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Summary

The main problem of linear estimation
theory in infinite dimensional spaces is
presented and its typical difficulties
are 1llustrated.

The use of Wiener measures to represent
continuous observation equations is
carefully analysed in relation to the
physical description of measurements and
to the mathematical 1imit when the num-
ber of observations grows to infinity.
The overdetermined problem is solved by
applying the Wiener principle of
minimizing the mean square estimation
error; the solution is proved to exist
and to be unique wunder very general
conditions on the observation operators.
Examples coming from space geodesy,
potential theory and image analysis are
presented to prove the effectiveness of
the method and its applicability in
different contexts.

1. Introduction

In this paragraph we would 1like to
discuss the main differences and
difficulties encountered when we try to
generalize the usual least squares
estimation theory to infinite dimen-
sional spaces.

A classical scheme in linear estimation
theory is the following: assume the set
of measurements to be collected in a
vector Y belonging to some linear vector
space HY , also called the space of

observables, with finite dimensions nY :

the theoretical value y 1is constrained
to belong to some linear (proper)
manifold in Hy, which for instance is

described in parametric form as
{y=Ax+a; xe€ Hx}

ranges in the
space Hx , also

where the vector x
so-called parameter

finite dimensional, with nx< nY , a is a

constant vector in Hv’ A is a linear
operator (matrix) from HX into HY.

The relation
(1.1)

reflects the physics and the geometry of
the observational process, i.e. a
description of all what is known of the
physical and geometric relations between
the quantities relevant to the experi-
ment, including those which describe the
internal states of the instruments; in
(1.1) the vector a represents just a
fixed translation of the range of A, RA,

y = Ax + a

away from the origin of HY and it can be

eliminated by a coordinate shift, there-
fore from now on we suppose a = 0 and
the manifold of the admissible values
will coincide with RA. The vector of

observations Y does not belong to the
manifold of the admissible values,
because the model (1.1) is imperfect in
describing the measurement process, i.e.
we rather have an observational model

Y = Ax + v (1.2)



where the discrepancies, collected in
the vector v, are unknown ; the vector v
has an erratic behaviour so that it is
usually described in statistical terms
rather than as a deterministic quantity;
- classical hypotheses for v are that it
is a sample from a zero mean variable,

E{v} =0 (1.3)

and that 1its covariance structure is
known, in terms of the covariance matrix
of the components of v , i.e.

C =E {vw'} (1.4)
vev

The operator A is supposed to be of full
rank, i.e.

Ax =0 => x=20 (1.5)

so that there is a one to one corres-
pondence between y € ?A and x € Hx'

the estimation problem can
find y € RA

In this case
be formulated as follows:

(or equivalently find x) so that it is
reasonably close to Y.
The closeness concept requires that HY

be endowed with a norm, and this can
take the fairly general form

|yp|= (y+Py)1/2 172

= (ZyiykPik) (1.6)

(P*=P, P > 0, i.e. is positive definite)

with P any symmetric positive matrix;
(1.6) is in fact the general form of a
norm compatible with a scalar product,
i.e. with a Hilbert space structure of
Hy, which will be mostly useful in the

sequel.

What 1is now a
between Y and y ?
Without any further specification a
sensible choice seems to be the minimum
distance between Y and y € RA :

reasonable distance

y : v'P v =Y - y|2 = min (1.7)
(y = AX)
this is the 1least squares (l.s.)

criterion in the general deterministic
form, leading to the solution

(1.8)
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This solution supplies an unbiased
estimate (in fact a uniformly unbiased
estimate, i.e. E{y}l=y, V y = E{Y} € RA),

however it has the disadvantage to
depend on the metric, P.

The deterministic 1l.s. approach leaves
open a norm choice problem, which can be
"solved" only by a full exploitation of
our knowledge of the stochastic

behaviour of v, contained in va'

In fact from (1.2), (1.8), after
applying the proper covariance propaga-
tion, we know that
c-=N'A'PCc P AN (1.9)
XX 2%
Since the covariance matrix represents
in a sense the spread of the distribu-
tion of the vector x it 1is natural to
search for a C;; as small as possible,

for then the probability of finding x
close to x will increase.

It is a remarkable and peculiar result
of l.s. theory that the family (1.9)
admits an extremal point”, in fact a set
of matrices, even if they are positive
definite, need not to admit a minimum:
in our case however this happens, for
instance for -1

P=2aC
vv

(1.10)

Remark 1.1

In literature it 1is not usually

stressed very much that this minimum

is not unique, and not only for the

arbitrariness of the factor A, in fact

for instance any other metric associ-

ated with a matrix
1

P=C_ +A , (1.11)
Vv
with A symmetric, positive and such
that
AA=0,

will also cause (1.9) to achieve the
same value, C*; , and hence the
X

A matrix A is sald to be smaller than
if B - A is a positive definite matrix
.e. if B~ A =20 ; A is the minimum of
family of matrices {Aa} indexed by the

W e D e

general index o, if A belongs to {Aa}

and Aa - A =z 0 uniformly in «.
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minimum.

Remark 1.2
By minimizing C~~ we also minimize the
XX

covariance matrix of any other linear
function of x, for instance that of
y = A x , namely

Co~ = A C~ A"
yy XX

(1.12)

The above discussion is somehow the core
of least squares theory, providing the

bridge between the deterministic
approach (i.e. the idea of minimizing
Y - y|P whatever is Y not belonging to
?A) and the stochastic approach which

searching for the best

(i.e. the one

matrix C-~ )
XX

consists in
unbiased estimator
minimizing the covariance

in the class of linear functions of the
random variable Y. In fact we can
summarize this crucial point of Gauss-
Markov theory by the following

Theorem 1.1

The 1least squares estimators X,y
(for(1.8)) for the problem (1.2),
(1.3), (1.4), coincide with the best
linear unbiased estimators (BLUE) if
the metric in HY is associated with

the positive symmetric matrix

P=axcC!
vy

(1.13)

This
possible to

is also the point which 1is not
transfer to the infinite
dimensional case, so that, as we shall
show in a moment, a 1l.s. estimation
principle cannot provide any more an
optimal linear estimator; however, for-
tunately enough, it is still possible to
construct best linear unbiased estima-
tors which give answers to many problems
of great interest, in particular when we
try to model <continuous fields of
measurements. Naturally this problem is
not new in literature and it has been
studied in conjunction with underde-
termined problems by applying all the
machinery of estimation theory or, more
recently, concepts from theoretical
informatics (cfr. Dermanis 1991, Backus
1970a, 1970b, 1970c, Tarantola 1987,
Sanso’ 1990); yet a clear and rigorous

solution of the purely overdetermined
problems in infinite dimensional spaces
is unknown to the authors.

The situation we would like to analyse
is as follows: assume we have a set of
measurements ordered by the continuous
parameter t € T; t can be a time but it
could also be a point of R” or it could
range over a manifold, e.g. on a sphere;
accordingly T can be the whole real line
or part of it, R or a subset of it, the
whole sphere S or a part of it etc.
Hence the set of observations will be
(for the moment) considered as a func-
tion Y(t), t € T and we will assume it
belongs to some Hilbert space Hy.

On the other hand Y(t) will always be
split into a regular part, or theoret-
ical value y(t), and a disturbance v(t)
described in terms of stochastic
variables, i.e. a stochastic process: it
is to be stressed that, with this
specification, claiming Y € HY means

that naturally y(t) e HY and {v(t)} has
a realization in HY with probability one

(Pr=1).

The theoretical value y(t) 1is again
supposed to belong to some subspace that
we represent in parametric form as the
range of an operator A

y = Ax

x € H

X

In order to avoid complications it 1is

useful to assume that A is an operator
from HX - RA C HY which is also a

(1.14)

bijection (i.e. it is into and onto);
this means on one side that

Ax=0 = x=0 |, (1.15)

i.e. the problem is not rank deficient,
on the other side we expect

R ={Ax , xe H} (1.16)
A X

to be a closed set in Hy,i.e. a (proper)
subspace of Hy; this last requirement is

essentially a condition on the topology
of HX in relation to the topology of HY

and to the operator A, and to fulfil it
we shall assume that A is a continuous



operator from HX into Hy.

Remark 1.3
We mention that a "natural"” topology
for H is
X
hx =1 Ax (1.17)
X Y

which is indeed a norm as a
consequence of (1.15).
With this topology in fact A

isometry between Hx and ?A.

is an

As for the disturbance {v}, we suppose

that it is a stochastic process, with
Zero mean, i.e. we assume the model
Y=y +v to be unbiased,

E {vi=0 , (1.18)

and with such a regular distribution as
to admit a covariance operator, i.e.

