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Abstract. This paper deals with the basic definitions and the numerical techniques used nowaday in 
the estimation of the gradiometric geoid. After a first introductory paragraph, the so-called 3-steps 
remove/restore method is presented. The computation and the use of global models is analysed in 
Section 2; the computation of topographic corrections, with particular care to the residual terrain 
correction, is presented in Section 3; the central solution or estimation of the anomalous potential 
either by solving a Molodensky's problem, or by applying the collocation theory, is examined in Section 
4; the restore step is finally presented in Section 5. 

Foreword 

From April 22 to April 26, 1991 in Wiesbaden, at the XVI General  Assembly of 
EGS,  a Symposium on the Computat ion of the Geoid was held, convened by B. 
Heck and F. Sans6. This was somehow a new argument for these meetings, so it 
was decided to run it in such a way as to present the state of the art in several 
different branches of geoid computations (global modelling, local modelling, mar- 

ine geoid, geophysical interpretation, etc.). 
The effort was rewarded by a significant success, proved by a conspicuous 

attendance, so that we thought it was a good idea to collect the presented material 
and to issue it in a special number of Surveys in Geophysics. 

This journal is supposed to be directed to all geophysicists, i.e. also to those 
who are not particularly acquainted with the basics of geoid computations, whence 
it was felt by the convenors as a duty to write papers which could serve as general 
introduction to the subject. This is actually one of those papers having at the same 
time the character of introduction and review of the matter. The paper is certainly 
not complete,  in the sense that due to space limitations several items have been 
skipped and the discussion could not go too deep into the derivations; by the way 
we tried to make it selfconsistent and we hope we have done a useful work for 

the unexperienced reader.  

1. Introduction: What  is the Geoid and How it Can be Computed 

The concept of geoid is a very central one in Geodesy,  showing at first glance the 
tendency of this discipline to use quantities strictly related to both the geometry 
and the gravity field, in describing the earth. 
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Essentially the geoid is one particular level surface of the gravity field chosen 
as a reference in such a way as to be close to the sea surface. In this way the 
geoid represents on one side a geometrical object serving as a reference for defining 
several systems of "height" coordinates (geopotential numbers, orthometric 
heights, etc.), giving body to the intuitive idea of height over the sea level, and 
on the other side one way of representing the gravity field which, once known 
over an equipotential surface, can be propagated throughout the external space 
by using the harmonicity property of the pure gravitational part of the gravity 
potential and by solving the relevant Dirichlet boundary value problem (B.V.P.). 

Naturally the geoid itself is our main unknown object so we must somehow add 
some information (the first information being that it is an equipotential surface, 
i.e. the geopotential W is constant on it) to arrive at its complete identification. 

One important information useful for this purpose, is the value of the modulus 
of the gravity field, g, accompanied with the specification of the horizontal position 
of the measure point. 

Another fundamental tool to set up the theory of geoid determination is the 
knowledge of some reference field to start with, in our approximation process. 
This is for instance the normal gravity field of Somigliana-Pizzetti type (with 
potential U and intensity 3') which is composed, like the geopotential W, by a 
harmonic component and the centrifugal potential (i.e. the potential of the cen- 
trifugal force which appears when we describe the earth in a geocentric rotating 
system) and which accounts for the average ellipsoidal shape of the earth; in fact 
U is such as to admit a particular ellipsoid of revolution as normal equipotential 
surface. This ellipsoid is chosen in such a way as to fit as closely as possible the 
geoid, by suitably adapting the equatorial radius and the eccentricity; the geomet- 
rical centre of the ellipsoid is placed at the barycentre of the field, the symmetry 
axis is taken coinciding with the rotation axis. 

The horizontal position of points in space is referred to this ellipsoid by pro- 
jecting them orthogonally onto it, and is parameterized via the direction angles of 
the projecting normal, also known as geographic latitude and longitude. 

The difference between the actual geopotential and the normal potential is the 
anomalous (or disturbing) potential T ( P )  = W ( P )  - U(P)  and it is in fact what 
we would like to know; loosely speaking we can say that T is about 10-5/10 -6 
times smaller than U, so that we can reasonably use it as an infinitesimal quantity 
of the first order in a linearization process.1 

So in principle we are led to define our problem in the form of a free B.V.P., 
namely: 

given W (P) = const, and g(P), and given the horizontal position of P, 

1 In relating global quantities to perturbations we can follow the rule of thumb that the radius of the 
earth being of the order of 6 • 1 0  6 m, its perturbation, i.e. the geoid, is of the order of 60 m and its 
second order perturbation 10 -5 • 60 m = 0.6 mm is in any way negligible. 
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G 

Fig. 1.1. The earth's geoid G and the corresponding ellipsoid E. 

(~bp, Ap) at all the points of the unknown geoid, find the height NQ of 
the point P above the ellipsoid (cf. Figure 1.1). 

Remark 1.1 

The height of the geoid N O is also known as geoid undulation. 

Remark 1.2 

Once No (i.e. the surface G) would be known, then by claiming that 
- 5(Xp + y2) is a harmonic function known on the known surface G, we W (P) 1 2 

would be able to recover W(P) outside G by solving a Dirichlet problem. 

This last remark shows that there must be an intimate relation between NQ and 
the potential W(P) itself, which is in fact the case as one can see by linearizing 
the identity: 

W(P) = U(Q),  (1.1) 

thus arriving at the famous Bruns' relation and (cf. Heiskanen and Moritz, 1981) 

N(Q) - T(Q) . (1.2) 
y(Q) 

Bruns' relation, taking into account that y(Q) is known by a closed formula (cf. 
Heiskanen and Moritz, 1981), shows that knowing N(Q) or T(P) is one and the 
same thing; so we can say that determining the geoid is the same as finding the 
anomalous potential. 

This remark helps in making one step forward in solving one particular complica- 
tion, i.e. to take into account that on continental areas the geoid is (almost) always 
below the physical surface of the earth; this means that there are masses between 
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W ( P ) = c o n s t  

Fig. 1.2. Definition of the telluroid, i.e. the surface S' of Q' points when P varies over S. 

the surface where we can perform measurements and the geoid itself so that T 
cannot be anymore harmonic in this intermediate layer. However as far as our 
ultimate goal is to know the anomalous potential T outside the masses, we can 
always use surface measuremeiats to set up a suitable B.V.P. which naturally will 
refer to a surface more complicated than the simple ellipsoid. 

