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Abstract: Mapping ecosystem services (ES) increases the awareness of natural capital value, leading 
to building sustainability into decision-making processes. Recently, many techniques to assess the 
value of ES delivered by different scenarios of land use/land cover (LULC) are available, thus 
becoming important practices in mapping to support the land use planning process. The spatial 
analysis of the biophysical ES distribution allows a better comprehension of the environmental and 
social implications of planning, especially when ES concerns the management of risk  
(e.g., erosion, pollution). This paper investigates the nutrient retention model of InVEST software 
through its spatial distribution and its quantitative value. The model was analyzed by testing its 
response to changes in input parameters: (1) the digital terrain elevation model (DEM); and  
(2) different LULC attribute configurations. The paper increases the level of attention to specific ES 
models that use water runoff as a proxy of nutrient delivery. It shows that the spatial distribution 
of biophysical values is highly influenced by many factors, among which the characteristics of the 
DEM and its interaction with LULC are included. The results seem to confirm that the biophysical 
value of ES is still affected by a high degree of uncertainty and encourage an expert field campaign 
as the only solution to use ES mapping for a regulative land use framework. 
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1. Introduction 

The interest in understanding the implication of land use changes on different ecosystem 
services (ES) is garnering attention, using both biophysical and economic values as a proxies of soil 
degradation [1–4]. Among others, methodologies for ES accounting at different scales have been 
developed, and new tools for mapping ES are now available (e.g., Integrated Valuation of Ecosystem 
Services and Tradeoffs—InVEST, Artificial Intelligence for Ecosystem Services—AIRES, Land 
Utilization and Capability Indicator—LUCI) [5–8]. The assessment of ES through their spatial 
distribution is a key element to set policy targets for sustainability and resiliency because their 
visualization highlights the trade-off between different alternatives [9–11]. Nonetheless, weakness 
arises when ES mapping is provided at the local scale for regulative planning purposes when the 
assessment should support the decision-making process regarding land use properties and building 
rights. In that phase, it seems that the experience of mapping is still in the early stage of development [3,7,12] 
and the debate on how different methods of mapping ES influence the stakeholder’ s interaction 
aimed at taking sharp decisions on land use configurations [2,13,14] has not been adequately opened. 
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Few studies have used ES mapping to examine plan goals and objectives [15], even if their explicit 
integration into planning is, nowadays, crucial to achieving sustainability [16–20]. 

Such a gap between general ES analysis and its effective implementation at the local stage is 
underlined by many publications [2,7,13]. The gap is mainly due to a different kind of issue: (i) the 
ES principles, concepts, and mapping are not yet currently used to define the land use regulation at 
regional, sub-regional, and local stages [9,21–23]; (ii) the technical knowledge of the tools for mapping 
ES and their utilization during Strategic Environmental Assessments for plans and programs is 
limited [22,24,25] and; finally, (iii) even when ES are accounted for and considered at the local stage, 
it is difficult to define how each ES should contribute to achieving an efficient land use plan in terms 
of the whole, and integrated ecosystem gains rather than of a single function [16,26,27]. Above all 
considerations, different policy applications require different accuracies, scales, and spatial modeling 
approaches to set targets and objectives [1,17,22]. Thus, the in-depth comprehension of input-output 
relations of each ES model became a key point to integrate ES in planning. 

The aim of this study is to demonstrate how specific ES values are reliable enough to be used in 
the decision-making process for land use planning at the local stage. An in-depth assessment of the 
nutrient retention model defines how the output map is influenced by inputs and, in particular, how 
the digital terrain elevation model (DEM) affects the delivery of nutrients along the hill slopes in a 
selected study area. Inasmuch as planners are not experts in the field of ES mapping, the knowledge 
of model sensitivity to input parameters is essential to create awareness on how critical the use of the 
output should be when maps are used to set territorial policies rather than land use regulations. 

The influence of DEMs with respect to the final output was tested looking at both the spatial 
distribution of the biophysical value and the quantity of nutrients delivered to the landscape; 
similarly, the influence of land use/land cover (LULC) data has been tested observing how shifting 
the load/retain parameters linked to LULC classes affect the output values. After a general analysis, 
a test of sensitivity has been applied to DEM investigating how different resolutions (10, 20, 25, and 75 m) 
affect the total export of nutrients in the streams. The behavior of six topographic DEM-related 
indices have been analyzed selecting a portion of the catchment area characterized by high slopes 
with a pre-alpine environment and with mountains and hills (the northwestern part of the study area), 
thus to reduce the time for model processing and obtain a less time-consuming output. A probability 
distribution has been assigned to DEM variables and the response of the outputs are analyzed.  

The results demonstrated how a non-expert utilization of mapping tools should generate 
possibly distorted evaluations during planning activities. The awareness of how a mapping tool is 
influenced by inputs is a key element to control the ES mapping process, especially when outputs are 
used to set planning prescriptions, such as limitation, mitigation, or compensation measures for land 
use transformations [15]. 

2. Materials and Methods  

2.1. The Research Context 

The research LIFE SAM4CP held by the DIST (Interuniversity Department of Regional and Urban 
Studies and Planning, Politecnico di Torino. DIST is a partner of the LIFE research concerning ES mapping 
activities. The research group includes the scientific coordinator Prof. Carlo Alberto Barbieri and collaborators 
Prof. Angioletta Voghera, Prof. Giuseppe Cinà, Prof. Carolina Giaimo, and the technical staff, Francesco 
Fiermonte, Gabriella Negrini Costanzo Mercugliano, and Marcella Guy) provides a detailed assessment of 
the spatial distribution of the principal ES using InVEST (Integrated Evaluation of Ecosystem Services 
and Tradeoffs) [28]. The aim of the research is to carry out the spatial distribution of biophysical 
values in planning processes, using maps to define an ecological and social assessment of the land 
use transformations at the local scale and, thus, providing better solutions for communities involved 
in local planning [11]. 