E {<w,v>3} = <w,Cw>Y . (1.19)
It 1is possible to see that with the
definition (1.19), and the subsequent

< > < > = < > .

E {<w,v S Y} w,Cu v (1.20)
the operator C turns out to be
selfadjoint and positive definite;
furthermore if we make the reasonable

assumption that the disturbance v
affects all directions in HY (for

otherwise there would be a direction ;
along which we can make perfectly
errorless measurements) we find that C
is strictly positive definite, i.e.

Cw=0 = w=20 (1.21)
Remark 1.4
Let wus further assume

that H is
Y

chosen in su%h a way as to contain v

and that ”v"H has a finite expecta-
Y

tion; in this case C 1is not only

positive and selfadjoint, but compact

and it admits a spectral decomposition

Ce =2xe (1.22)
n nn

with {en} a complete orthonormal
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system in HY and An real positive

eigenvalues satisfying the Hilbert-
Schmidt condition
Z?\ < + oo
n
According to (1.20) we see that
putting
y = <p,e > (1.23)
n n Y
we have
o2y ) =<e ,Ce >=a , (1.24)
n n n Y n

showing that {A } are the variances of
n

v in the directions of {en}.

At this point it might seem straight-
forward to follow the same way of
reasoning as for R"” and introduce in HY

a possibly more restrictive norm

1 T
H ; u-s<u,Cuw =L (1.25)
[ Y An

and perform the minimization of HvHi =
Iy - A xni this

possible because in general v does not
belong any more to HC with Pr = 1.

however is not

It is sufficient to show a counterex-
ample, in fact one of particular import-
ance (in this respect cfr. also the dis-
cussion in Sacerdote and Sanso’, 1985):

Example 1.1
Let v be normal and assume v € HY with

Pr =1 ; then

v =<p,e > ~ N [0,x] (1.26)
n n Y n
so that
2 & 2 2
hwll® = lim Z n = lim x (1.27)
c N0 L= N3 N
n
and
2
2 an
Pr{ Ivii® < +w}= Pr {lim Z s < tw} =
1 n
= Pr{lim xs < 4o } (1.28)

On the other hand
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Pr{lim x3<+w}= 1 - Pr{lim xi = +ow}s<

=1 - Pr{xg >L} VN, L (1.29)

by fixing L and letting N» ®» , since
Pr{ xg >L}>1 ,
we derive the result that
2
Pr{ IIvHC < +0 } =0

Remark 1.5

The above example is a particular case
of a more general statement which can
be presented in the form of a negative
theorem:

Theorem 1.2

It is not possible to construct an
isotropic distribution on a Hilbert
space H, i.e. it is not possible that
at the same time

Pr {v € H} =1 (1.29)
and the variables
< v,e >H = v(e) (1.30)

be identically distributed whatever is
e (HeHH= 1), without being v = 0.

In fact, excluding the trivial case
v = 0, (1.29) implies for any o.n.
sequence {en}

Pr { Z v:< to } o= 1

Pr {limv=01}=1 ; (1.31)
n-»0

n

(1.31) means that v > 0 in Pr almost

everywhere, what in turn implies con-
vergence in probability and also con-
vergence in law (see Papoulis 1965).
Since the limit is 0, i.e. a variable
w Wwith distribution PO

Po{w = 0} 1

Po{w # 0} =0

then the distributions P of v must
n n

satisfy

limP =P R (1.32)
n>w0 n 0
the convergence being in the weak

sense for measures.
On the other hand if Pn are to be all

identical we must also have

P =P = Pr {v =0} =1 ,

n 0 n
i.e. v 2 0 with Pr = 1, what we have
excluded from the beginning.

The above statements break the similar-
ity with the finite dimensional case, so
that we are left with the best linear
estimation theory, as the only possible
approach, which, as we will show in the
next paragraphs, is indeed successful.

To this aim, in fact, the only thing we
need is to give some meaning to the
coupling between v and w € Hy, i.e. to

the symbol

viw) = <V,W>Y

in spite of the fact that v ¢ Hy,
because for instance {v(en)} are ident-

ically distributed normal variables.

This is possible indeed by using the
concepts of generalized stochastic
processes and of bounded stochastic

functionals; these are generalizations
developed from the basic concept of
Wiener integral (cfr. Hida T., 1980; Ito
R., 1984; Lamperti J., 1977), to which
we shall refer mainly in the sequel
because its construction is close to the
physical modelling of continuous fields
of measurements.

So we shall work mainly with Wiener
measures modelling essentially a type of
independent white noises v, leaving the
generalizations, which seem straight-
forward, to future works.

Some work in this direction is indeed
already present in geodetic literature
(cf.Sanso’, 1988; Keller, 1989), however
here we try to give a systematic and
general solution to the problem.

2. Measurements and Wiener measures
In this paragraph we try to show how

Wiener measures arise in a natural way
as mathematical tools describing the



limit of a discrete configuration; the
bases of the theory of Wiener integral
are also briefly reviewed.(cfr. also
Sanso’ 1988)

The observations of a "smooth" function
y(t) (t being in general a vector vari-
able ranging in a D-dimensional region
T) at sample points {ti} can be modelled

as

Yi = y(ti) t v, (i=1,2....N) (2.1)

and we shall assume v, to be independent

Ggussian noises with the same variance
L
v

E(v.} =0 , Elwy}=35 ot . (2.2)

kK Vv

represent the
(2.1) and (2.2)

Why do we want to
situation described in
by a continuous limit?
The answer is that it is possible in
many cases nowadays to obtain a large
amount of measurements, so that depend-
ing on the spectral structure of y(t),
we might be able to obtain even more
information than the resolution sought
for our function.

Accordingly it might be more meaningful
to perform approximate computations with
the continuous model, rather than
throwing away information or using it
piecewise to prevent our computations
from blowing up.
The next crucial
which conditions can we
continuous model of (2.1)?

We will come ©back later to this
question, however we can guess a first
answer: when the distance between the
points ti is so small that y(t) has no

question 1is: wunder
make a

significant variation between neighbour-
ing points, when we compare it with the
amplitude of v.

Under these circumstances the informa-
tion carried by the measurements is not
so much related precisely to the points
where they are taken but rather to the
way they accumulate in that particular
region, i.e. to their density.

That is the same reason why we describe
the matter as a continuum, for those
phenomena which have no significant
fluctuations on a microscopic scale.

The third point to be stressed is that
when the unknowns to be estimated are
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vectors in infinite-dimensional spaces
(as it is with y(t)) there is a substan-
tial difference between estimating a
functional of the unknown or the whole
vector. The following example is a very
typical illustration of this statement.

Example 2.1
Assume y(t) to be in L°(0,2m) and that
it 1is possible to measure with a
suitable instrument the Fourier

coefficients {a ,b } of y(t) expressed
n n

as
1+<'50 an
a = = y(t) cosnt dt
0
(2.3)
21
b = L Jy(t) sinnt dt
n T
0

The measured quantities are by

hypothesis
a =a +v ,
on n an
b =b +v (2.4)
on n bn
with v , v all normal independent
an bn

. . . 2
noises with the same variance Gv.

Hence,
timate with a ,b
on on

although we are able to es-
a complete set of

functionals of y(t), we will never be
able to reconstruct an unbiased estim-
ate of y(t) because the formal series

Z (a cosnt + b sinnt)
n n

would have L2 error norm
T2+ v?)
an bn
to which the reasoning of Example 1.1
applies.

After these preparatory discussions we
go back to (2.1) and try to see how we
can construct a meaningful 1limit, for
N > w, of the scheme (2.1),(2.2)

To this aim we want to rewrite (2.1) as
a relation between discrete measures;
first we split the region T where the
measurements are taken into non-overlap-
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ping cells {Tk} such that one and only

one tk falls in Tk; we also put

p = meas {Tk} (Lebesgue meas.)

8 = diam {T }
k k

(2.5)

We must note that when N changes also
the partition {Tk} has to change, so

sometimes we might write T: instead of

T and uz instead of pk etc, in order

k
to make explicit the dependence on N.

In order to perform a limit for N - » we
must make a choice on the way the points
{ti} are chosen we assume that for

N - » we have for any measurable set A,

m Nﬁ = I p(t) dt R (2.6)

A
where NA is the number of points {ti}

the function p(t), which
represents a relative

falling in A;
is positive on T,

density of measurements and clearly
satisfies the relation | p(t) dt = 1.

T
Thinking of Bernoulli’s theorem, it is

clear that (2.6) can be realized for
instance in terms of independent sam-
plings from the distribution p(t), the
limit in this case being understood in
a stochastic sense.