Once T is known we can compute the separation between equipotential surfaces 
of W and U but at the ground level; this separation ffp is called the height anomaly 
and plays the same role as the geoid undulation, but at the level of the actual 
surface of the earth. 

As it was for NQ, also fie is related to T(P) by the Bruns' relation, i.e. 

T 
= - ( 1 . 3 )  

Y 

with the only difference that ~" is now the vertical distance between P and the 
footprint of the vertical through P, down to a point Q' where the relation 

U(Q') = W(P) 

is satisfied (cfr. Fig. 1.2). 
Summarizing we can state the following problem: 

given the horizontal position of P (i.e. the point Q in Fig. 1.2) and the 
potential W(P) and the gravity modulus g(P) we want to find the 
surface S, i.e. the ellipsoidal height hp and the potential W outside S. 

This problem is very difficult to be treated in this general formulation, however 
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we can always linearize it by introducing the telluroid S' (cf. Fig. 1.2) and using 
the Taylor expansion 

g(P) ~-- Y(Q') + ~ ~'o' 
OT 

Oh Oh 

together with (1.3) to obtain (cf. Heiskanen and Moritz, 1981) 

_ OT  + a y / O h  T = A g  = g ( P )  - y ( Q ' ) ,  (1.4) 
Oh y 

where Ag is the so-called (surface) free air gravity anomaly. 
So the problem has become now to find T harmonic outside S' satisfying the 

boundary condition (1.4). 
With one further simplification, the so-called spherical approximation, the boun- 

dary condition (1.4) becomes 

OT 2 
T = Ag (on S') (1.5) 

Or r 

and the problem is known then as the "simple Molodensky's problem". When T 
is recovered by solving in some way our B.V.P., ( can also be computed via (1.3); 
at this point Ne,  when necessary, can be obtained by observing that 

hp = g p  + N e = h e, + ~'e', (1.6) 

where l ip  is the so-called orthonormal height, i.e. the piece of plumb line lying 
between P itself and the geoid G. 

Remark 1.3 

With the present space technology, especially after the development of the GPS 
system, it is also possible to assume that we know directly the surface S, i.e. Q 
and hp as well; in addition we know for instance g(P) and we want to determine 
T(P) .  This leads to the so-called fixed boundary, geodetic B.V.P. which after 
linearization becomes simply 

OT 
- g ( P )  - y(P) = a g ( P )  , (1.7) 

Oh 

where 3g(P) is the so-called true gravity anomaly, or gravity disturbance. 
By using the same approximation as in (1.5), formula (1.7) becomes 

OT 
- 6 g .  (1.8) 

Or 

Once T is derived by solving the B.V.P., it can be downward continued for 
instance with a linear formula like 
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T ( Q )  = T(P)  + 6g. h e ,  (1.9) 

so that we can compute N o by (1.2) and we finally get 

He = he - N O . (1.10) 

This procedure is known as GPS levelling because it allows to compute the 
orthometric height of P from GPS observations and is therefore very important 
nowadays. 

Summarizing we can say that the problem of computing the geoid has been reduced 
to the problem of retrieving the anomalous potential by solving a suitable B.V.P.; 
namely if we know W ( P )  and g(P) we use the harmonicity of T and the boundary 
condition (1.4) (or (1.5)) on the telluroid S'; if we know hp and g(P) we use the 
harmonicity of T and the boundary condition (1.7) (or (1.8)) on the actual Earth's 
surface S. 

Yet this remains a formidable problem to be solved in practice even in the 
simplest formulations; in fact in either cases the boundary remains an extremely 
complicated object which must be defined at least with a resolution of the order 
of 1 km if one is not willing to accept a significant loss in the gravimetric signal. 

In such a case it seems necessary to follow a procedure of successive approxi- 
mations where the field is reconstructed step by step with different resolutions. 

The procedure which is actually standard goes as follows: 

1) first we make a global approximation of the field by using global data sets 
suitably organized in block-wise averages; in this way we try to achieve a 
knowledge of the gravity field with a maximum resolution down to about 
100 km; 

2) after subtracting the global model to all available data, the residual field is 
considered as being more local in nature, in the sense that only those mass 
anomalies which are closer to the analysed area contribute significantly to set 
up the "local" anomalous gravity field; predominant in this signal is that part 
which is due to the specific shape of the topography, known as topographic 
correction (T.C.). In particular T.C. is responsible for the very high frequency 
features of the signal with wavelengths ranging from some dozens of kilometers 
down to some hundreds meters and amplitudes ranging from 10 a mgal to zero. 
This part is usually computed by suitable fast numerical techniques applied to 
Newton integrals over a field of prisms covering a somewhat larger area; the 
height of the prisms is generally computed between the actual surface and some 
smoothed reference surface, because this layer of matter, of variable width, is 
in fact the one which mostly explains the high frequency part of the signal. 
This approach is known as residual terrain modelling (R.T.M.); 

3) the part of the gravity field with spectrum ranging in resolution say between 
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100 - 200 km and 5 - 20 km (i.e. the medium wavelength part) as well as all 
the residual gravity which comes from modelling errors in steps 1 and 2 give 
rise to the last part of the signal to be suitably interpolated by a harmonic 
function. The characteristic of this signal is to be "local" (i.e. the long wave- 
length part should have very little power) and at the same time smooth over 
the area analyzed, because the very short wavelengths have been subtracted 
The main interpolation strategies are two: 
a) the local B.V.P. approach, which consists in assuming that the anomalous 

signal is different from zero only in the area where we have it. After 
reconducting the B.V.P. by some continuation technique to a problem for 
the sphere, or even for the plane, we can apply explicit integral formulas, 
where actually the integration is extended only to the local area; 

b) the collocation approach in which the field is considered as a stochastic 
process stationary and isotropic and harmonic through space, down to an 
internal sphere (the so-called Bjerhammar sphere); a kind of optimal inter- 
polation is then applied, which is a straightforward generalization of the 
Wiener-Kolmogorov principle of minimum mean square estimation error. 