The research selected seven ES (habitat quality, carbon sequestration, water yield, nutrient 
retention, sediment retention, crop pollination, and crop production) to evaluate the sustainability of 
urban transformations [29–31]. InVEST software (InVEST is a suite of free, open-source software models 
used to map and value the goods and services from nature that sustain and fulfill human life. The software is a 
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product of the partnership between Stanford University and the University of Minnesota, The Nature 
Conservancy, and the World Wildlife Fund. To download the software, go to: 
http://www.naturalcapitalproject.org/invest/) [28] is one the primary open access products of the Natural 
Capital Project, and even if it appears as an easy-to-use software (with on-line training guides) its 
utilization implies expert knowledge and a collection of numerous amounts of input data (both 
statistical, with .csv files, and associated geometries with relative raster cell values, rather than vector 
polygons in .shp format). 

The LIFE SAM4CP uses InVEST as the most common and diffuse software to map and assess 
the biophysical values of the different ES [32,33], nonetheless, the outputs of InVEST were 
subsequently analyzed in a GIS environment to evaluate the spatial distribution and the quantity of 
biophysical maps [34–36].  

When the territorial dimension of the project was defined (municipalities of Bruino, Settimo 
Torinese, Chieri, and None were selected as the testing areas), then the collection of input data for 
modeling each ES was setup. The mapping context has been extended to a broad squared selection 
of Piedmont territory (50 km × 50 km) centered in the pivot city of Turin, thus to avoid the so-called 
“edge effect” [28] in the testing municipalities (Figure 1). Particularly, the mapping context is a 
selection of the larger catchment area of the Po River.  

 
(a) (b) 

Figure 1. The context of study. (a) The location of the Piedmont region in Italy and (b) the context of 
study (in lighter grey, the catchment area). 

The mapping context spans 312,525.28 ha and it constitutes 33.8% of the territorial dimension of 
the metropolitan city of Turin (682,701.11 ha). The selection comprises 26% of plain areas (altitudes 
below 100 m above sea level (a.s.l.)), 21% of hilly areas (altitudes ranges between 100 and 600 m a.s.l.), 
and 52% of mountainous area (altitudes above 600 m a.s.l.). Particularly, 17.7% is composed of 
anthropic areas, 52.7% by agricultural areas, 28.5% by natural and semi-natural zones, and 1.0% by 
water bodies (Table 1). 

The metropolitan area of Turin is composed by a mixed and heterogeneous landscape: from the 
suburban hills with a semi-dense built-up zone, to the dense and continuous built-up area of the 
Turin center. The natural mountain zones, and the ones with specific crop management and terraces, 
to plain floor valleys with a mixed rural development with intensive agricultural productivity, but 
subjected to high urban expansion. The settlement system of Turin is axially distributed, with a ribbon 
development along the axes to the northwest (France), northeast (Milan-Venice), and south (Genoa). 
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After the economic boom in the flat parts of the infrastructural corridors, rather than in the Turin 
valleys, the pressures of anthropic activities generated a high concentration of land take with the 
concentration of built-up areas associated with the presence of road networks at the primary and 
secondary level [37]. 

Table 1. Composition of the main land use classes (LULC) in the study area. 

LULC ha (%)
Anthropic 55,344.74 17.71 

Agricultural 167,555.08 53.61 
Natural 85,771.43 27.44 
Humid 8.79 0.00 
Water 3845.24 1.23 

Catchment area 230,967.44 100.00 

2.2. The Planning Outcomes 

The nutrient retention model track, with the maximum possible reliability both in terms of 
geometrical precision and accuracy of the associated biophysical values, is a pixel-based routing of 
the nutrients that come from diffuse sources in the territory (the composition of the different land 
uses in the area of investigation) to the delivery areas. When it rains, water flowing over the landscape 
routes down the slopes carrying pollutants from diffuse sources into streams, rivers, or lakes. 
Delivery areas are the parts where the water routing model generates a stream, so that the nutrient, 
which has not been previously retained by the landscape, routes downslope via the surface or 
subsurface into streams, causing pollution in the streams [28]. 

Land-use planners need information regarding the contribution of ecosystems to mitigate water 
pollution. Specifically, they require spatial information on nutrient export and areas where the 
highest filtration happens. The nutrient retention model provides this information for non-point 
source pollutants, but it generates a spatially-explicit prefiguration of the areas where pollutants flow 
into streams; thus, it is possible to reinforce vegetation filtering services to avoid water pollution.  

Considering the geometrical resolution of DEMs, many studies found that better model 
performances are reported in the range of four to 10 m, while coarser pixels generate poor 
performances [38–40]; however, at the same time, it seems that no linear relationship is guaranteed 
between finer DEM resolution and better reliability, in terms of model output. 

As an example, the sediment retention model, which allows calculating the soil erosion, largely 
depends on the intermediate water routing process that generates the runoff index and, subsequently, 
additional inputs on land use management interacting with the water flow model. Some cases studies 
argue that a field campaign after a landslide confirms better feedback with predictive models 
generated with coarser DEM resolutions.  

Analogously, the nutrient retention model consists of a first intermediate process which 
generates the runoff index which is DEM-dependent, then the results of the intermediate process are 
used to interact with nutrient loading and absorbing values dependent on LULC. Obviously, if the 
preliminary interaction with the DEM generates poor performances, then the model increases the 
errors influencing the final output, which will probably fail to represent a reliable and detailed output 
usable for decision-making processes. 

Mapping nutrient retention is pivotal for the SAM4CP project because the effects of anthropic 
activities (both for rural and urban uses) on water quality are scarcely used to steer the decision-
making process for planning purposes. The standard approach to water pollution control is the 
reduction of anthropogenic sources in the territory, while it is less considered that the soil has a high 
power to retain and abate the concentration of pollutants before they reach stream areas. 