If we rewrite (2.6), for a sufficiently
small A, in the approximate form

N
A
N p(tA) , (tAe A)
we see that in the region A the measure
of Ti will be about

L S
M, N o(t N
A i

1

(2.7)

Now we construct a discrete measure Moy

supported by the points {ti} such that

“YN(ti) = Yi“i ; (2.8)

in this way we associate with any
Lebesgue measurable set A the measure

By (A) =tiZA Y ou (2.9)

is our prototype of stochastic

measure, associated with a field of
measurements; it is in fact a collection
of stochastic variables, indexed by the
measurable sets {A}, which, owing to
(2.1), can be written in the form

This Hoy

Moy = uyN O (2.10)

with
uyN(A) = ti;A y(ti)ui (2.11)
uwN(A) = ; A VM (2.12)

i

Due to our hypotheses (2.2) it is clear
that

E {uYN(A)} = uyN(A) YV A (2.13)

while, for every measurable A,
EA{u (A)} =0 (2.14)

wN

2, _ 2 | 2 .

E {“wN(A) b= v Z By (2.15)
t. €A

uwN is our prototype of a discrete

Wiener measure.

Remark 2.1

In writing the observation equations
in the form (2.10) we have introduced
an element of arbitrariness related to
the choice of the partition {Ti} and

this might seem dangerous in the
construction of a sound theory; on the
other hand it is clear that what we
want to achieve is a 1limit of our
scheme such that it is representative
of our discrete reality (i.e. close to
it in a suitable sense), so it will be
enough to show that the limit model we
arrive at, by letting

d = nmax 619 0o,
is indeed independent on the way the
partition {Ti} is chosen.

We will not prove this here, but, just
to fix our ideas, since it will be
useful to maintain the oscillation of



y(t)
sible,

tition such that ziai = min

over each Ti as small as pos-
we can think of {Ti} as a par-
or other
similar conditions; for instance {Ti}
could very well be a triangulation of
minimal perimeter.
Remark 2.2
Since we want to take the limit of Moy

for N » » , we must be prepared to
define in which sense this 1limit has
to be understood.

As for uyN there are no difficulties:

for each A, uyN(A) is a sequence of

constants, so its limit is the usual
limit in R and it is simply
(cfr.(2.11))

%53 uyN(A) = JA y(t)dt (2.16)

since y(t) has been assumed for the
moment to be smooth, e.g. continuous,
(2.16) is in fact just the definition
of the integral in the Peano sense.

For uwN(A) things are slightly more

complicated; this is a sequence of
stochastic variables with =zero mean
and finite variance and one way of
defining their 1limit is in mean square
sense, i.e. we want to say that

uw(A) 1im pr(A) (2.17)

in the sense that

E{lp_(A) - HHN<A)12} 50 (2.18)

To make this p0551ble we must first be
sure that E{u (A) } be bounded, or

even better that it has a reasonable
limit for every A.
For instance if we had taken 0i= C

(constant) then we would immediately
have (e = max i )
1
E{u? (A)}s Ce) p = Cen(A)> 0; (2.19)
wN i ’ ’

although surprising it
reasonable that,
higher and
constant

is perfectly
if we measure with

higher resolution and
variance a continuous
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function, we tend to have an infinite
number of observations even on smaller
and smaller intervals so that by
applying the 1/{N~ law to the mean we
can achieve a perfect knowledge of the
point value of y(t) as the limit of a
sequence of mean values.

This tells us that the variances of {v?}

have to be variable with N if we want to
receive a limit where the variability of
the noise, associated with a set A of
positive measure is positive too.

It is easy to recognize that a good
choice 1is the following: let {voi,
i=1,2..} be an infinite sequence sampled
1ndependently from the same distribution
N [0, °, ’] and let us stipulate that

= {N v :

oi

(2.20)

in this way we have

(O‘N)2 = No° (0 = constant)
v 0 0

and from (2.15) and (2.7) we find

E(u? (M)} =0 I

t € A
1

(Np Jp, =
1 1

M

z o° Y s GZI ar_ (2.21)
0 L€ A p(g ) o] p(t)

Before refining the mathematics of this
reasoning we must answer an important
question: isn’t it too artificial, from
a physical point of view, to let the
variance of noise to tend to infinity so
as to obtain a finite positive limit?
In our opinion the answer is no. In fact
assume for instance p to be constant on
A so that 5uA= N,/N ; then the points t

are uniformly distributed in A and we
can take Ti to be of constant measure

M= uA/NA, so that

"
:— (2.22)

2 _ .2
E{uwN(A)} =0
Now we can easily understand how the
limit can be taken in such a way that
(2.22) remains constant: it 1is enough
that p remains constant (e.g. we double
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NA every time we double N} and on the
same time 03/N remains constant. This

corresponds essentially to the idea that
we increase fictitiously the number of
points in A, NA, but on the same time we

increase the variance so that the total

information contained in A (or, 1if you
like, its random variability) is kept
constant.

In order to make this approach accept-

able we need therefore two results:

first to prove that indeed pu N tends
w

stochastically to a random measure, that
we will call Wiener measure, second to
give some condition wunder which the
continuous limit can be considered as a
good model for the discrete reality.

So we shall first sketch the proof of
the following theorem

Theorem 2.1

The sequence pr(A) is stochastically

convergent in mean square sense for

any measurable set A and we can define

its limit u (A) as the Wiener measure
w

of A.

We need to prove convergency only for
the whole T because the set function

2 . .
E{|uwN+p(A) uwN(A)| } is indeed
increasing with A.
We have
uwN*D(T)— “wu(T) =
N . Iy
=Y v dN+p u.p(l—————~ig—) +
11 oi i ﬁqIB ”.+p
1
N+p N+
P _
+ ZivoiJN+p pooo= 4M1 + M2 (2.23)
N+1
Let us consider the first term. First

we note that, recalling (2.7),
IN u?

1 -
Ip p'*P
1

IR

R

—
!

1A
= lel

; (2.24)

then we have

N 2
EMC) s o2 T (Nep) (u "M% F ) =

(2.25)

N+p M,

I ]
11 p(ti)

according to (2.21), we see that

and since is convergent

E{Mf}—>0f0rN+oo.

As for the second term we have

N+p N+p
¥ M.
i ,

No p(t)
1

2, . 2
E{Mz} g o

which is indeed convergent to zero.
Therefore we have

. 2 —
Lim E{|uwN+p(T)-uwN(T)| } =0 (2.26)

and the same is true for any smaller
measurable A.

Consequently we can define

uw(A)=%£g uwN(A) (2.27)
From (2.21) and (2.26) we can derive the

main properties of the Wiener measures,
namely for any measurable A, B

E{uw(A)} =0 (2.28)

E{u (A)p_(B)} = 02.[ dt (2.29)

0 AnBp(t)

Remark 2.3

We have not yet explicitly mentioned a
hypothesis which proves to be neces-
sary in the above computations, i.e.



that 1/p(t) be an integrable function.
Even more, we shall assume that p is
bounded from above and below over all
T, Pz p(t) = Py meaning that the

density of measurements can vary
significantly in T ©but remaining
commensurable from point to point.

Now that the field of Wiener measures
has been suitably defined, we can

represent the observation equations
(2.10) in the limit form
uy(A)=u (A) + u (A)
Y " (2.30)
uy(A)=I y(t) dt
or in their equivalent infinitesimal
formulation
uy(dt) = y(t) dt + uw(dt) (2.31)

Now we try to define integrals of
functions over the measure py(dt).

To this aim we must define J flt)du (t),
w
T
i.e. the so-called Wiener integral.
Please note that from now on we will use
as equivalent notations

duw(t) = uw[(t,t+dt)]= uw(dt)
First let wus assume that f 1is a

plecewise constant function, over a
partition {Ti} of T,

£(t) = Z £ox, (t) (2.32)
X (t) = { 1 teT
! 0

t¢T,
1
then we put by definition

I(f) = f £(t)dp (t) = Z fpu (T) (2.33)
T i

It is easy to recognize that

E{I(f)} =

E{I (f)}—z j p(t)=

(2.34)
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I £2(t) (t) (2.35)

These two relations show that I is in

fact an isometry Dbetween piecewise
constant functions with norm
i .
£ J £2(t) (t) (2.36)

and Li i.e. the space of random vari-

ables with finite variance which are
linear combinations of {u"(A)}. Let us

note that the f%{st linear space is in
fact dense in L"(T) because (2.36) is
equivalent to the simple L™ norm as a

consequence of the relation P,z p(t)z p
and moreover any L? function can be
approximated by a piecewise constant

function.