The rest of the paper is devoted to introducing the basic definitions and well 
established results necessary to perform steps 1 through 3; a much more specific 
and updated material will be presented in dedicated papers in the same volume. 

2. Global Models 

A global model is a mathematical model of the anomalous gravity field represented 
by means of a harmonic function depending on finitely many degrees of freedom, 
suitably adapted to fit the actual data. 

Many representations are possible, however the ones most commonly used are: 

a) truncated series of spherical harmonic expansions; 
b) point masses models. 

The second type of modelling in particular is often used in describing the dynamics 
of a satellite, while the first one is almost generally applied to describe the gravity 
field at the level of the earth's surface or close by, so we shall concentrate here 
exclusively on this method. 

Let us first explain what are the data which are considered as input for the 
construction of a global model. The first point to be made is that since we are 
aiming at retrieving just the global features of the gravity field, we don't need to 
consider in general real pointwise data, but we shall apply some kind of averaging 
with the purpose of reducing the high frequency noise and compressing the data 
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set down to some manageable number: 2 the larger the area on which we average, 
the lower is the resolution of the final estimate of the gravity field. 

For practical purposes it is convenient to adopt a procedure of averaging data 
on equiangular blocks, i.e. geographical rectangles with fixed angular sides A~b, 
AA: nowadays grids of blocksize of 0.5 ° x 0.5 ° are the finest available. 

It is to be stressed that in this way the blocks are not equi-area, but rather their 
areas depend on latitude, so that a certain distortion is introduced in estimating 
the spectrum; how to eliminate this distortion is still a matter of discussion. 

The data we are going to consider now are: 

m 

a) on land mean potential values (at ground level); to a mean block value W will 
correspond also a mean block value of the telluroid height computed, e.g. to 
the first order in h from 

w=U=Uo-3,h 
(U0 potential of the reference ellipsoid), 

so this data set is equivalent to a data set of mean telluroid heights, defining 
the smooth surface with respect to which the relevant B.V.P. has to be solved. 

Note that on sea, once time varying phenomena are suitably averaged, the 
residual value of h is so small (a few meters at most) that it can be generally 
neglected; 

b) on land mean free air gravity anomaly values, Ag; the mean value hg is 
considered as the value of the smoothed field at the center of the block with 
height h, according to point a); 

c) on sea, apart from small seas like the Mediterranean, the value of the gravity 
modulus is generally not known, however, if by applying our correctio~as, we 
can consider the residual ocean surface as th.e geoid itself, we can exploit a 
particular kind of satellite observations, namely the height of the satellite 
over the ocean as measured by a radar-altimeter, to derive directly the geoid 
undulation N; in this way by using Bruns' relation written now as 

T = "y . N 

we achieve the knowledge of T. 
At  this point a rational approach would be to consider a mixed B.V.P. with 

Ag given on land and T on the ocean, however this is still too complicated to 
be applied numerically. Actually what is done is to convert locally T into a A-g 

2 On the same time, areas where only few data, even only one, are given, are still represented in our 
data set and contribute to the computation reducing the area where no data at all are available. 
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data s e t :  3 since this operation is improperly posed, we are forced to smooth 
out the very high frequencies of T, however, this is not too bad since our target 
is not so much to know Ag but rather block averaged values Ag which are not 
too much affected by low-pass filtering. Whence we can say that oceanic areas 
surveyed with radar altimetry can be filled with mean block values of Ag data; 

d) Ag files are not complete, for the whole earth, but there are a lot of lacking 
data especially on land for the euroasiatic continent (e.g. Russia, China, etc.), 
because they are not yet delivered, and on sea for those regions which have 
not yet been surveyed by altimetric satellites (especially polar regions); in these 
areas special procedures are to be applied which combine a priori global 
models, derived from the observation of satellite orbits only, with relevant 
geophysical information. 

Tests in areas where Ag was known have shown that up to 75% of the 
gravimetric signal can be recovered (cf. Rapp and Pavlis, 1990). 

To conclude we can say that as input for the computation of a global model we 
can consider two data sets describing respectively the mean heights of the telluroid 
and the mean gravity anomalies on it. 

The telluroid nearly coincides with the ellipsoid on seas, but it is generally above 
the ellipsoid on lands and since it mirrors the true topography, or better a 
smoothed form of it, its shape is still quite complicated so that it is impossible to 
find analytical expressions for the B.V.P. solution. 

However if we observe that after all the telluroid deviates from the ellipsoid at 
most by a few parts in 10 -4  of the radius of the earth, it becomes handy to think 
of an approximate solution based on the ellipsoidal boundary; this means that in 
a sense we imagine to analytically continue our field through masses; on the other 
hand there are theorems (Keldysh-Lavrentiev, Runge-Krarup,  cf. Moritz, 1980) 
proving that this can be done at any preassigned approximation level. 

So the idea is to look for some function T, harmonic down to the ellipsoid and 
satisfying on the telluroid S ' ,  at least approximately, the boundary relation 

_ a T  + a3` loh T = A g ,  (2.1) 
Oh 3' 

or better its discretized, averaged version, at the centres of 0.5 ° x 0.5 ° blocks. 
The general representation of a harmonic function in the exterior of the ellip- 

3 To guess how this is possible one can think of working on the tangent plane with the Fourier 
transform, so that T (x, y) is transformed into ~'(Px, Py); now it is easy to verify that if T(x, y, z) has 
to be harmonic, then the Fourier transform of OT/Oz (x,y, 0) is " (p ' f f¥~y .  T(px, Pr) which can be 
obtained from the above, after a suitable filtering of high frequencies. Since OT/az]z=o is essentially 
the gravity anomaly in planar approximation we see that we can get hold of it by back transforming 
~ff~'fffy" T(px,Py). 
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soid, can be found in analytical terms by separation of variables (cf. Heiskanen 
and Moritz, 1981) in the form of an eUipsoidal harmonics expansion 

T = ~ n ~ m T,m Ynm(O, A) ,4 (2.2) 
0 

where u, 0, A are the ellipsoidal coordinates defined through 

i = ~ Ez sin 0cos A (2.3) 
E 2 sin 0 sin h 

u cos 0 

(E = ~ -  b 2 = linear eccentricity), 

However ,  in order to simplify the computations and in particular to avoid the 
calculation of Qnm (iu/E) (cf. Thong and Grafarend, 1989), it is possible to 
perform a perturbative approximation of (2.2) in terms of the small parameter 

a 2 _ b 2 
e 2 ~ - -  (e = eccentricity) a2 

pushed just to the first order (i.e. neglecting terms i n  e4). Our discussion here will 
be limited to this case while for accurate high degree models it might be advisable 
to push the perturbative computation to the e 4 terms (cf. Heck, 1991~ Jekeli, 
1988). 