For instance, if the knowledge of load and retention areas are spatially defined by the nutrient 
path to streams, the new ecological compensations for urban transformations should consider the 
plantation of new vegetated areas to increase nutrient removal along the nutrient path, achieving a 
great result in terms of ecological connectivity, but also in terms of filtering pollutants. 
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The “filtering” service should be empowered by planning decisions because the vegetation can 
remove, store, or release the pollutants in other forms. A typical example of the service is provided 
by the creation of riparian zones. Riparian zones can slow the flows, enabling the removal of 
pollutants taken up by vegetation and serves as a barrier before pollutants reach the stream. If the 
knowledge of the nutrient export is spatially represented, then mitigation or compensation measures 
can be designed by the land use plan as specific contribution to improve the environmental condition 
of the territory. 

Moreover, if biophysical values of the pollutant export are accounted for by the current state and 
the planned ones, then an in-depth observation of the contaminant trend for alternative land use 
options should be evaluated. Particularly, the conversion of agricultural land uses, the reduction of 
natural or semi-natural zones associated with the expansion of urban land uses, represent a threat to 
water quality. If one of the major targets of contemporary planning is to find sustainable paths for 
planning transformations, then the trade-off between the land use configuration and the particular 
variation of different ES should be considered.  

Considering the above-mentioned purposes, the research required a technical validation of the 
nutrient retention model as a key action to understand its direct utilization. 

2.3. The Methodology of Validation 

In the mapping stage, the spatial distribution of biophysical values for each ES was used as a 
proxy of soil quality for planning purposes. Such an assessment was necessary since the project was 
aimed at defining spatial planning rules to limit, mitigate, or compensate for soil sealing [17,41], 
acting with prescriptive land use regulation [42]. For example, one of the targets was to decide 
whether or not confirming a potential land use transformation considered the soil ES: if a potential 
alteration was affecting soils with a high ES provision, then the option of limiting the transformation 
should be considered, whereas when transformation affects areas of medium ES quality, then 
different measures of restoration (mitigation or compensation) were promoted [43–45]. 

At that stage, the cause-effect relation between input and output of each single ES model has 
been verified to avoid mistakes and the potential to distort the evaluations of maps [46,47]. While the 
spatial distribution of the majority of ES was directly understandable (e.g., habitat quality, carbon 
sequestration, crop production, crop pollination, and water yield), the nutrient retention and 
sediment retention models presented a distribution dependent from the DEM, because the final 
output depends on gravitational models, vegetation, and soil characteristics [34,36,38,40,48,49]. 

The analytical interpretation of such ES with GIS tools was sometimes counterintuitive and the 
DIST research team was critical and skeptical about the utilization of models for decision-making 
processes. Indeed, the process concerning the interpretation of output that determines the design of 
land use rules has been considered critical. 

Considering the above-mentioned perplexities, a period of validation for the nutrient retention 
model has been planned with the aim of finding accurate relations between input and output; 
particularly considering the influence of DEM and LULC [50]. Validation consisted of (i) the model 
being tested by changing the DEM and verifying its effect on the output; and (ii) the output was then 
used as a benchmark to verify the interaction with LULC.  

The methodology of validation considered the analysis of intermediate files as a product of each 
single model operation. Such an approach was useful to better understand how the model relates the 
input to the output at each step, increasing the feedback with the final results, and simplified the 
judgment. Each process was then discussed by the group with technical brainstorming increasing the 
confidence until a final validation was reached, agreed, and approved. 

According to the InVEST users guide [28], the selected inputs for nutrient retention are (see Table A1): 

(1) LULC. A GIS raster dataset, with an integer LULC code for each cell.  
(2) The analysis has been carried using the Regional Land Cover raster dataset of 2010 (Land Cover 

Piemonte (LCP)) with a scale of representation of 1:10,000. This dataset is of high utility and 
precision. Its contents directly fit with the land use classes of the Corine Land Cover Pan-
European datasets. Thus, its utilization guarantees a cross-checking analysis of input data 
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between different scales of representation. The LCP has been used as LULC input data for 
calculation using the selection of the squared territorial borders. 

(3) DEM. A GIS raster dataset, with an elevation value for each cell. The DEM should extend beyond 
the watersheds of interest. 

(4) Root restricting layer depth. A GIS raster dataset with an average root restricting layer depth 
value for each cell.  

(5) Precipitation. A GIS raster dataset with the average annual precipitation for each cell. 
(6) Plant-available water content. A GIS raster dataset with a plant-available water content value 

for each cell. 
(7) Average annual potential evapotranspiration. A GIS raster dataset, with an annual average 

evapotranspiration value for each cell. 
(8) Watersheds. A shapefile of the watershed polygons.  
(9) Biophysical Table. A .csv table of LULC classes containing data on the water quality coefficients used. 

Inputs 3 (root restricting layer depth), 4 (precipitation), and 5 (plant-available water content) are 
dependent to the land capability classification map of Piedmont (Figure 2) which covers the entire 
catchment area and defines the soil characteristics. The nutrient retention model assumes that 
nutrients moves towards streams, that the soil is saturated by water (rainfall), and run-off is  
then generated.  

 
Figure 2. Land capability classification map used in the study area. Each class is associated to a specific 
soil characterization.  
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The distribution of land capability classes is quite heterogeneous in the mapping area. Classes 
range from 1 (soil suitable for agricultural purposes) to 4 (soil with several limitations to agricultural uses). 
The soil depth and its composition (the mixture of sand, silt and clay) was a proxy to set the plant-
available water content using SPAW software (freely downloadable from the United States 
Department of Agriculture website) which was needed to set the values of input 6 (Table 2). 

Table 2. Table of input data associated to the Land capability classification map. 