It follows that I(f) can be extended by
continuity to any function f € L"(T) so
that

1(£) = J £(t)du_(t) (2.37)

becomes an Li variable satisfying the

two malin properties

E{I(f)} =
(2.38)

E{I(£)I(g)} = f £(t)g(t)-dt (t)

for any f, g € L3(T).

With this new definition we can also
nicely represent in a "weak form" the
observation equation (2.31), namely we
can write

J £(t)dp, (t) = I £(t)y(t)dt +
T T

+ J Flt)de (t) V£ el®(T)  (2.39)
T

This form will be directly used in the
next paragraph; in any way we can see
now what 1is the "natural" degree of
smoothness we must impose on y(t), in
fact in order that (2.39) be meaningful
and finite for eyery f € L°(T) it is
enough that y € L?(T) too.
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The last point we try to discuss shortly
is what are the conditions under which
it is reasonable to use the continuous
limit.

Essentially we must compare the observa-
tion equations in the discrete form

Yi“1= y(ti)uiwiui , (i=1,2..N) (2.40)
and their continuous counterpart
u, (1)) = J'Ty(t)dt fu(T) (2.41)

i
and verify whether they are close to
each other.
In particular for the noise part we have
Jjust to verify that the two variances
are equal, for naturally VoK and uw(Ti)

cannot be stochastically close since
u"(Tx) is constructed by adding to v, an

infinite number of Iindependent noises
suitably scaled. dt .12

So we must compare ¢O(J —) with

Tip

VN oMy which are the r.m.s. respect-
ively of ”w(Tx) and U it is easy to
realize that assuming p = p,= constant
over Tx’ due to the relation N P M= 1,

we have exactly

2
_ %o fat __H
2 2 2
N 1o, f N e,

This means that if p is a smooth, almost
constant function over the cells Ti, we

expect the two variances to be very
close; in this sense note should be
taken that where p(t) has sudden
variations it 1is preferable to use a
stepwise discontinuous p(t) rather than
imposing a continuous interpolation with
a very steep p(t).

As for the deterministic part the
relevant quantity to be evaluated is

‘y(ti)ul—J;y(t)dt‘= Ir[y(t)-y(ti)]dt :
! ' (2.42)

the continuous limit will be acceptable
if for every i this quantity is much

smaller than the noise level, namely

oM.
v

This statement can be expressed by the
global relation

[y - yiepiae
E: ! << N
i oM

i

(2.43)

In order to elaborate a little on (2.43)
let us assume y to be twice differen-
tiable and that the point ti is the

barycenter of T‘; then we have

j [y(t) - y(t )ldt =
T
i
o 1 - *om - =
-1 L(t £y (t) (t-t )dt

i

(2.44)

Tr y (ti)Ci

N} =

where Ci is a form-factor matrix of the

order of 6D+2, with D the dimension of

the vector t. If Tl is symmetric around
ti then C1 will be simply proportional

to the identity matrix; for instance if
Tl is a cube of side L1 around tl we

have

De2; _ SO

—_ I . (2.45)
12 "1

.
C, =40 (Li)
Using (2.45) in (2.44) and (2.43) we get

N

Z | Tr y"(t ) |u,
<< 1 ;

1! 24 o N

(2.46)

finally exploiting (2.7) we arrive at
the relation

1
. 1-2/D _
_ Z |Tr y" (£ ) upt )7 =
24 o N i
v
1 1-2/D
g ||Tr y" (£)]p(t) dt << 1 .
2/D
24 o N
v T

(2.47)

The inequality (2.47) is simple enough



to be used in practice as we show in the
following simple example.

Example 2.2

Assume t to be a time, so that D = 1,
the set T to be the interval [0,2r]
and take as measured function

y(t) = A sin nt ;

in this case y" is Jjust a scalar

and indeed

|Tr y"| = A nzlsin nt| ;

let us further assume that the density
of measurements P is constant, so
that p = (2m) ™.

Taking into account that

2n
J |sin nt|dt = 4,
0
by applying (2.47) we find
! 5 (2r) 4 n®A « 1 ,
24c N
v
i.e. essentially
2 A
2« (2.48)
N2

which seems like a type of generalized
Nyquist relation.

It has to be stressed that in the
linear relation between frequency, n,
and number of points, N, now the
signal to noise ratio is essential.

3. Optimal linear estimation

We start this paragraph by proving the
results, recalled in the introduction,
in a non-standard way which 1is par-
ticularly suited to treat observation
equations in weak (or dual) form, like
(2.39) (cfr. also Dermanis A., 1991).

So we go back to the finite dimensional
model,

Y=y +v=AX+v (3.1)

(E{v} = 0, E{wv*} = C)

and we write it in a weak form by taking
the scalar product (here we use the
simple euclidean topology) with any
vector 7 in Hy.

We get
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Y = 2'Ax + 'V (3.2)
by using the rules of transposition this
writes

{"+Y =€% + 'y (3.3)

€= A"

so that we read directly that the linear
functional n+Y of the observations Y is
an unbiased estimator of the linear
functional of x, £'x, because E{n'v}=0
whatever is y.

Now we consider two questions: first, is
it tru§ that we can always find w such
that A n=¢ for a given § ? The answer
is yes because the system A+n=€ has more
unknowns than equations and we assumed
the matrix A to be of full rank. Th}s
means that if we want to estimate & X
from the observations we can always find
n such that n+Y is an unbiased estimator
of §+x.

Secondiguestion: are there many m such
that A n=¢ 7 Indeed our hYPOth§§iF

above implies that there are («) 7 *
solutions of that system. This urges a
rational choice among them; so we can
look at the variance of those estima-
tors, which can be computed directly
from (3.3)
o®(n*Y) = n*cn . (3.4)
Naturally we prefer an estimator with
smaller variance so m can be chosen in
such a way as to satisfy the minimum
property
+ .
foren = min 2.5
An=E§¢E
with the customary Lagrange multiplier
approach we find (A being the multi-

plier)
{C" =M (3.6)
A'n =€
leading to the normal equation
(A'C'aa = ¢ (3.7)
and to the solution
n = ClaA'CIA) e (3.8)

So the sought estimator is
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'Y = £ a'c ) ANy . (3.9)

In the finite dimensional case we may
conclude that

n+Y = §+§

so that notlpnly we have estimated the
functional £ x but we have on the same
time an estimate for the whole vector x,

namely
x = (A'c'a) 'atcly (3.10)

which indeed coincides with (1.8) when
the choice (1.10) is made.

The above reasoning can be repeated
almost identically for the infinite
dimensional case, except the last

conclusion, because as we have observed
in the Example 2.1 even if we are able
to estimate all linear functionals of
the unknown x, it is not true that
there is a certain x € Hx giving rise to

all these functionals.

So let us first establish precisely the
observational model ; we assume that we
have several domains Di (i=1,2...n),

some of which may also coincide; on each
D1 a field of continuous measurements is

given, dul(tl), so that if two D1 coin-

cide we are representing two fields
measured on the same domain; the
observational equations in infinitesimal
form are

duYi = yz(tx)dtl + duwi (3.11)
with
yi(ti) =Ax 1=1,2...n (3.12)
and with noises (Wiener measures)
characterized by
E{d“ux} =0 (3.13)
2
Toi
E{d“wi (tl )dﬂ.wj (tj))=61j Z(Ti)dti H
(3.14)

the equations (3.11) to (3.14) can be
written in weak fornm, %Qtroducing n
arbitrary functions fleL (Di) (i=1,2

..n),

I
1
C——

o
L]
_:<
Q.
-+
+
-~
——
o
o]
[o))
=
=
~
w
—
n

2

[
[0} 1 2
=3 —— 7 (t )dt ;
xJJD‘pi(ti) 11 i

(3.16)

introducing the vectors

dﬁv = [dHYi i dﬂu= dgw1] !

1>
[

51 » X F yigtl) ?

the Hilbert space H = % LZ(Dl) with the

scalar product
<f,y>, = Z1I0if1(t1)yi(tt)dt1 ,

the matrix operator in HY

2 0 . 2"

N . L

f= e = —
cf p(tl) £ ) £

0]

and the stochastic linear functional

L, (dy,) = ) f £du

L£(dgw)

]
o~
—
.
[}
=

z

the precise definition of which has been
the object of section 2, we can finally
represent our observational model
through the equations



L{(dgv) =<f,y>, ¢+ Li(dgw) (3.17)
y = AXx (3.18)
E {L (dg)} =0 (3.19)
2 -_—
E {LE(dE") b= <00 (3.20)

Following the suggestion of Remark 1.3,
we stipulate that x ranges in a Hilbert
space with norm

ixn2 = ua xn® (3.21)
X - Y

this implies that the manifold of the

admissible values for y, 1i.e. RA, is

closed in HY and that there is an iso-
metric relation between RA and DA; in
particular we must require that

Ax =0 x=0 (3.22)

i.e. that A is a full rank operator, for
otherwise (3.21) would not be a norm.