Taking also advantage of the inequality h/R < 10 - 3  which certainly holds on 
our (smoothed) earth, so that e2(h/R) is negligible in our approximation, one can 
see (see Appendix) that (2.2) is essentially equivalent to a "purely spherical" form 

+ ~  n -- • n - + - i  

~o Emr"'~( R---~ Vnm(O,A) (2.4) T= 
"-,, \R + h/ 

i.e. the difference of (2.2) minus (2.4) (with equal Trim) is of the order of e 4 or 
smaller; in (2.4) h has to be understood as the height above the ellipsoid, as shown 
in Figure 2.1. 

It has to be stressed that if one wanted to use geographical coordinates (~b, A) 

4 Ynrn(O, I~.) are the spherical harmonics 

~COS mh m/> 0 ([m[ ~< n) 
Y.,,~ = Pnlm[ (sin 0) [ . - s in  mA rn < 0 

and P.m(t), Q.m(t) are the so called Legendre associated functions of the first kind (defined in Itl ~< 1) 
and of the second kind (defined in It I ~> 1) (of. Heiskanen and Moritz, 1981). 
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• t 

Fig. 2.1. E = ellipsoid; S '  = averaged telluroid, h/a < 10-3; (a, b) = semimajor and semiminor axes. 

instead of the ellipsoidal (0, h), corrective terms in e 4 would appear in (2.4), in 
order  to switch to an expansion in Y,,m(¢, h) (cf. Heck,  1991). 

We now come to the application of the boundary operator  (2.1). Also here, to 
make things simpler, we approximate the coefficient (Oy/Oh)/7 to the first order 
in e 2 and h/R. To this aim we start from a fundamental relation of geometrical 
geodesy, also due to Bruns (cf. Heiskanen and Moritz, 1981) maintaining that 

0 !  = - 2 y  J - 2o) 2 (2.5) 
Oh 

where o) is the earth's angular velocity, and Y is the mean curvature of the (normal 
in this case) level surface for the point P. If P is lying on the ellipsoid, we have 5 

1 b 0)3, 2 0)1,2} 
- 2 a 2 {(1 + e '2 sin 2 + (1 + e '2 sin 2 = (2.6) 

- -  - -  1 ( 1 -  2 e 2  + e 2 s i n 2  0}  " R 3 

3'  

(R  = 

s Remember  that in our approximation 

a 2 _ b e a 2 _ b 2 

b 2 a 2 
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Moreover, if we want to transport this curvature at the level h, we can use in our 
approximation the simple formula 

R 1 ( 1 _  2e2 + eZsin2 0 _  h ) .  (2.7) 
Jh = J ° R  +-----h --- R 3 

Furthermore it is easy to verify that (cf. Heiskanen and Moritz, 1981) 

° ° 2 = ' Y ( w 2 R )  -~ y--(°J2a2b] ~ R \  G M /  2 R (2.8) 

hence, summarizing (2.5), (2.7), (2.8), we can state that 

0,,0  le +e sin 0 
y 6 

Substituting (2.4) and (2.9) in (2.1) one gets, after some rearrangement of the 
coefficients, 

(n - 1 )  ZnmYnm(O ' t~) = Ag(O, ~) "}- lx-.~.z. 2a ZnmYnm(O , 1~) X 
n,m R R ,~,m 

R n+2_ (sin 2 0 , (2.10) 

where the first neglected term is of the order of (h/R)e z. 
Equation (2.10) is already in a perturbative form which lends itself to a recursive 

solution (cf. Heck, 1991). 
The main concern can be with the term 1 -  (R/(R + h)) n÷2 which might be 

significantly close to 1 for very high degrees; on the other hand we already know 
that ultimately we are not going to use (2.10) for all n because in this step we are 
not aiming at the solution of our B.V.P. in one shot only, so it's a matter of seeing 
up to what a degree we really want to use it. 

At  degree 300 one finds that in those areas where h -  6000 m the right hand 
side of (2.10) will contribute - 2 5 %  of the signal, which is not a small amount 
indeed, but these areas are so small that we should not be bothered by them; for 
instance when h - 1000 m we see that the r.h.s, operator in (2.10) contributes less 
then 5% of the signal, which is a fairly small figure. 

At  degree 600 the same calculations would result respectively in 44% and 9% 
of the signal, already indicating that convergency might not be achieved in a small 
number of iterations. 

Hence we are left with a very simple problem which is essentially to find the 
coefficients Trim from 
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(n - 1) TnmYn,~(O, A) = Ag(O, h) ,  (2.11) 
n , m  e 

which is very well known in the history of Geodesy as the Stokes problem. 
Once the coefficients Trim are determined from (2.11) we can feed them into 

the right hand side of (2.10), compute a corrected Ag known term and then solve 
again (2.11). As a very last step we can then say that (2.11) can be solved either 
harmonic coefficient by harmonic coefficient or by a corresponding suitable integral 
formula. 

Since here we are mostly interested in constructing a finite degree model, we 
prefer the first solution, which is simply 

_ R i f  
T~m (n --- 1) 4~r Ag(O, A)Ynm(0, A) do- ; (2.12) 

generally the zero degree coefficient is taken as zero because we have adapted the 
geocentric gravitational constant to be equal for the normal and for the actual 
field. The first degree terms, corresponding to a shift of the coordinate origin, are 
also set to zero by choosing a geocentric ellipsoid. 