Id_Unit Leg_250 CUuso CUso_SC Ha Evapo Precipitation Available erod_k 
00036 12 4 s2 6211.36 775 1000 0.08 0.26 
00020 3 2 s4 1562.53 775 1000 0.15 0.20 
00116 13 6 e1 4566.99 775 1000 0.06 0.20 
00011 12 4 e1 835.94 775 1000 0.08 0.26 
00004 2 3 s1 9293.87 775 1000 0.13 0.24 
00428 13 6 e1 828.64 775 1000 0.06 0.20 
00888  4  114.70 775 1000 0.08 0.26 
00035 13 4 e1 234.65 775 1000 0.08 0.26 
00002 1 3 s1 9404.68 775 1000 0.13 0.24 
00427 13 6 e1 3176.35 775 1000 0.06 0.20 
00026 13 6 e1 2071.91 775 1000 0.06 0.20 
00004 2 3 s1 5784.72 775 1000 0.13 0.24 
00005 2 2 s4 340.38 775 1000 0.15 0.20 
00010 1 4 e1 715.80 775 1000 0.08 0.26 
00034 12 6 e2 712.39 775 1000 0.060 0.20 
00110 13 6 e1 264.51 775 1000 0.06 0.20 

3. Results 

3.1. Spatial Distribution of Flows and Infiltrations 

The model output tracks the path load of a diffuse contaminant (nitrogen, by default), which 
reaches the stream level from the loading coefficient associated with land use. Accordingly, a sum of 
per-pixel values in a watershed basin gives, as output, the total amount of pollutants that flow into 
water streams, affecting the overall water quality. Nitrogen is assumed by the model as the nutrient 
due to agricultural practices which normally largely affect the water quality at the catchment level. 
Loading values are concentrated on class 2 (agricultural areas, see Table A1), while retention 
parameters are distributed in class 3 (natural and semi-natural areas). 

The more planned land use changes increase the values of filtering instead of loading and the 
greater their interaction among the catchment area, the more the absolute nutrient retention value 
decreases, as a consequence of a better land use composition in the scenario representation. 

Interpretation of results comes from an analysis of the “n_export.tif” pixel distribution which 
represents the biophysical output of the model. The reliability of output, especially for comparative 
studies between alternative land uses, depends on the interaction between the input data. Even if the 
DEM sensitivity remains obscure most of the InVEST users, the model generates intermediate folders 
where each process is placed: 

• The model elaborates a water yield calculation based on an evapotranspiration model. This 
procedure allows the calculation of an intermediate per-pixel representation where the fraction 
of the rainfall water that is not stored in the soil and removed by evapotranspiration processes 
moves to another pixel; 

• When water is not retained by pixels, the run-off process starts to track the flow-paths that 
interact with DEM defining the up-flows and stream areas by gravitation. The run-off does not 
consider if the water routes move via the surface, subsurface, or base flows; it just interacts with 
the land use model and related nutrient load/retention values. The balance among the load and 
retention indicates where the landscape contributes to filtering and retaining the nutrients and 
where nutrients reach the streams. 
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A preliminary evaluation of the two intermediate results is to check if the runoff model generates 
the streams in the area where the land use is composed of water bodies. The more streams produced 
by the runoff model that overlap the water bodies in the land use, the more the results will be reliable 
in the way the nutrient is routed to the contamination points. 

This basilar condition is crucial to set the command “threshold flow accumulation” which 
defines the number of upstream cells that must flow into a cell before it is considered part of a stream. 
Indeed, if the model is used at the local scale (1:5,000/1:10,000), then the command has to be set with 
values ranging from 50 to 200, otherwise it will be sufficient to use values ranging from 500 to 1000 
and the correspondence between streams and the water bodies of the large-scale land-use dataset 
will be achieved. 

As explained, DEM is essential to route the flows of nutrients. Its reliability depends on (i) the 
geometrical definition; and (ii) the continuity and the distribution of the values (holes or gaps to fill 
in the DEM are frequent). 

In the case study, a preliminary observation of the intermediate runoff model has been done 
using a grid DEM of a 10 m cell (scale of representation, 1:10,000, year 2005) covering the entire 
territory of the catchment area. It was expected that the flows of water routes down the slopes follow 
trajectories parallel to gravitational lines, while the model routed the flows with some perpendicular 
trajectories. Therefore, it has been decided to change the original DEM with an upgraded version 
which uses a different digital source and presents a denser pixel distribution (which was fundamental 
to mesh the values among the hill slopes). The geometrical precision of the LULC map was not 
considered because (i) it did not interact with intermediate phase 1; and (ii) it was precise enough 
(scale of representation, 1:10,000, year 2010) for the analysis. 

The change in the model of the DEM dataset gives important feedback with respect to the new 
outputs. The changes illustrated in the Figures 3 and 4 show how the interaction with DEM 10 m and 
DEM 25 m provides a different workflow output (intermediate result after run-off), which implies a 
better distribution of values. 

(a) (b) 

Figure 3. Correspondence between model streams and the real water bodies. In the left image 
(a), the runoff model generates streams that are poorly correspondent to the existing watershed 
(DEM 10 m) while, on the right (b), the model generates streams fairly correspondent to the 
existing watershed (DEM 25 m).  
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Figure 4. An example of the different distribution of streams after the intermediate process of runoff. 
(a) The streams in the model generate mistakes; and (b) the streams in the model correspond to the 
linear water bodies. 

3.2. Model Interaction with DEM and LULC 

The correction of the DEM determined a new runoff model which was validated by the group, 
and the nutrient retention model has been analyzed using its final output instead of the intermediate. 

The DEM used in the new version is a product of the official topographical survey of the 
Piedmont region. It was created between 2000 and 2010 by a grid model of 25 m; thus, the pixel 
dimension is coarser than the previous DEM used, while the results seem to be more acceptable. The 
integration of the LULC map with the DEM determines the size of the output grid cells.  

The evaluation of the file n_export.tif shows how the integration of the different intermediate 
results interact together (Figure 5): where the run-off process in upstream areas is intense, then the 
load of nutrient is higher (particularly when no natural vegetation acts as a filter to the nutrients). In 
that case, the model shows how pollutants that are not removed by vegetation contaminates the  
water bodies. 