Now it is enough to recall the defini-
tion of the adjoint operator A‘, namely

<ATE,x> = <f,Ax> (3.23)
- ="x ==y
to see that (3.17) can be written as

+
L (dg,) = <A"f0, + L (de)  (3.20)

so that Lr(dgy) is indeed an unbiased

with g = A'f ; the

estimator of <g,x>x

variance of this estimator is given by
(3.20).
Our next step will be to search for the

f e HY that minimizes (3.20) under the

condition
+

Af=g , (3.25)

for a given g € Hx . Before undertaking

this step however we must understand
properly the nature of equation (3.25)
and answer the two questions: is there a
solution of (3.25) for any g and, in
case, how many solutions are there?

To give an answer we recall that A is an
isometry between Hx and RA and thus,

being a linear closed manifold in HY
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containing O, it is a Hilbert space
itself, with the same norm as Hy; there-

fore A', restricted to R,, is indeed the

inverse of A, in fact V xe Hx

+
<x,x>x = <Ax,_A_x>Y = <A Ax,x>

X

implying that

+

ATA =1

(in Hx) (3.26)

Then the restriction of A to RA is as a
matter of fact the isometry A+: RAa Hx
: Hxé RA.

It follows that the equation (3.25) has
always at least the solution

f=Ag

inverse of the isometry A

(3.27)

Lgt us consider now the action of A+ on
RA (the orthogonal complement of ?A)-

1
If n € RA , then V £ € Hx
+
< = =
A& =<nA> =0

implying that

Therefore the equation (3.25), written
in the form

1
A+£H + A+£ =g,
where i“ is the projection of f on ﬂA
L 1
while f 1is its projection on RA, has

the general solution

f" =Ag
L " (3.28)
f whatever in RA

4
Since RA is a closed subspace of Hy.

(3.28) represents a
manifold in Hy.

closed linear

Our target is now to find the solution
of the variational problem

<f,Cf>. = min
- Y (3.29)
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Let us first observe that if we assume,
as we have done in section 2, that the
density functions P, satisfy

< p = = .
© p01< Py = Py (pOi'pli const. )
then
a®<f,f>, = <f,Cf> = b<f, >, (3.30)
with
2 2
2 0i 2 o1
a“= Inf — b = Sup ™ (3.31)

11 - 0i
Consequently <£,C§>Y can be viewed as an
equivalent norm in H, so that (3.29)

means that we are looking for the
element of minimum C-norm in the closed
manifold described by (3.28); this ele-
ment is known to exist and to be unique.
So our problem is Jjust to find the
formal solution of (3.29).

By applying a standard technique we
introduce a Lagrange multiplier A € Hx

and we form the new target functional

=1 - -
$(£) = 5 <£,CE> - <A'E, > =

= 1 <E,CE>, - <A

5 £,A0 (3.32)

setting to zero the first variation of
(3.32) we receive

cf = M,
i.e.
£=C"m
which substituted in the second of
(3.29) gives
A'CT'Ar = ¢

The normal operator A'C™'A is indeed
bounded, it 1is selfadjoint and even
strictly positive definite in view of
the relation (recall (3.30))

QAT = CTT e

=L v, = Lo
2 - - Y b2 X

so its inverse exists and is bounded

(3.33)

oy

too.
Therefore we obtain the solution

A= (a'cTa) g
£ = C—lé(é«fc-lé)—lg (3.34)
this means that the stochastic

functional Lf(dgy) with f given by

(3.34) is the minimum variance unbiased
estimator of <g,x>x.

To be complete let us also compute the
variance of Lf(dEY); from (3.20) we have

. i .
o {Lg(dgv)} =<f, C £>Y

<'al’c g, c cThAcTIA T, =

= <@, (A'CW g (3.35)

Remark 3.1

The topology we have chosen for Hx is

not unique but just the simplest; any
other topology with respect to which A
is a continuous injection Hx - Hy, so

that RA is a closed subspace of Hy,

would do with the same solution
fgrmulae. Naturally the definition of
A depends on the definition of the
scalar product in Hx in such a way

that in the end the estimator L (d )
is always the same. Note also that in
case the functional of x we want to

estimate is given directly, F(x), then
its representer g in Hx is as well

dependent on the definition of the
scalar product in Hx.

Remark 3.2

We could have multiplied at the

beginning the observation equation
/pi(ti)
(3.11) by — thus obtaining
0i
(3.36)

d“zl= zi(tl)dti+ dp.v1
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E{d“vxd“vj} = SUdti
For this new model we have
C=1 (in Hv)

and, recalling (3.26),

A'CTTA=ATA =T (in H)
so that the sought estimator of
<g,x>H is simply
X
Ls(dgz) = E J'Diflduz1
with

f=Ag (3.37)

Indeed with this modification we have
changed also A as well as A+ and g
through the change of scalar product
in Hx’ which depends on the definition

of A.
All this is analogous to the reduction
of the observation equations to the
same weight in the finite-dimensional
case.

Remark 3.3

We want to prove that it is not
possible to write the estimator
Lf(dgy) in the form <g,x>x , Wwith x a

process with realization in Hx and

with bounded squared norm.

In fact if
L{(dgy) = <g,x>x , (3.38)
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since

E(L{(dgy)} = <g, %>, ,
we must have
x=x+§ ,<g& = Ls(dgw) ; (3.39)

then

E{<g, &>} = <g,C (3.40)

>
ge8x
by definition of covariance operator.

Comparing (3.40) with (3.35) we see
that it should be

+.-1,,.-1
C = (ACA . 3.41)
- (A'CT'A) (

On the other hand, if E{uini}<+w by
hypothesis, the same must be true for
é = i -X , since x € Hx'

So if {en} is a complete orthonormal

system in Hx we should have

+ >'E{uéu§} = E{Zn<é,en>§} =

+00
Z“ <en,C€€en>Hx = TrC€€ s (3.42)

therefore HéH: is bounded 1in the

average iff ng is a finite trace

operator.
But this hypothesis contradicts (3.41)
since V g € Hx’

<g,A'C'Ag> = <Ag,CTAg>, =
< L <Ag,Ag> = e <g,g>
2 =Ty 2 T’
a a

with the positive constant a defined
in (3.30), so that

+ -1 -1
<e ,(ACA) 'e> =
-n - - —n X
2 2
=z a <e ,e> = a >0
n n X

and indeed
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Tr (A'CT'A)! = o

This does not mean that we could not
find a larger space Hx > Hx such that

X € ﬁx with probability one and has

even a bounded mean square norm there:
in this case we might be able to
write, in a generalized sense,

Lf(dEY) = <g,x>,
with % e # > H and g € ﬁ* Cc H_.
X X X X

We observe now that the estimator
Lf(dgy), with f given by (3.34) is

invariant under the multiplication of C
by an arbitrary constant. This means
that we can compute the estimator even
if the operator C has the form

2

C=0¢_Q (3.43)

(=}

with Q known and ¢~ unknown. In practice

o N

this means that we know C apart from a
proportionality factor.

We are left therefore with the problem
of estimating Ty which is also clas-

sical of least squares theory.

On the other hand it is enough to
rewrite the observation equations in the
form

+
LS(dEY) = <A {.x>x + L{(dg")

to realize that if f is orthogonal to
R,, so that A'f = 0, we have directly

L£(dgy) = L{(dgw) , (3.44)
Wf=0
whence
2
L{(dgy) ~ N [ 0, oo<£,Q£>Y] (3.45)

Assume then to be able to construct a
sequence {f } of elements of HY such
-—n

that

A'f =0

n

By applying the Schmidt orthonormaliza-
tion we can derive another sequence {En}

such that .
A'h, =0

holds as well, but at the same time
<h ,Gh > =& (3.46)
-n -—-m Y

nm
It follows that not only

Lhn(dgv) = Lﬁn(dgw)

. . 2 .
is a sequence of N [0,601 variables, as

implied by (3.45),
independent as

but they are also

-— 2 3
E {Lhn(dEY)Lhm(dEY)} = ¢0<En,Q§m>v 0

Vn#n

Therefore the following distributional
result holds
N

2 _ 22
Z“ Lbn(dgy)- = 2,9, (3.47)
This already proves that
~2 1
ol = (3.48)

2
=N ;n Lgn(dgv)