A frequency analysis, exploiting the famous concept of Nyquist frequency ad- 
apted to the sphere (cf. Sacerdote and Sansb, 1991), shows that if we have 8 ° x 8 ° 
block averages, the coefficients (2.12) can be meaningfully computed up to a 
maximum degree 

180 
N m a x  = - - "  (2.13) 

8 • 

so we have for instance models up to degree 180 with 1 ° × 1 ° mean data, up to 
degree 360 with 0.5 ° × 0.5 ° mean data etc. 

With such coefficients finally a model potential Tm is computed on the ellipsoid 
(h = 0) and in the surrounding space by 

Nmax n / ~ R  ,,~+1 
E n Em TM-- 
2 - - n  

from such a model all the functionals of T (like height anomalies, deflections of 
the vertical, gravity anomalies, etc.) can be computed as well. 

Remark 2.1 

From the practical point of view many errors enter into a model like (2.14) 
computed from coefficients T,,~ determined from (2.12); the most important of 
them however are related to a) gaps of data, which are quite significantly affecting 
Tnm, b) regional biases connected to non-uniform choices of absolute gravity 
values to which regional gravimetric networks are referred, as well as to other 
reference frames problems. 
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On the other hand a very important contribution to the knowledge of Znm for 
low values of n (e.g. n ~< 36), comes from satellite observations which can be 
combined with ground data to strengthen our solution. We cannot treat this subject 
here, so we refer the interested reader to the very comprehensive review (Rapp, 
1989), where also a good bibliography can be found. 

3. Topographic Corrections 

In this paragraph we study how the very high frequency part of the gravimetric 
signal is accounted for in terms of some kind of Newton's integration formula: 
hence we shall assume to analyse here the residual field obtained by subtracting 
from the actual data a global model. 

The first basic statements we must make are: 

a) we expect that most of the gravity field signal at low frequency (low degrees) 
has been subtracted while computing the global model, as we suppose to work 
here with the residual field, 

b) the signal due to the density variations modulated by the topographic heights, 
namely the topographic signal, is indeed by far the most important component 
of the high frequency signal; more precisely only the "closest" topographic 
masses contribute to it. 

The first statement is obvious, the 
Newton's integral 

second can be better understood by using 

u(P) = G fB p(Q----~) dBo '  (3.1) 
R rpQ 

where BR is a ball of radius R such as to enclose all the masses. Neglecting the 
ellipsoidal eccentricity, we include in (3.1) the layer of topographic masses, a few 
kilometers thick, where p(Q) undergoes jumps of +2.67 g/cm 3, corresponding to 
the mean density of the crust. 

If we use the famous development (cf. Heiskanen and Moritz, 1981) 

1 = ~ r ~  Ynm(P)Ynm(Q ) (3.2) 
r% +1 rvQ 2n + 1 

(3.3) 

into (3.1) with re = R >i re, we find 

if 
,l rn+2  

u(P) = G ~ Ynm(P) dr ~ pn,~(r) 

where 
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prim(r) = ~ p(r, o')Ynm(O') do'. (3.4) 

We interpret (3.3) and (3.4) by saying that the birth of a harmonic coefficient of 
u is given by the sum over all depths D = R - r of the corresponding coefficient 
prim(r) weighted with the weight 

(R )  n+2 (1 D ;  +2 . 
dr = - --  dr (3.5) 

Note should be taken that since Ynm is orthogonal to Y0o = 1, Pnm(r) a r e  in fact 
the harmonic coefficients of the density variation hp, i.e. of p(r, o-) subtracted the 
average of p at the corresponding depth. 

Now if we consider that the biggest density contrasts in the upper layers are 
due to density discontinuities, like the Moho, also related to some isostatic equilib- 
rium, we can compute the contribution of such a contrast, placed, e.g. at 30 km 
depth, at degree 300 (or higher). 

If the isostatic equilibrium has to hold, the amplitude ArM of the Moho wander- 
ing, will be related to the thickness Art of the topographic layer, exactly by the 
relation (cf. Heiskanen and Moritz, 1981) 

Apt Art 
ApM ArM 
- -  - 1 .  ( 3 . 6 )  

SO that the relative contribution of the two layers to the creation of one coefficient 
say at degree 360, is 

Apt Art 1 
- -  - -  5 . 6 ,  

AOM ArM ( 1 - - ~ - ~ )  3a° (1 -- 633:8) 38° 

(3.7) 

at degree 600 the same expression would attain the value -17.  This shows that 
for wavelengths below 100 km by far prevailing is the effect of topographic masses, 
justifying our effort to make a special separate computation of it. 

Furthermore let us compute, as an example, what is the gravimetric effect of a 
parallelepiped with base 20 × 20 km and 2 km high, placed, e.g. 100 km distant 
from the measurement point (cf. Figure 3.1). 

Since the large component of the vector g is in the z direction, it is only the z 
component of the attraction of this mass, which is contributing to the modulus of 
g, and we have (cf. Figure 3.1) 

GMZ 
(3gz ~ L3 ~ 1.4- 10 -2 mgal, 
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Fig. 3.1. Th~ attraction of a large prism at a distant point P. 

Fig. 3,2. Mass distribution in the topographic layer. 

at a distance of 50 km the same mass would cause a variation in g of 0.1 regal; at 
200 km distance we would get 8gz ~ 1.7/zgal. 

This shows that at 100 Km distance we still have to take into account this mass, 
although its detailed shape will be of no great importance; while placed further 
away it gives no significant contribution. 

In this discussion, of introductory character, we won't  dwell on the problem of 
the curvature of the earth, which in the illustrated example would cause a shift in 
Z of the mass at 100 km distance of about 0.8 km; as a matter of fact, when 
needed,  this effect can be easily corrected for. For closer masses however, which 
give rise to most of the signal, this correction is immaterial as it decreases quad- 
ratically with distance; on the other hand these masses need to be represented 
with greater detail, because even smaller variations of their shape can have a 
significant effect. 