 
(a) (b) 

Figure 5. Areas where the nutrient reaches the streams. (a) The upstream flows (blue) generate the 
streams (red) while (b) the areas where the nutrient reaches the streams contaminating the water in 
the catchment are shown. 
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The use of the 25 m DEM generates a result which was closer to what was expected: the nutrient 
concentration happened along the buffer areas of rivers, streams, and natural water bodies following 
a gravitational route and infiltrates where the interaction between the DEM, soil properties, and 
LULC determines water sinks. Even without a quantitative assessment, the better output distribution 
is achieved with a coarser DEM resolution, meaning that sometimes the grid resolution does not 
correspond to a better model output [38] 

Once the distribution of the model was spatially acceptable, then a quantitative test was applied 
to understand how the interaction with LULC properties changes the final result. As introduced, the 
assessment of the load and retained absolute values of nitrogen associated with each land use type 
depends on the user. Therefore, to test if the model responds to a different configuration of LULC 
data, it has been decided to shift the LULC-associated values of the nutrient load with values of 
retention, thus, obtaining an output which is generated by a different configuration of LULC-
dependent variables (Table A2). The result (Table 3) shows a considerably different distribution of 
nutrients. The interaction between the DEM-dependent block (runoff) and LULC-dependent block 
(nutrient loads/retain) generates a new map where the contamination process happened from the 
upstream to the downstream area, but with a different distribution and quantity of values (as expected). 

The test confirmed the response of the model to the user modification of input, generating a 
radically different output.  

Table 3. Table of biophysical values in kg of nitrogen at the catchment area. ws_id is the watershed 
identification number, mn_run_ind is the mean runoff index, n_avl_tot is the total amount of nitrogen 
in the catchment, n_ret_tot is the total amount of nitrogen retained by the landscape, and n_exp_tot 
is the total amount of nitrogen exported to the stream in the watershed. 

Output ws_id mn_run_ind n_avl_tot n_ret_tot n_exp_tot 
1_baseline 1 8.21 30,177,559.14 28,932,618.73 1,244,940.41 

2_DTM 1 7.43 30,072,975.75 28,605,376.76 1,467,598.99 
3_LULC inverted 1 7.89 3,509,098.44 3,388,948.39 120,150.05 

diff (abs) 1–2  −0.78 −104,583.39 −327,241.97 222,658.58 
diff (%)  −9.47% –0.35% –1.13% 17.89% 

diff (abs) 2–3  0.47 −26,563,877.32 −25,216,428.38 −1,347,448.94 
diff (%)  6.27% −88.33% −88.15% −91.81% 

Considering the “n_exp_tot” is the biophysical output that is considered during the planning 
process, the differences between the input configurations are outlined by the rows “diff 1–2” and 
“diff 2–3” (Table 4). 

Table 4. Analysis of DEM indices and output generated by the nutrient retention model (n_exp_tot). 

Model_Data  10 m 20 m 25 m 75 m 
  DTM10 DTM20 DTM25 DTM75 

Count: 7,564,063.00  2,017,985.00  1,811,753.00  234,615.00  
Minimum: 135.00  131.00  141.00  140.00  
Maximum: 2915.00  2906.00  2918.00  2792.00  

Sum: 6,501,389,993.00 1,635,639,025.00  1,310,496,805.00  158,788,455.00  
Mean: 859.51  810.53  723.33  676.80  

Standard Deviation: 532.16  524.81  517.68  499.83  
Nulls: - - - - 

n_exp_tot 163,392.46  106,702.30  10,398.30  117,366.76  

Particularly, the correction of the DEM generates at the catchment scale an absolute 
augmentation of nitrogen exported to the stream equal to more than 222,658 kg, which corresponds 
to an augmentation of the previously-registered value of 17.9%. This measure reveals that the DEM 
quality influences the model workflow and sheds light on the needs of careful use of the input data, 
assessing both their spatial distribution and their absolute value.  

While considering the “diff 2–3”, it is shown that when loading and absorbing values are 
modified, the net absolute decrease of nitrogen exported to the stream is equal to more than 1,347,448 
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kg, which implies a reduction of infiltration equal to 91.8%. The decline is due to the LULC conversion 
which reduces the number of load areas in upslope territories and increases the filtering ones in plain 
zones; then interaction of runoff with LULC distribution generates an abatement of nitrogen 
infiltration. That configuration shows a total amount of nitrogen infiltrated of 120,150 kg in the 
catchment area. The reduction confirms the dependency of output from LULC associated data: the 
agricultural areas are double the natural and semi-natural ones (121,726.90 ha compared to 65,798.17 ha), 
therefore, the shift in LULC properties means that the nitrogen loads are halved while the retention 
areas are doubled. This result seems to confirm good feedback between the quantitative values 
associated with the input data and their interaction to generate the final output.  

The collaboration with external expertise (Dario Masante, Joint Research Centre) confirmed that 
the intermediate flows of the model were analyzed by other relevant ES software (AIRES of LUCI) 
[5]. Outputs of the validation process were shared with the external research group, the ones that 
tested the nutrient retention function with different software to define a comparative assessment. 

3.3. Model Sensitivity to DEM  

While the feedback from LULC changes was quite intuitive and connected to a linear 
relationship between the quantity of a particular LULC class and its value of nutrient load or retain, 
the response of DEM changes still remained less understandable and requested an in-depth analysis.  

Four raster DEM datasets were downloaded from different sources (national and regional web 
geodatabases) and used to see how the nutrient retention output changes in response to DEM 
substitution (Table 4). To apply the analysis, none of the other input data were changed, in order to 
obtain an evaluation of the DEM-related dependencies. InVEST runs four times in a sub-area 
characterized by a hilly and mountainous landscape to reduce the time of elaboration for each result. 