. . 2
is an unbiased estimator of Ob; moreover

since
2

X
lim N

N> N =1

holds both in probability and in mean
square sense, we see that if the
sequence {Qn} is infinite we can achieve

the exact (with Pr = 1) limit

"N
2 _ . 1 2
ol = lim & E“ L, (de)" . (3.49)
Remark 3.4
The same problem, or even a more

complex one, can be solved by another
limit property; in fact we can prove
that given a field of measurements
qu(t) (t € T), such that

duy(t) = y(t)dt + duw(t)

with y € L?(T) and



dt

2, _ 2
E{duw} =0 O

we can estimate os , with Pr = 1, so

that inzthe more complex model (3.11)
every ¢01 can be estimated from the

corresponding field d“yf

In fact let us take a partition of T
in non-overlapping sets (Ti}; if we

form

L (1) = T([, veorar)® +
i i b

+2 Z(JT y(t)dt)p (T) + Yu (T )°
i i 1
we find that

E { z uY(Ti)z} =

i
_ 2 2 dt
- Z(JT y(t)dt)™ % z jT p(t)
i i i i
Therefore, since

E(fTiy(t)dt)z = ; Iriy(t)zdt.Sup K,

(p.l = Lebesgue measure of Ti)
we have, with & = S¥p diam (T1),
2 2 dt
1in E{} g (T )%} = o J 2t (3.50)
550 2 Y i 0 Tp(t)

Furthermore it is not difficult to see
that

lim 02{ ; ( ITiy(t)dt )#"(Ti)} =0

8-0
lim @2{ z u"(T’)2}= 0
3-0 1

Consequently we find that in a mean
square sense

o2 = lim ( S Z (T2

R TETET (3.51)
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We conclude this paragraph by mentioning
that the above theory can be extended to
more general cases; for instance let us
assume that the disturbances {Vx}’

instead of being white noises, admit a
smooth covariance function

BiJCl(t,T) =E {Vl(t)Vj(T)}. (3.52)
In this «case the weak observation
equations become

z ID £,(L )Y (t)dt =
i i
) ID £,(t )y, (t)dt +
1 i
(3.53)

) JD £t v (t)dt
i i
which we can write symbolically as

(£,Y) = (f,y) + (£,») (3.54)

The variance of the disturbing term is
then
E {(£,w)®) =(£,c0)=§ (£,,C £ 2
== == - 17710

(fi’clfi)Lzﬂn) =

= JDiJDifi(t)ci(t’T)fi(t)dtdt R

showing that in general we must have f €
Hc with norm

IgN2 = (£,cf)
Consequently in order that the term

(i,x) remain bounded y has to belong to
HC = HC—1 with norm

2 -
Iyi®-1 = (y,c7'y)

The following inclusions are then
obvious
L 2
H,=H-1 c) L (D,) <H_,

the embeddings
tinuous.

Now introducing the transpose operator
A such that

(£,A%) = <A'f,%>,

being completely con-
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with
xIi = lIAxHI -1,
X - C

we can proceed as above.
It is then easy to show that

* -1
AcTa = 1,
in analogy to (3.26) and that the

minimum variance unbiased estimator of
<g,x> 1is (f,Y) with

f=Clag (3.55)
This is indeed not a formal solution
since

12 = (C7'Ag,cC Ag) =
= (C"'Ag,Ag) = Hégﬂi-l = Hgﬂi

which is bounded since g € Hx.

We will not dwell more on this
generalization, however, since with the
main theory already developed here we
can solve many interesting problems as
we will show in the next paragraph.

4. Examples

In this paragraph we try to show how the
theory presented in section 3 can be
applied to some examples taken from
various branches of geodesy, geophysics
and photogrammetry.

The first example in particular is used
for the purpose of training the reader
and of checking accurately all the
various aspects formerly discussed.

Example 4.1

This example is taken from satellite
geodesy where we have instruments
(PRARE) capable of measuring at the same
time range and range rate from a point
on the earth’s surface to a satellite;
similar is the situation with GPS where
we can measure phase and phase rate (by
the Doppler effect) of the signal trans-
mitted from satellite to the ground. The
density of measurements in time is in
these cases so high that we can
represent them as fields of continuous
measurements. We assume that the two

densities pl(t), pz(t) are constant and
are the same over a time interval T.

Moreover before applying a much more
complicated data reduction involving
sophisticated geodetic models one might
be interested in using the inner redund-
ancy contained in the two functions
{x(t),x(t)}, for instance to check that
the instrument is regularly operating.

So let us start by writing the observa-
tion equations, in differential form,

dp =y (t)dt+dp

, (4.1)
du°2=y2(t)dt+duw2
Y, x(t)
¥= . =éx(t)
Y, x(t) (4.2)
|1 _d
s3] o-g

the stochastic properties of d“w1’ d“uz

are that these are independent Wiener
measures with

2 2
E{du” } = o dt
;1 ; (4.3)
E{duwz} = ozdt
Note should be taken that we have

assumed

P, = P, = const. = 1/T ,

so that comparing with (3.14), we find

2= o2 T , ol =2 T , (4.4)
1 o1 2 02

showing that o, and o, have measure

units different from ¢ , ¢ _, which in
ol 02

turn have the same dimensions as the
measurements (in our case distance and
velocity).

After this remark we put for the sake of
simplicity T = 1.

Let us note that here we must have:

1
nyn? = Jolyf(t) +y2(t)ldt  (4.5)

1
Ixh3= NAxIZ= f [x2(t) + x2(t)ldt (4.6)
X - ¥ o

so that Hx is nothing but the Sobolev

space of square integrable functions
with their first derivative.



We can observe that, from the physical
point of view, (4.5), (4.6) are very odd
egpregsions since we add quantities like

Yoo YZ or x , X, which have different

physical dimensions; yet in the end
everything will return to compatible
formulae due to the presence of the
matrix C .

The first step we need now to make is to
find the operator é+; going back to the

definition we have that if

+

A'f=u (L=

) (4.7)

then V x € Hx

u,x> = <f,Ax> s (4.8)
X ==y

i.e. the formula
1 . . 1 .
J {ux + ux}dt = I {flx + fzx}dt (4.9)
0 0

has to hold as an identity in x.
We can rearrange (4.9) in the form

1 1
J (u-f)xdts= -I (u - fz)k dt (4.10)
0 (o]

so recognizing from the definition of
generalized derivative that, at least in
a distribution sense,

=4
(u - f1) = 3t (u fz)
If we substitute back (4.11) in the
first member of (4.10) and we integrate
by parts we find that the identity is
fully realized iff

(4.11)

u-f| =0 u-f ] =0 .(4.12)
2't=1 2't=0

We come to the conclusion that u =é+§ if

d .
{ ax (u - fz) = (u - f1)

u(0) = f2(0) , u(1) = fz(l)

(4.13)

One remark is inzfrder here. Rigorously
speaking if f e L (01) the values fz(O)'

f2(1) are not in general defined so that
the boundary condition in (4.13) can

hardly be meaningful: however one can
always think of approximating f2 with a

223

sequence of functions such that fz too

belongs to L%, so that the pointwise
values of f2 are also defined, and, once

the solution u of the problem (4.13) is
found, one realizes that it can be
extended by continuity to any f2 € L".

We will do exactly that applying (4.13)
to define our normal equation. In fact
our next step is to write and solve the
normal equation

(A'CT'M = g (4.14)

Let us recall that g is that element of
HX which represents the functional F(x)

we want to estimate, i.e.

F(x) = g, x> (4.15)

We observe that, since means

X € Lz, X € Lz, the evaluation func-
tional, namely

F(x) = x(%)

€ H
X X

(t fixed)

is indeed a bounded functional in Hx.

In fact it is possible to show that in
this case the representer of F is

- Tyt
1 le-t| , Ch(1 - tle

G(tpt) = = 2 . 2 Sh 1 +
ch e
e2re (4.16)
2 Sh1
for this 1is essentially the 2Green’s
d
function of the operator (1 - —) sat-

dt
isfying the boundary conditions

G1,8) =0 , GO,©) =0 , (4.17)

so that taking
1 . _
G,x>, = J (G(t, DHx(t) + G(t,DIx(t)}dt
o]

we obtain after an integration by parts

1
<G, x>, = I {G - G} xdt = x(t)
0

Now in order to write and solve (4.14)
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we have just to put

(4.18)

in (4.13) and write g instead of u, thus
arriving at the problem

(

d . 25 _ 2
It (g - 1/, A )= (g /0] A)
{ g0) - 1762 A(0)= 0 (4.19)
. 2
L g(1) - 170 A(1)=0
It is simpler to transform (4.19),
posing
v =g - 1/, 2
so that, calling
2 _ 2, 2
af = 02/ o] ,
we have
7 - a27 = (1 -~ az)g
(4.20)

y(0) =0 , (1) =1

The Green’s function of this problem is
analogous to (4.16), and we call it

Q&let] _ ChG - D)e**

i =L

eaCh‘E e-at

e Sha (4.21)

with the help of this function we can
write the solution of (4.20) as

1
y(t)=(1 - a"‘)f G(t,T,a)g(T)dT , (4.22)
0

which finally allows to compute

A(t) = 0‘2 [g(t) - y(t)] (4.23)

From A we can compute f through (4.18)
(cf. also (3.34)) and also the estimator

1

LS(dEY) = [o f1duo1+ f2d“o2 =

1

_ 1 1

= J{ S Aadp ¢ A duoz} (4.24)
[0} 0‘1 0‘2

which is our ultimate goal.

