedom, and the additional loss of translational 
fluctuation energy to sliding, tangential restitution, and 
rotational fluctuation energy. This can be done by 
employing an effective normal coefficient of translation 
restitution, ε, that is derived using the balance of 
rotational fluctuation energy to determine the partition 
between rotational and translation energy in a steady, 
homogeneous flow. [31,32] The effective coefficient of 
restitution is simply expressed in terms of the 
coefficients of sliding friction and tangential restitution 
in two limits: when all contacts slide in a collision and 
μ is about 0. 1, 
  

 29 ,
2 2

= − +e πε μ μ  (33) 

 
and when all contacts come to rest at some time during a 
collision and μ is about 1, 
 

 
2

2 2 1 1 5(1 )4 4 1 .
7 7 9 5

⎡ ⎤+ + +⎛ ⎞= − + +⎜ ⎟ ⎢ ⎥−⎝ ⎠ ⎣ ⎦
e β β βε

β
 (34) 

 
Third, we must include the dependence seen in 

discrete numerical simulations of the critical volume 
fraction on friction. To do this, in g0 of Eq. (7), we 
replace 0.64 by ( ),cφ μ where the dependence of φc on μ 
is taken from the simulations [20]. 
 

 
Fig. 3: The stress ratio versus volume fraction in discrete 
numerical simulations, for frictionless particles, when e = 0.7: 
event driven simulations (hollow circles [10]); soft particle 
simulations (filled circles [33]). The solid and dashed lines are 
the predictions of simple and extended kinetic theory. 

 
Finally, we must incorporate the influence of velocity 

correlations that occur above 0.49.=φ  At greater 
volume fractions, the assumption of molecular chaos 
breaks down and correlated velocities occur in clusters 
of size L, oriented along the axis of compression. The 
need for making such a correction is shown in Fig. 3, in 

     
 

DOI: 10.1051/, 01004   (2017) 714001004140EPJ Web of Conferences epjconf/201
Powders & Grains 2017

4



 

which predictions and measurements of the ratio of shear 
stress to pressure versus volume fraction are shown for 
several typical systems. 

A simple means of doing this is to introduce the 
cluster size in place of the particle diameter in the rate of 
collisional dissipation [12-14] 

 

 ( )2 3/2
1/2

12 1 .= −G T
L

ργ ε
π

 (35) 

 
The size of the cluster is determined by a balance 
between the orienting influence of the flow and the 
randomizing influence of the collisions:

  
 

 
1/2( ) ,

′
=L uF

T
σφ

σ
 (36) 

  

where the ( )F φ  is proportional to 
 

0.64 − φ( )−1
[19]. That 

is, it is singular at random close-packing, not at the 
critical volume fraction. Then, 
 

 
( ) 1/32

1/2

14 ,
25

⎡ ⎤−
⎢ ⎥=
⎢ ⎥⎣ ⎦

s J
p JF

ε
π

 (37) 

 
where, in contrast to the ratio given by Eq. (16) and (17), 
there is a dependence on the volume fraction This 
relation is one of those plotted in Fig. 3, where it is 
referred to as that of the extended kinetic theory.. 

 
5 Deformation in collisions and 
collisions in deformation 
 
We next incorporate the deformation of the contacts 
during a collision into the collisional theory. [21] This 
provides a way to regularize the singularity in the 
collisional constitutive relations that without 
deformation occurs at the critical volume fraction. 

When the deformation of a contact is linear, the 
duration, τc, of a contact is 

  

 
1/2

,
5

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
p

c E
ρστ  (38) 

 
while we have seen that the time between collisions is 
 

 
1/2

1/2 .
24

=f GT
π στ  (39) 

 
Consequently, if we take into account the duration of a 
collision, the time between collisions increases from τf to 
τf +τf. In this case, 
 

 
1/2 1/2

2 (1 ) (1 )
12

= + = +
f

Tp GT π σρ ε ρ ε
τ

 (40) 

 

becomes 
 

 
1/2 1/2

(1 ) .
12

= +
+f c

Tp π σρ ε
τ τ

 (41) 

 
Similarly, 
 

 
2

15
′=

+f c

Js uσρ
τ τ

   (42) 

 
and 
  

 ( )21 1  .
2 f c

T
L

σγ ρ ε
τ τ

= −
+

 (43) 

 
With the incorporation of deformation into the collisions, 
the collisional stresses and the rate of dissipation are no 
longer singular at .= cφ φ  
 

 
 
Fig, 4: Stress fluctuations below and above φc measured during 
shearing in the circular annulus in the Behringer laboratory, 
http://behringer.phy.duke.edu/. 
 