The analysis of results has been conducted with a global sensitivity approach on DEM models [51,52] 
using a probability distribution function assigned to DEM variables. A probability distribution has 
been founded for DEM indices with an uncertainty degree (linear regression), and outputs were 
tested against the uncertainty of all input variables. DEM data were thought as a model, and 
probability distribution functions have been assigned to data variables. The variance between input 
and output was observed as an indicator of the output’s sensitivity to input changes [53,54]. 

A global sensitivity analysis was then conducted, with particular attention to: 

• Analyze the variation of the model output related to a change in the raster input (DEM). A 
regression of DEM indices was applied and a simulation of thirteen different DEM 
configurations and their outputs were tested; 

• Analyze the correlation and the variance of each DEM index related to the output; and 
• Analyze the dependencies of the DEM input configuration to the nutrient retention output. 

Each raster input (DEM) has been evaluated using its related statistical values. In the case study, 
the value “average” and “standard deviation” were inversely distributed with the DEM resolution. 

As shown in Table 4, even if the large majority of indices are inversely proportional to DEM 
resolution (except minimum and maximum values), their interaction does not generate an output 
which is inversely related, too. The value of “n_exp_tot” is not linearly distributed according to the 
geometrical precision of pixels. Instead, the output seems to demonstrate a stochastic distribution. 
This condition was already explored in other DEM-dependent models (e.g., landslide prediction 
models, Penna et al. 39) and, what is curious is that (i) the variability of the output is wide, as values 
ranges from 163,392 kg to 10,398 kg, with a standard deviation of 64,271 kg; and (ii) the lower value 
(DEM 25) is the one that fits with the real potential distribution of nutrients in the territory, according 
to an expert-based analysis of the pixel distribution. The geometrical distribution of DEM 25 gives a 
better feedback compared to others that generate mistakes in the intermediate flow analysis  
(run-off index distribution). 

This means that it is not true that a finer geometrical input resolution in ES models will generate a 
reliable output. The analysis of the different outputs shows how the change in DEM generates a water-
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routing intermediate model with different sizes, paths, lengths, and directions of streams in the 
catchment area with a better approximation to the real streams’ distribution provided by DEM 25. 

To have a better analytical assessment of the data, the relation between the model output and 
DEM input configuration was analyzed with a regression analysis that simulated eleven DEMs and 
relative outputs. The DEM resolution of simulated values ranged from five to 75 cells, including the 
four cases studied (Figure 6). 

Simulations were provided using the index “sum” as the regressor because it showed better 
correlation to the model output. They confirm that the distribution of the output is nonlinear, and 
not related to the DEM resolution. The “confidence range” (95th percentile) included the result of the 
model in just one case (DEM 10) showing, in two cases, an underestimation (DEM 20 and 75) and, in 
one case, an overestimation (DEM 25). The standard deviation for the simulated models was still high 
(23,500 kg). The greater deviation is for DEM 25 and, secondly, for DEM 75 (while DEM 20 has a 
lower deviation). 

 

Figure 6. Box plot of nutrient export simulated values. 

An in-depth analysis of the values shows that the standard deviation for registered values 
(model output) and simulated ones remains high (respectively, 64,271.43 and 23,500.93). The 
confidence range is high, too. Observing how the variance (standard deviation) affects the model 
output it is possible to test the uncertainty of the input values. 

An average influence value for the simulated case is of 26.54%, ranging from 15.27% (DEM 10) 
to 35.62% (DEM 70). Thus, the variability of the nutrient retention output is affected by a degree of 
uncertainty dependent on the DEM resolution, which should be considered high (more than 25%,  
on average). 

In conclusion, the interaction of the nutrient retention model with different DEM resolutions is 
not predictable. Accordingly, it is necessary to have a visual feedback of the pixel output distribution 
to check how nutrients move toward the landscape. 

The variability of the output, which is influenced by the DEM characteristics, is very high, thus 
an empirical test of the model is highly suggested. In this case, a field study measurement was not 
considered; nonetheless, to achieve the best input calibration, an empirical survey should be a better 
solution, with an analysis of the presence of nitrates into the streams in the catchment area. 

Even if, for the large majority of users, the DEM resolution is considered a proxy of its reliability 
(here intended as a good approximation to the real morphological condition of the territory), its 
interaction with other elements (such as the land use configuration rather than the geological 
characterization of the soil) is less known and not adequately understood during the use of the 
InVEST software. 
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4. Discussion 

4.1. Research Limitations and Questions 

New models, such as the nutrient retention of InVEST, are helping planners to identify areas 
where ES are delivered, thus obtaining real progress in the definition of planning dispositions and 
regulations aimed at increasing the natural capital of the territory [55,56]. Nonetheless, this study 
sheds light on several important limitations and new questions that arise when a new technology 
supports the decision-making process for planning purposes. Limitations are important considering 
the raising awareness of planners or scientists to ES modeling.  

The main issues are: (i) the technical limitations in the use of the model; (ii) the restriction in the 
interpretation of the outputs. With respect to the first, the model has some limitation: (i) it is less 
applicable to locations where the hydrology is determined by rainfall intensity or in areas where flash 
rains are predominant; (ii) the model does not address any chemical or biological interactions that 
may occur from the point of loading to the point of interest; and (iii) the model assumes that there is 
continuity in the hydraulic flow path [28]. 

Considering the second issue, even if the study conducted resulted in a better comprehension of 
the model mechanisms, quantitative outputs are not evaluated by a field campaign of real measures 
and the model calibration is still incomplete. Such limitations are considerably negative if the model 
is used to suggest where new environmental compensation measures are finalized to plant new 
species in buffer areas. If the amount of nitrogen is just indicative than the extension of the buffering 
system, the selection of species, and the overall biodiversity offset assessment will be complicated [57]. 

Moreover, the qualitative evaluation of nitrate concentration in open water (50 mg/L, European 
Directive n. 676 of 12 December 1991), cannot be properly addressed. Despite that, in the near future 
the model should be tested extending the analysis to the wider ideological catchment area where the 
basin authority knows the concentrations of nutrients at pre-defined points. In that case, when the 
user obtains a good preliminary distribution of data, then a better calibration should be achieved. 