With these observations in mind one can afford to sketch strategies for the 
computation of the topographic effect, however not before making a very impor- 
tant remark. 

Let  us consider the topographic masses contained in the uppermost layer of 
thickness, say, Ar (cf. Figure 3.2); if the mass contained in the cylinder of base 
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R 2 do- and height h(Q) is spread all over the column of height Ar, the density 
switches from the average value fi = 2.67 g/cm 3 to a value p(Q) such that 

p(Q) Ar = fih(Q) . (3.8) 

If we substitute this expression in the uppermost part of the integral (3.3) we find 
a "topographic contribution" to u(P) of the type 

ut(n) = GR ~ Y~m(P) Ag pt, n m (3.9) 
2 n +  1 

with 

Arpt,nm= f~rArp(Q)Ynm(O'Q)do.=lSfcrh(O)Ynm(o-)do.. (3.10) 

The topographic potential ut(P) in the space, as opposed to the pure surface 
expression (3.9), is then 

ut(P) = G ~ Ynm(Q) + 1 Pt,nm (R )  n+l (3.11) 

and its radial derivative, i.e. the topographic contribution to the modulus of the 
gravity vector at a surface point, is 

~g'  = - ° u ' ( P )  r=R = G ~.  n + 1 
Or 2n + 1 Ynm(Q) Ar pt . . . .  (3.12) 

Equations (3.10) and (3.12) show that, when we construct a global model, the 
effects of topography are absorbed into the determination of the coefficients of 
the global model, with the same resolution; in other words, at least at the rough 
level of approximation we are using here, if h is developed to degree and order 
N to supply some smoothed version h 

N 

h(Q) = E n , m  hnmYnm(O'Q), (3.13) 
0 

then the gravimetric effects of h go directly into the determined coefficients of the 
potential model up to degree and order N. 

With this statement in mind we understand that what we are looking for, in 
order to interpolate the high frequency part of the topographic effects, is not 
really the computation of the whole effect but rather of its residual part caused 
by the high frequency features of the difference between actual heights h and 
smoothed heights h. 

So our aim is now to compute a residual terrain correction to the gravity 
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h 

1 / 
J 

Fig. 3.3. Residual terrain correction (r.t.c.) corresponding to excess of density p (dashed areas) above 
f~ or to lack of density p (dotted area) below h, 

modulus; as shown in Figure 3.3, this correction can be positive or negative 
depending on both the excess or the lack of matter  (which in turn depends on the 
positive or negative sign of h - h)  and on the height of those masses with respect 
to the height of P. 

There are mainly two strategies for the computation of this residual terrain 
correction; one is almost exact but requires longer computations, the other is more 
approximated but it is by far much quicker. 

In both strategies the terrain is essentially represented as a collection of parallel- 
epipeda based on the ellipsoid, while the residual terrain is an analogous collection 
but now hanging in the air as shown in Figure 3.3; the bases of the parallelepiped 
(generally squares) define the "resolution" of this model and may vary in general 
between 100 m to 1 km; the heights of the parallelepiped are assumed to be the 
mean height of the terrain on the corresponding areas. 

If nothing better  is available, nowadays there exist worldwide mean elevation 
models with a resolution of 5' × 5' like, for instance, T U G  87 (cf. Wieser, 1987). 

According to the first strategy the attraction in the z direction is computed in 
P for each prism lying at a preassigned distance from it; this attraction is a function 
of x e  - x o ,  y p  - y Q  and of z e  - Z Q  = h e  - ~ ,  as well as of the (fixed) side of the 
basis and of the height of the prism hQ - h o. 

All that is arranged in a lengthy but closed formula, suitable for automatic 
computation (cf. Sans6, Barzaghi and Tscherning, 1986). The same type of formula 
holds for the potential generated by the same prism of matter,  what will be 
necessary in the final processing of our data. 

As a remark, we notice that since we need to go, say, as far as - 1  ° from P to 
compute its r.t .c.,  if we want to perform this computation at all points of an area 
A we need a terrain model on a larger area enclosing A. 

What is not exact in what we said is that the prisms, though placed at the right 
altitude as shown in Figure 3.4, are slightly twisted as the "vertical" direction does 
not remain parallel to itself. 

The second strategy goes through the computation of the "terrain effect" for 
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Fig. 3.4. The r.t.c, computed prism-wise. 

x,y 

P 

Q 

Fig. 3.5. The terrain correction in planar approximation. 

X,y 

both the surfaces h and h and then retrieves the r.t.c, as the difference between 
the two; it works in planar approximation. 

Referring to Figure 3.5, we see that 

0 Gp f d x o d y  O fi'°dz 1 (3.14) ~gh(P)- oh~ 

(/2 = (Xp - XQ) 2 + (yp -- yQ)2) 

~/l  2 + (he - z) 2 

and since 

0 [/2 + (he - z)211/2 : O [l 2 + (hp - z)211/2 , 
Ohp Oz 

after an integration we get 

f [ 1 ~gh(P) = GO OXQ dya  ~¢/l 2 + (hp - hQ) 2 

Since we can put 
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1 1 1 (he  - h Q )  2 

~/ l  z + (he - ha)  2 -- I 2 l 3 
(3.16) 

and since the first term in (3.16) and the second term in (3.15) will be the same 
for ggh and for the analogous expression of gg~, which has to be subtracted from 
the first, we find for the residual terrain correction 6gt, 

f - 2 h e ( h a  - ho)  + (h2o - h~4) 
_ 1 Gp 13 dx d y .  6gt = 6gh -- 6g~, ~ 2 

(3.17) 

If we call h the mean height in the computation area, with one further approxi- 
mation we can write 

h2o -- h2o = (h a - ho)(hQ + fq2) ~-- 2 h ( h o  - ho)  , 

which substituted in (3.17), after a rearrangement, yields 

(3.18) 

(3.19) 

The point here is that the integral in (3.19), as well as the integrals into which 
(3.17) can be broken if we want to maintain that form, is a typical convolution 
integral in the xy  plane as l depends only on Xp - x o, yp - Yo; therefore it lends 
itself quite naturally to a fast computation via a Fourier technique (cf. Schwarz et 

al., 1990). 