The need to incorporate dynamics in the range of 
volume fraction above the critical can be seen in the 
results of experiments carried out on photo-elastic disks. 
Here, a dramatic difference in the strength of the 
fluctuations in stress is seen in Fig. 4 below and above 
an area fraction that we identify with the critical. 
Consequently, for ,≥ cφ φ there is still a collis-ional 
component of the exchange of momentum associated 
with the energy released by the breaking of chains. We 
assume that the frequency of these collisions is inversely 
proportional to the duration of a contact and evaluate the 
momentum transfer at the critical volume fraction. 

We take the pressure in this regime to be the sum of 
contributions from collisions and deformation - that is, 
the sum of rate-dependent and rate-independent parts: 
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 ( )
1/2 1/2

(1 ) .
12 8p c c

c

Tp Eπ σ πρ φ ε φ φ
τ

= + + −  (44) 

 
We treat the shear stress in a similar way, taking into 
account the relation (30) between the shear stress and 
pressure when deformations alone occur:  
 

 ( )
2

.
15 8p c c

c

Js u Eσ πρ φ η φ φ
τ

′= + − (45) 

 
In this regime, we assume that the anisotropy of the 
collisions is the same as that of the deformation and take 
η to be the ratio of the collisional shear stress to the 
collisional pressure at φc: 
 

 
1/2 1/2

4 1 .
(1 )5

J u
e T

ση
π

′
=

+
 (46) 

 
Finally, in order to enable the determination of the 

strength of the velocity fluctuations at volume fractions 
greater than the critical, we adopt similar assumptions 
for the frequency of collision and the volume fraction in 
the rate of collisional dissipation: 

 

 ( )21 1 .
2 p c

c

T
L

σγ ρ φ ε
τ

= −  (47) 

 
Then, in simple shearing flows, both below and 

above the critical volume fraction, T may be obtained as 
a solution to the energy balance (14). In this energy 
balance, the elastic part of the shear stress above the 
critical volume fraction is assumed to be recoverable and 
not to contribute to the rate of working.   

 
6 Results 
 
With T determined on either side of the critical volume 
fraction, the stress may be calculated and compared to 
the results of discrete numerical simulations [20,33,34]. 
The comparison for the pressure and shear stress, 
normalized by ( )2 ,p uρ σ ′  are shown in Figs. 5 and 6, 
respectively, for a wide range of contact stiffness, 

( )/ 4 ,Eκ π σ≡  made dimensionless by ( )23 .p uρ σ ′  The 
predictions are, in general, good and provide an 
indication that at least some of the numerous 
assumptions made to obtain them have a basis in the 
physics. 

A more stringent test results from plotting the ratio of 
the shear stress to the pressure. In this case, because he 
stiffness is assumed to enter into both quantities in the 
same way, the ratio is independent of stiffness. In 
contrast. the measured data is sensitive to the stiffness, 
especially for the more compliant spheres. The 
agreement for the stiffer spheres is relatively good. 
 

 
 

Fig 5: Predictions of the normalized pressure versus volume 
fraction for e = 0.7, μ = 0.5, values of the dimensionless 
contact stiffness ranging from 10 to 1011 (dashed curves) and 
data from the discrete numerical simulations [20,33,34]. 
 

 
 

Fig 6: Predictions of the normalized shear stress versus volume 
fraction for e = 0.7, μ =  0.5, values of the dimensionless 
contact stiffness ranging from 10 to 107 (dashed curves) and 
data from the discrete numerical simulations [20,33,34]. 
 

0.5 0.55 0.6 0.6
φ

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

s/
p

 
 

Fig. 7. Predictions of the ratio of shear stress to pressure versus 
volume fraction (solid curve) for e = 0.7 and μ =  0.5 and data 
from the discrete numerical simulations [20,33,34] for values 
of the dimensionless contact stiffness ranging from 10 to 107 
(symbols). 
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7 Conclusions 
  
We have outlined the derivation of a theory for steady, 
homogeneous shearing flows of dense aggregates of 
deformable, dissipative spheres. The incorporation of 
contact deformation in the collisional regime and 
impulsive momentum transfer in the deformational 
regime permits a smooth transition through the critical 
volume fraction and relatively good descriptions of the 
stresses on either side of it. The predictions compare 
well over the range of volume fraction before and after 
the hard sphere singularity and over nine orders of 
magnitude of the contact stiffness. The model requires 
no parameters other than the contact stiffness, and the 
coefficients of restitution and sliding friction of the 
spheres.  
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