Nevertheless, it was commonly decided to use the output just as a baseline threshold rather than 
an absolute value: when an alteration in land use is detected, the model ran a scenario analysis, which 
should be compared with the original threshold. The rate of change represents the better or 
worsening delivery of the specific ES.  

Finally, one of the major limitations of the nutrient retention model is the complexity of 
designing each input to meet the data type for the entire catchment area, especially when the model 
is used, as in the case of SAM4CP research, at the local scale with a fine resolution. Additionally, the 
temporal resolution of data will affect the response in the catchment to the hydrological integration 
with respect to land use changes. 

4.2. The Integration of the Nutrient Retention Model in Planning Activities 

Even if results encourage caution and an in-depth evaluation of results, the utilization of the 
nutrient retention model help planners to directly identify areas where the vegetation capacity of 
buffering the contaminants should be improved using compensation measures finalized to abate the 
nutrient loads, or planting species with a specific characteristic of nutrient drainage. By this point of 
view, it is hard to find specific rules that directly link the use of the model with a  
planning prescription.  

The significant benefit in applying nutrient retention during the decision-making phase is that 
all stakeholders involved in planning activity (technicians and politicians) are helped to understand 
where it is possible to retain more nutrients for different land use configurations. Moreover, the run-
off distribution, as well as the flow directions, are important maps because they define the 
hydrological behavior of the considered landscape under normal conditions. 

When all the land use changes are discussed, considering the nutrient retention model, it is 
possible to address how the changes in soil cover and soil properties increase or decrease the 
resistance to flow from the surface and, consequently, diminish or augment the nutrient loading in 
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the catchment area. Overall, the results encourage the public administrators and planners to 
introduce such methodologies into their traditional activities. 

Nonetheless, more research is needed because the results reported here show that caution has 
to be used when preparing input data for an InVEST model that is DEM-dependent. The DEM 
configuration, associated with land use data, should hardly influence the predictive model of nutrient 
infiltration, in particular, as the model predictive power is shown to be DEM-configuration dependent.  

5. Conclusions 

The research conducted shows how it is important to validate quantitative analysis for specific 
ES in order to overcome the gaps that separate the theoretical framework on ES and its  
practical application. 

Even if at its preliminary stage, the achieved results are encouraging and explain that planners 
should be aware of how to use techniques of analysis to integrate ES in their valuations. The new 
locations for ecological compensation zones in the three case studies were selected according to the 
nutrient retention capacity for specific areas. In particular, the slight reduction of arable land for new 
natural buffering zones and the selection of land use transformations with the lower environmental 
impact was supported by the use of InVEST outputs.  

Increasing performances of nutrient retention, implies that the future application of planning 
dispositions will guarantee a better capacity of mitigating the risk of nutrient infiltration in the soil, 
in the subsoil, and in the water.  

Although the traditional procedure for planning and its instruments of evaluation (e.g., the 
strategic environmental assessment) do not consider ES as quantitative values for measuring the 
environmental sustainability of plans and programs, the results of the study confirm that a 
quantification and evaluation of specific ES is, nowadays, possible and welcomed. 
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Appendix A 

Table A1. Table of input data associated to LULC classes. 

LULC LULC_veg Root_Dept kc Load_n Load_p eff_n eff_p 
1111 0 1 0.156122 0 0 0 0 
1113 0 1 0.224184 0 0 0 0 
1121 0 1 0.287409 0 0 0 0 
1123 0 1 0.331544 0 0 0 0 
1211 0 1 0.108611 0 0 0 0 
1213 0 1 0.1379 0 0 0 0 
1221 0 1 0.26101 0 0 0 0 
1222 0 1 0.26101 0 0 0 0 
1223 0 1 0.108611 0 0 0 0 
1230 0 1 0.108611 0 0 0 0 
1240 0 1 0.108611 0 0 0 0 
1300 0 1 0.100073 0 0 0 0 
1310 0 1 0.100073 0 0 0 0 
1321 0 1 0.209801 0 0 0 0 
1322 0 1 0.507554 0 0 0 0 
1331 0 1 0.373765 0 0 0 0 
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Table A1. Cont. 