We can observe that if we use in (4.22)
the representer of the evaluation func-
tional (cfr.(4.16)) then by Lf(dgv) we

have an unbiased estimate of the point-
wise value x(t); this can be repeated
for every t € 01 so that in_this case we
can indeed find a function x(t) which is
an unbiased estimator of x(t), however
in view of Remark 3.3 we cannot expect
x(t) to be so regular as to belong to
Hx, almost surely.

Without going into too many details we
mention also that the variance of
Lr(dEov) can be computed from (3.35):

2

¢ (Lg(dgov)) =<g.A>
if as g we take G(t,t) (cfr.(4.16)),
i.e. the functional of evaluation at t
and if A is the corresponding solution,

say A(t,t), computed from (4.23), (4.22)
with g = G(t,t), then we have simply

i

2 _ -
0" (L, (dg ) = AE, D)

Example 2

This example 1is taken as an extreme
idealization of a foreseen satellite
mission aiming at improving our know-
ledge of the physics of the solid earth:
the so-called Aristoteles project. (cfr.
Brovelli, Migliaccio and Sanso’ 1991;
Bassanino and Migliaccio 1991)

In the gradiometric part of the mission
it is supposed that we can reconstruct
three components of the gravity gradient
tensor, through gradiometric measure-
ments.

In particular we can assume that the
second radial derivative of the poten-
tial,-Trr, is measured with a very high

density on a sphere at satellite’s alti-
tude (i.e. a sphere Ss of radius Rs).

The measurements are assumed to be of



equal variance and uniformly distrib-
uted. Similarly we assume to know on
the earth’s surface, taken as a sphere S
with radius R, the field of gravity
anomalies, i.e.

=-T -2
bg = -T -gT (4.25)

which is also assumed to be measured
with constant variance and uniform
density.

Our purpose is to estimate functionals
of the gravity anomalous potential T.
The observational model is then

2 2
du, = (-T - = T)R"do + du
{ Y v ZR " (a.26)
d”YZ = (Trr)de‘T * d”wz
with 'dpwl, dp , mutually independent
Wiener measures and
E{duzl} = ofazdo
) 2 (4.27)
E{d“uz} =0, sd@
The HY space is a space of y = Yy with
y
2

2 2 .
y,€L (s), y,e L (Ss), i.e.

2 _ 1 2,2 2,2 )
Iyt = — J@{le + yRO}do ; (4.28)

moreover, with

-6 _2
A = 6: R =
a_
ar? lr=R
s
Hx becomes the space of functions

harmonic outside the sphere S with norm
1Tn? = waTIZ =
X Y
1 2 2 2 2,2
=E { [—Tr -R- T] R +TPPRS}d‘r H (4 .29 )

this formula can also be expressed in
terms of harmonic components, i.e. after
developing
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+00 1 R 1+1
T= 21 z m Tlm( r ] Yim

0 -1
we have
2 _ 2
nTn: = Zlm c T, (4.30)
2 2
e =(1 - 1)2 1*1D)7(1+2) '
1 2
R
= R
9= g
S
Let us observe also here that the
apparent dimensional inconsistencies

will be solved in the figfl formulae due
to the presence of the C ~ matrix.
From the relation

+

Af =g

<g,T>x = <f,AT> s

which can be expressed in spectral terms
as

z ClglmTlm =

_ 1 _ _2 2 2 _

= 5 J{fl[ T T]R +f2[Trr]Rs} do =
_ _ 1+1
—Z{filmR(l DT, +f, (1+1)(1+2)q Tlm}

we derive directly

_R(l-—l)f +(1+1)(1+2)q1+1f .
lm C1 1lm Cl 2lm
(4.31)

Now to obtain the normal equation we
have only to substitute the relation

(4.32)

expressed in spectral terms, into

(4.31).
Since by hypothesis A € Hx it has also

to enjoy a series development like T,

R 1+1
A=zhlm[F] Ylm

so we find

(4.33)



226

(1-1)
I R _
(g)]m_ c (1+41) (1+42) 143 Alm
—Rz——q
(1-1)/ 0fR
Qs ae2) el e 830

2.2
c R
2

Substituting (4.34) in (4.31) we get

g, =Na (4.35)
1 Im

Im

Nel {(1-1)2 . (1+1)2(1+2)2q21+4} S
ool g2 o’R? ‘1
1 2

let us note that for 1 » o

N & —
so that g and A have the same degree of
regularity, as it was to be expected.

Back substituting we find the optimal
estimator of <g,T>x in the form

g
_ m [(1-1)
L(dg,) = Zlm N [ 2 j YindHey ¥
- 1 ¢1R
+ (1+l)£l+2) q1+3 f Y au ] (4.36)
R Im " o2
2
In particular if we wanted to estimate
Tlm, since indeed in this case

. (1+1)(1+2) q1+3 I Y du ]
2 2 Im o2
02R

It 1is interesting to compute the
variance of Tlm, in fact, recalling that

(4.37)

c N =C, we find
11 1
2,2 1 (1—1)2 2.2
c (Tlm) = - [ — 01R 4 +
C c R
1 1
2 2
, (1+1)7(1+2) q21+602R24n] -
4.4 2 s
c_R
2
anc
=5_1£ =4
¢ P (-1

This sghows that the estimation errors

€ =T =T are such that
im 1m lm

E{&fm}gg

For this reason the stochastic grocess

elelm has no realizations in L°(S) as

it  happens to T Y as

Im 1m
Naturally by repeating the reasoning
with a slightly less demanding norm,
like z € .0 ve would show that indeed T

(21+1)4n¢f

1]
+
8

(1-1)°2

well.

has re%lizations in a space of functions
like L° with probability 1.

In conclusion we find once more that the
function T (or better its trace on S)
can be estimated as a whole, its
estimate being in LP, (p >2), but not in
HX, as we know.

Example 3

Let us assume that we have N images of a
piece of land characterized by a
horizontal projection Q;

Fig. 4.1



on each image Li we measure the grey
density g at plate points Pi which are
1

images of the point P ; what is really
measured is the grey content over pixels
(cells) of constant size; these pixels
are so small and so many that we want to
describe the measurement fields as
continuous.

So we shall assume that the measurement
density is constant as well as the noise
variance and that these are the same for
all images.

The Dbasic observation equations are
derived from a particular hypothesis on
the radiation properties of the land
surface, i.e. we shall assume it to be a
Lambertian surface, so that the density
gi(Pi) on the images is exactly the same

as that seen by an observer looking at P
from infinity in zenithal direction; we
will call it the orthophoto density
G(P).

The main unknowns of this problem will
be the field G(P) as well as the field
of geometric heights h(P): let us see
how these enter into the observational
model.

To make things easier we shall assume a
very simple geometry, although it would
be possible to develop a complete theory
along these lines; so we assume that the
projection centers c, are all at the

same height H and that the "plates" (or
the instruments) collecting the images
are horizontal and oriented parallel to
each other. Centers ¢ and orientations
are known in a terregtrial coordinate
system.

c
A -
P
T
H
B h
4
QO .to .t_
Fig. 4.2 - The geometry of the

projectivity: s = p/H 1is the
scale of the image
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between the horizontal
t 2) of a point P
o]

The relation
coordinates t = (t
-0 (o]

’

1
and the plate coordinates T = (tl,rz) of

the image of P are given by the equation
(cfr. Fig.4.2)

; (4.38)

given EO and h we can compute t from the
second and T from the first or given I

and h we can derive t from the first and

then Eo from the second. This process is

indeed non-linear; however, if we assume
that h can have only small variations as
compared to H, we can directly approx-

imate the second of (4.38) with the
equation
g -t = ME o (4.39)
- w7

Now we can write the model equations in
the form

gi(Ei) = G(P) (4.40)
which can be parameterized as
gi(zi) = G(t ) (i=1,2...N) (4.41)

and, since T is in one to one corres-
-1

pondence with t through the relation

T, = s(t - ¢ ), we can rewrite (4.41)
- - —T01

in the form

g (t) = G(t ) (4.42)
Written in this form the equation would
be completely outside the theory pres-
ented here, because it implies a non-
linear relation with h(t), however we
can readily linearize it using (4.38)
and we find

h(t )
g (t) 2G) - VG(t)—F—(t -¢c )=
. 1 e - 3
= G(t) [ﬁvtc(g) (t goi)]h(g) -
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= G(t) - A (Dh(E) (4.43)

The coefficients A1 do depend from the

unknown G; yet, since they don’t need to
be computed very accurately, they can be
easily estimated by an averaging
smoothed version of the observations.
These will be our basic observation
equations holding for t € Q and 1i=
1,2...N.