R e m a r k  3.1 

Some attention has to be payed to the fact that the kernel 1/l 3 is not straightfor- 
wardly integrable in the plane so that its Fourier transform has to be interpreted 
as a distribution. 

This is the effect of the approximations (3.16) and (3.19) combined; in fact the 
kernel 

(he  - ho)  2 
l 3 

is still integrable if the slope of the terrain is bounded (<45°). On the other hand 
it is known that the use of a slightly regularized kernel instead of 1/l 3 gives 
numerically reliable answers. 

We conclude the paragraph by saying that with analogous approximations we 
can compute the contribution of the residual topographic masses to the gravity 
potential. 

Just as a hint we observe that we can write 
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 ut=Gp f dx dy fhf dz 
~/l 2 + ( h e -  z) 2 

( hQ -- hQ 
~-- Gp J I dx dy ~/12 + ~ £ -  -~ 

f ho hQ 
Gp | dx dy (3.20) 

l ' J 

the second approximation being rougher than the first. In any way higher order  
terms can be computed by developments of the kind used in (3.16), getting more 
and more fitting evaluations. 

4. The Core Solution 

Let  us summarize briefly what we have stated up to now and make the point in 

our  way toward a solution, i.e. the determination of the anomalous potential T. 
We have first observed that with global sets of data, suitably averaged, we can 

construct global models TM expressed in a truncated series of spherical harmonics 
up to some degree and order N (e.g. N = 360); this model anomalous potential is 
such as to account for the long wavelength part of the gravity anomaly field which 
is our primary datum; so TM satisfies the boundary relation 

OTM Oy/Oh 
- -  - -  -t- T M  = A g M  (4.1) 

Oh y 

in some approximate and averaged way on the averaged boundary. Now assume 
you have a wealth of data, i.e. of gravity anomalies, at points Pi in a certain area 
A where we want to derive a very detailed solution T. At first we remove from 
our data that information which is already contained in the global model TM 

Ag~(p 0 = Ag(p,) - AgM(Pi) , (4.2) 

thus obtaining a local datum Agz(Pi). 

Remark 4.1 

There  is an important  difference between Agu in (4.1) and the same symbol in 
(4.2); in the first case Agm is a "da tum"  derived from averaging real observations 
and tributing it to points which are for instance, the centers of a geographic grid 
covering the whole earth, while AgM(Pi) in (4.2) means exactly 

OTM + Oy/Oh TM e=Pi (4.3) AgM(P') - 0~- y 
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i.e. it is the expression (4.3) computed from the TM previously determined, at the 
point P~. 

Since TM already accounts for the gross features of T we expect Agt to contain 
mainly medium and short wavelenghts. As for this last part of Agl we expect, 
according to our discussion in Section 3, that it may be explained mainly by the 
residual topographic signal ~gt(P~) so that, after subtracting it from Agt we are 
left with a residual field Agr(P~) 

Agr(p~) = ~gl(P~) - Agt(Pi)  = Ag(p , )  - AgM(p, )  -- A g t ( p , ) .  (4.4) 

Quite naturally we expect the spectrum of Ag r(P) to be strong mainly on the 
medium wavelengths (say between 100 km to 20 km) although there will be a 
residual signal (due to incorrect modelling) on both sides of the spectrum. 

The point now is to try to solve the corresponding boundary value problem, 
using 

OTr ~- Oy/Oh T~ P, (4.5) 
Ag~(p,)  - Oh y 

as observation equations in the area A. 

R e m a r k  4.2 

It might seem contradictory to say that we want to "solve" a "local" boundary 
value problem, since by definition such problems in potential theory can be solved 
only globally. On the other hand the point here is that by subtracting the global 
model we really "localize" the solution also in the sense that the Green function 
corresponding to our B.V.P. goes to zero in a much shorter distance if we subtract 
to it the first N degrees, so that the data Agt(Pi)  from distant areas do not affect 
too much the value of the solution in A. 

There are many studies on the errors committed by truncating to zero the input 
data beyond a local area A, all of them referring in one way or another to the 
pioneering work of Kaula, Molodensky and Moritz of the late fifties, early sixties 
(cf. Heiskanen and Moritz, 1981); all these works introduce an averaging law in 
order to compute mean square errors, according to which the local area A is 
considered as a sample from a uniform distribution on the sphere. 

This is the basic concept through which statistics enters into the estimation of 
the gravity field. 

R e m a r k  4.3 

As we mentioned, in Agr and hence in Tr there are left high frequency components 
as well as low frequency components. The first type of a signal can be retrieved 
from the data in the local area A only up to a Nyquist frequency depending on 
the average distance between the observation points. The lower frequency part 
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Fig. 4.1. Plane approximation for Molodensky's B.V.P. 
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can also be retrieved to some extent, depending on the size of the area A. In fact, 
would A cover the whole earth, we should be able to recover all the low frequencies 
of T, but then we should treat together millions of data, what we wanted to avoid; 
for a smaller A we can say, roughly, that we can recover wavelengths of the same 
size as the diameter of A, while longer wavelengths cause unadjustable distortions. 
This can be directly seen nowadays since we can test gravimetric geoids along 
traverses where the geoid is known by comparing the results of spirit levelling 
with those of GPS levelling. 

These traverses have demonstrated the presence of relevant features (distortions 
of the order of 1 m) starting from 5 ° or 6 °, down to shorter wavelengths. This shows 
that, with the currently available models, it isn't wise to make local computations in 
areas much smaller than 5 ° x 5 °. 

The "core solution" means that we want to solve (4.5) in the "local" area A; 
this is actually done in several ways two of which are the most important: 

(a) by finding a pseudo-Molodensky solution of the B.V.P. reduced to the tangent 
plane approximation; 

(b) by least squares collocation, i.e. by a statistical technique generalizing the 
Wiener-Kolmogorov optimal filtering concept. 

(a) THE PSEUDO MOLODENSKY APPROACH 

Since we can't go too deep here into the theory of Molodensky's B.V.P. we give 
a formulation of it, which corresponds to the first order Molodensky's solution, 
as shown in Heiskanen and Moritz, 1981. 