LULC LULC_veg Root_Dept kc Load_n Load_p eff_n eff_p 
1332 0 1 0.555805 0 0 0 0 
1400 0 550 0.448294 0 0 0.6 0.6 
1410 0 550 0.522455 0 0 0.6 0.6 
1411 0 550 0.489582 0 0 0.6 0.6 
1412 0 550 0.546166 0 0 0.6 0.6 
1413 0 1 0.110436 0 0 0 0 
1421 0 1 0.537704 0 0 0 0 
1422 0 1 0.537704 0 0 0 0 
1423 0 1 0.537704 0 0 0 0 
2000 1 675 0.483 210 80 0.4 0.4 
2101 1 675 0.483 210 80 0.4 0.4 
2102 1 675 0.483 210 80 0.4 0.4 
2103 1 675 0.483 210 80 0.4 0.4 
2104 1 675 0.483 210 80 0.4 0.4 
2111 1 675 0.483 210 80 0.4 0.4 
2112 1 675 0.483 210 80 0.4 0.4 
2113 1 675 0.483 210 80 0.4 0.4 
2114 1 675 0.483 210 80 0.4 0.4 
2121 1 675 0.483 210 80 0.4 0.4 
2122 1 675 0.483 210 80 0.4 0.4 
2123 1 675 0.483 210 80 0.4 0.4 
2124 1 675 0.483 210 80 0.4 0.4 
2130 1 800 0.616 275 100 0.4 0.4 
2200 1 1500 0.7 0 0 0.6 0.6 
2210 1 1500 0.4 76 44 0.4 0.4 
2220 1 1200 0.75 85 55 0.4 0.4 
2221 1 1200 0.75 85 55 0.4 0.4 
2222 1 1200 0.75 85 55 0.4 0.4 
2223 1 1200 0.75 85 55 0.4 0.4 
2224 1 1200 0.75 85 55 0.4 0.4 
2225 1 1200 0.75 85 55 0.4 0.4 
2230 1 1400 0.6 200 150 0.4 0.4 
2240 1 1500 0.7 0 0 0.6 0.6 
2241 1 1500 0.7 0 0 0.6 0.6 
2310 1 550 0.72 0 0 0.6 0.6 
2410 1 1500 0.7 0 0 0.6 0.6 
2420 1 675 0.483 210 80 0.4 0.4 
2430 1 800 0.72 30 90 0.4 0.4 
2440 1 800 0.72 30 90 0.4 0.4 
3110 1 1500 0.7 0 0 0.8 0.8 
3111 1 1500 0.7 0 0 0.8 0.8 
3112 1 1500 0.7 0 0 0.8 0.8 
3113 1 1500 0.7 0 0 0.8 0.8 
3114 1 1500 0.7 0 0 0.8 0.8 
3115 1 1500 0.7 0 0 0.8 0.8 
3116 1 1500 0.7 0 0 0.8 0.8 
3117 1 1500 0.7 0 0 0.8 0.8 
3118 1 1500 0.7 0 0 0.8 0.8 
3119 1 1500 0.7 0 0 0.8 0.8 
3120 1 1500 0.7 0 0 0.8 0.8 
3121 1 1500 0.7 0 0 0.8 0.8 
3122 1 1500 0.7 0 0 0.8 0.8 
3123 1 1500 0.7 0 0 0.8 0.8 
3124 1 1500 0.7 0 0 0.8 0.8 
3130 1 1500 0.7 0 0 0.8 0.8 
3210 1 550 0.72 0 0 0.6 0.6 
3220 1 550 0.72 0 0 0.6 0.6 
3230 1 550 0.72 0 0 0.6 0.6 
3240 1 550 0.72 0 0 0.6 0.6 
3241 1 550 0.72 0 0 0.6 0.6 
3300 1 1 0 0 0 0.6 0.6 
3310 1 1 0 0 0 0.6 0.6 
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Table A1. Cont. 

LULC LULC_veg Root_Dept kc Load_n Load_p eff_n eff_p 
3320 1 1 0 0 0 0.6 0.6 
3330 1 1 0 0 0 0.6 0.6 
3340 1 1 0 0 0 0.6 0.6 
3350 1 1 0 0 0 0.6 0.6 
4100 1 0 0 0 0 0 0 
4110 1 0 0 0 0 0 0 
4120 1 0 0 0 0 0 0 
5110 1 0 0 0 0 0 0 
5111 1 0 0 0 0 0 0 
5112 1 0 0 0 0 0 0 
5120 1 0 0 0 0 0 0 
5121 1 0 0 0 0 0 0 
5122 1 0 0 0 0 0 0 
5123 1 0 0 0 0 0 0 

Table A2. Validation of the model changing LULC code attributes. 

DN Code Description LULC LULC Modified 
70 Continuous and dense built-up areas 1111 1111 
72 Continuous and semi-dense built-up areas 1113 1113 
74 Discontinuous built-up areas 1121 1121 
76 Sparse built-up areas 1123 1123 
78 Continuous and dense industrial, commercial and service zones 1211 1211 
80 Discontinuous industrial, commercial and service zones 1213 1213 
82 Road network 1221 1221 
83 Railway network 1222 1222 
86 Airports 1240 1240 
87 Exctration, dumps and construction sites 1300 1300 
89 Quarries and mines 1321 1321 
93 Green non agricultural artificial areas 1400 1400 
97 Cemetries 1413 1413 
99 Sport plans 1422 1422 
101 Indifferentiate agricultural land 2000 3110 
102 Indifferentiate crops 2101 3111 
103 Indifferentiate vivarium 2102 3112 
104 Indifferentiate ortyards 2103 3113 
105 Indifferentiated greenhouses 2104 3114 
106 Non irrigated crops 2111 3115 
110 Irrigated crops 2121 3116 
114 Rise 2130 3118 
115 Permanent crops 2200 3119 
116 Vines 2210 3120 
117 Indifferentiated fruits 2220 3121 
118 Hazel 2221 3122 
119 Chestnut 2222 3124 
120 Apple orchards 2223 3130 
121 Peach orchards 2224 3210 
122 Kiwi plants 2225 3220 
123 Olive groves 2230 3240 
124 Wood arboriculture 2240 3300 
125 Poplars 2241 3310 
126 Grasslands and pastures 2310 3320 
129 Agricultural land mixed with natural areas 2430 3330 
131 Broadleaf forest 3110 2000 
132 Maple-limes 3111 2101 
133 Chestnuts 3112 2102 
134 Locust trees 3113 2103 
135 Hornbeams 3114 2104 
136 Oak trees 3115 2111 
137 Downy oak 3116 2121 
139 Beeches 3118 2130 
141 Riparian vegetation 3120 2210 
142 Firs forests 3121 2220 
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Table A2. Cont. 

DN Code Description LULC LULC Modified 
143 Pine forests 3122 2221 
145 Larch forests 3124 2222 
146 Mixed broadleaf and coniferous forests 3130 2223 
147 Mountain prairies and moorlands 3210 2224 
148 Shrublands 3220 2225 
150 Transitional woodlands and shrublands 3240 2230 
152 Barelands 3300 2240 
153 Sand 3310 2241 
154 Bare rocks 3320 2310 
155 Sparse vegetation 3330 2430 
156 Burnt areas 3340 3340 
159 Sweamps 4110 4110 
160 Peatlands 4120 4120 
162 Rivers and creeks 5111 5111 
163 Canals 5112 5112 
164 Water basins 5120 5120 
165 Natural water basins 5121 5121 
166 Artificial water basins 5122 5122 
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