Since the observable quantities are g,

we can then write a complete model,
including the measurement noise, as

d“oi=[G(E)‘Ai(E)h(z)]dt+duwi(3); (4.44)

now in general the observations are on
the image Li over a small area dt to

which will correspond on the terrain an
area
1
dt = — dr
2
S

(4.45)

If duwi is a Wiener measure such that
2, _ 2
E{duwl) = ¢ dt

then the same noise can be taken as
being distributed on Q with variance

E{duii} = ¢%s°dt ,

so the observational model has finally
the form

d“oi e gl(t)dt + duwi(t)

where all the measurements are con-
sidered as taken on Q.
Here

1 -A )|, x=

<
i
1>
il

so that
2
< > = .
Y.y, Jo Z g, (t)dt

the vector operator A is here purely
algebraic and in this case

<AX,AxX> = f
- ="y

N
z,(c - A h)%dt =
011 1

= J (NG® - 2GhzA  + hzzAf)dt (4.46)
Q

The quadratic form in (4.46) has to be
strictly positive by hypothesis.
On the other hand if the matrix

K = (4.47)

were not strictly positive we would have
all the Ai(E) equal to each other, i.e.
A (L) = (), (4.48)
so that it could be impossible to
discriminate in (4.44) between G and h,
remaining estimable only their combina-
tion G - nh.
The above conclusion is pointwise, so we

might have some particular area where
(4.48) holds, for instance because G(t)

is constant so that A = 0.
1
So, excluding this case, we have

+ + +
Bx x = x Kx =z ax X

showing that the norm (§.46) has to be
equivalent to a simple L™ nornm,

BJ{GZ + h%)dt = <hx,Ax> =

> af{Gz + h%ydt (4.49)
The fact that we change the topology in
Hx does not affect our formalism, but

only the definition of A' which by the
way in this case is just the algebraic
transpose of A.

Therefore, recalling that

E{dg (t)dp (t)} = ¢2s%dts
wi Wj i)

so that

<F,CE> = olso<f,f>
==y ==y

we find that the sought estimator is
Just

-1

f=aA"M)"g (4.50)

with AA = K (cfr.(4.47)) and with g the
given functional of x



<g, x> =J (glG + gzh}dt
Q
The explicit form of (4.50) is

£ = %{[ZiAiz-AjziAi]gl+[ziAi—NAj]gz}

(4.51)

(A=NZA?-(ZA1)2) ,

supplying the estimate of

<g,x>X as

required

L (dy,) = Ioz £ du

We note that in particular if we wish to
estimate a functional of G, or a
functional of h, we have only to put
Jjust ng 0, or respectively gls 0.

Another remark needed here is that, in
contrast to the previous two examples,
neither for G nor for h it is possible
to obtain an unbiased estimate: in fact
the e%?luation functional is not bounded
in L and so it cannot have a
representer g of bounded Hx norm.

As a final point we report that by
applying the formula (3.35) it is also
possible to estimate the variance of the
estimate of <g,x> which turns out to be

2
c {Lf(dgy)} =
_ 1 2 2 2
- fo A { 21A1g1 ve ZiAiglgz * Ng2 }dt'

5. Conclusions

We have presented a theory which seems
to be sufficiently general to cope with
the problem of optimal estimating a
field x when continuous fields of
measurements are taken on fields Y,

linearly dependent on x; the relation
between x and {yi} has to be injective

and its 1inverse has to be surjective
like in classical least squares schemes.
Essential to solve the problem has been
the understanding that the correct way
of describing a "white noise" disturb-
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ance of the observations is through the
concept of Wiener measures, what has
forced us to write the observation
equations in terms of measures or in a
weak form exploiting the concept of
Wiener integral.

A particular care has been given to the
process of transition from a discrete to
a continuous model and the problem of
their equivalence has been assessed in
terms of a kind of generalized Nyquist
relation (cfr. (2.47) or (2.48)).

The approach seems to be wuseful to
perform error propagation analysis and
to produce approximate estimators when
large amounts of data have to Dbe
treated.

Some examples show how the method works
in very different instances ; among them
the <case of overdetermined boundary
value problem is of particular import-
ance and has required a careful ana-
lysis, first of all in order to define
what 1is a stochastic boundary value
problem; on the other hand in this field
the theory has already been fruitfully
applied for both noise propagation
analyses and simulations (cfr. Sacerdote
F., Sanso’ F., 1991; Brovelli M.,
Migliaccio F., Sanso’ F., 1991).

This type of estimation problems can be
(and in fact have been) generalized to
cases in which part of the observations
are discrete (this means that one type
of measurements is performed at such a
small number of points, as compared with
the other observations, that we could
not describe it as a continuum) and also
the unknown x includes, beyond one or
more functions, a number of discrete
parameters.

The main 1limit of this theory 1is its
restriction to linear problems. However
the generalization of this approach to
non-linear observation equations seems
to be considerably more difficult requi-
ring Ito’s theory of the representa-
tion of non-linear functionals of a
white noise and a deeper understanding
of non-linear estimation theory.

Yet this question deserves to be studied
because first of all many problems are
structurally strongly non-linear and
even more also those problems which we
would guess to be weakly non-linear need
first of all to be understood in their
full non-linearity if we want to be able
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to say that in some sense a linearized
problem supplies approximate solutions:
for this reason the item of non-linear
estimation with random fields will be
object for us of further research.

References

Backus G., 1970a Inference from inad-
equate and inaccurate data: I, Proceed-
ings of the National Academy of
Sciences, 65, 1, 1-105.

Backus G., 1970b Inference from inad-
equate and inaccurate data: II,Proceed-
ings of the National Academy of
Sciences, 65, 2, 281-287.

Backus G., 1970c Inference from inad-
equate and inaccurate data: III, Pro-

ceedings of the National Academy of
Sciences, 67, 1, 282-289.
Bassanino M., Migliaccio F., 1991 "A

BVP approach to the reduction of space-
borne GPS and accelerometric observa-
tions" JUGG XX General Assembly - IAG
- Wien, 11-24 August.

Brovelli M., Migliaccio F., Sanso’ F.
1991 "A BVP approach to the reduction
of spaceborne gradiometry theory and
simulations" IUGG XX General Assembly -
IAG - Wien, 11-24 August.

’

Dermanis A., 1991 "A unified approach
to linear estimation and prediction”

IUGG XX General Assembly - IAG Sect.IV -
Wien, 11-24 August.
Hida T., 1980 “"Brownian Motion" -
Springer Verlag.

Ito R., 1984 "Foundations of stoch-
astic differential equations in infinite
dimensional spaces" CBMS-NSF Regional
Conference Series in Applied Mathematics
N.47 - Society for Industrial and
Applied Mathematics.

Keller W., 1989 "On the Treatment of
an Overdetermined BVP by Pseudo-
differential Operators” Proceedings of
II Hotine - Marussi Symposium on
Mathematical Geodesy - Pisa - 5-8-June.

Lamperti J., 1977 “"Stochastic pro-
cesses. A survey of the mathematical
theory" Springer Verlag - Applied

Mathematical Sciences Vol.23.

Papoulis A., 1965 ‘“Probability, Random
Variables and Stochastic Processes"
McGraw Hill Book Company - New York.

Sacerdote F., Sanso’ F., 1985 "Qver-
determined boundary value problems in
physical geodesy" Manuscripta Geodaetica
Vol.10, N.3.

Sacerdote F., Sanso’ F., 1991 "On a
rigorous continuous model for digital
photogrammetry" ISPRS - Intercommission
WG II1/VI - Proceedings of the tutorial
on “Mathematical aspects of data
analysis" - Milan, 7 May 1991.

Sanso’ F., 1988 "The Wiener integral
and the overdetermined boundary value
problems of physical geodesy" -
Manuscripta Geodaetica Vol.13, N.Z2.

Sanso’ F., 1990 "On the foundation of
various approaches to improperly posed
problems" Fisica de la Tierra N.2 -
Editorial de la Universidad Complutense.

Tarantola A., 1987
Theory" - Elsevier.

"Inverse Problem