Essentially the idea is to work in a plane approximation, as shown in Figure 
4.1, where our problem gets the simplified form 
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OT~ 
- A g , . .  ( 4 . 6 )  

Oz 

to be solved from the surface S upward. 
To this aim a first solution is elaborated by simply shifting the data Agr(Pi)  to the 
z = 0 plane, i.e. we solve 

OTr = Agr(Pi) (4.7) 
OZ Poi 

thus obtaining a zero order  approximation To~. 
With this we can compute 

O A g ~ -- O2Tor 

OZ IPi OZ 2 Pi 
(4.8) 

and we can make a much more realistic backward continuation of A & ( P i )  by 
setting 

02Tor 
Agr(Poi) ~-- A g r ( P i ) - - - "  h i .  (4.9) 

Oz 2 

We can now compute a first order approximation T~r by solving 

OTlr = Agr(P;) - 02T° ' '  h i .  (4.10) 
OZ e0; OZ 2 

The whole process can be iterated although generally Tlr is often an accurate 
enough solution. Whence,  to put our solution in numbers, we are committed only 
to solve a B.V.P.  of the type 

OT 
- Ag (4 .11)  

OZ 

on the x, y plane. 
This is easily achieved in terms of an integral formula, since according to the 

second Green's  identity, when P is on the x, y plane, 

l ( o 1)] 
T ( P )  = ~  - - To OZQ r-~Q d x d y ;  (4.12) 

on the other hand 

0 1 __ Zp -- ZQ 

OZQ rpQ r3pQ 

which reduces to zero, when both P, Q belong to the x , y  plane (i.e. z e  = Ze  = 0). 
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The sought solution is then simply 

T ( p ) = l  f Ag(Q) dxdy. 
rpQ 

(4.13) 

If the data Agr(Pi) a r e  gridded, i.e. the horizontal projections of Pi lie on a 
regular grid on the x, y plane, (4.13) can be discretized and, being an integral of 
convolution type, it can be computed quite efficiently by a Fast Fourier technique 
(cf. Schwarz et al., 1990). 

(b) T H E  L E A S T  S Q U A R E S  C O L L O C A T I O N  A P P R O A C H  

In this approach the residual gravity potential Tr is considered as a stochastic 
process homogeneous and isotropic on the Earth's sphere. 

How this is possible has been object of long debate and has been fully proved 
to be consistently acceptable in Sans6, 1986. 

One way of making Tr stochastic is to take the harmonic representation 

R n,m Tr,nm r Ynm(o') (4.14) 

and consider {Tr,nm} as a sequence of uncorrelated stochastic variables with zero 
mean and variances 

o.2( Tr,nm) 1 ~ 2 6 - ,,, T . . . . .  (4.15) 
2n + 1 -n 

The constants 

o-2(T~) (2n + 1)o-2(Tr,nm) ~ 2 = = m r . . . .  (4.16) 
- -n  

are called degree variances and have the meaning of the mean power per degree. 
With this in mind, we see that the covariance function of T~ has the form 

CTT(P, Q) = E{T~(P)T~(Q)} = 

= (-G~-)2~n crZ(Tr) (r~r~)~+lPn(cos ~po) , (4.17) 

where the summation rule 

6 This shows that though uncorrelated T r , n m  c a n n o t  be independent as the sum of their squares has to 
be constant. 
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m Y n m ( l Y P ) Y n m ( f f Q )  = ( 2 n  + 1 ) P n ( c o s  q*Po)  
- n  

has been exploited. 
On the other hand, since in spherical approximation 

~g~ = or~ 2 r ~ -  R2 ~n  m (n - 1) Y~,m(O') . (4.18) 
Or r 

we see that the covariance function Crr  is also analytically related to the covariance 
function CagAg as well as to the crosscovariance Crag. In fact 

Cagag(P, Q) = \ ~ - ]  ~ n  (n - 1)2O'2n(T,) × 

( R2 ~" n + 2  
× \r-~r~] Pn(cos ~PO) , (4.19) 

CTAg(P,Q) a M G M ~ n ( n -  l)o'Z(Tr)(-~p) +1 -- - -  X 
R R 2 \ 

As one can see, in particular we have 

(4.21) 

and, given either of these two, the three functions (4.17), (4.19), (4.20) can be 
computed. 

Remark 4.4 

Assume that Tr is lacking in the coefficients of some degree n; correspondingly 
we have o-](T) = 0, i.e. the same degree is absent in CTT as well as in Cagag; 
since Tr has been obtained by subtracting from T the global model TM, complete 
up to degree N, we would be pushed by this remark to search the covariance 
function of Ag in the form (4.19) with n starting from N + 1 on. As a matter of 
fact since TM contains model errors it is common practice to start the summation 
of (4.19) from a degree lower than N. 

The empirical estimate of the covariance function of Agr from data is a delicate 
step in this approach and it is often performed in the following way: first of all 



THE CHALLENGE OF COMPUTING THE GEOID IN THE NINETIES 365 

empirical values of the covariance are estimated by averaging products 
Agr(Pi) Agr(P~) over points Pi, Pj lying at a spherical distance ~ij ,  

In this way a sequence of estimated ~ ( ~ )  with arguments ~ lagged 2A is found; 
this sequence however is in general not consistent with the properties of positive 
definiteness implied by the theoretical form (4.19). Then we try to adapt (4.19) 
to the empirical estimates, i.e. we solve 

~ ( ( 2 k - b l ) A ) = ( - G - ~ )  2 ~ N n ( e ) 2 n + 4 × _  

x (r~(Ag)Pn[cos(k + 1)1] + v~ (4.22) 

using as shape parameters, N, which is in any case taken smaller than the maximum 
degree of Tn; (R/P), i.e. the damping factor where f is taken as the mean radius 
of the earth Re plus the mean altitude of the area under analysis and R (the so- 
called Bjerhammar radius) is the unknown parameter that has to be chosen smaller 
than Re;  o'2(Ag), the degree variances which are often modelled as rational 
functions of n (going to zero when n ~ oo) depending also on some parameters 
which are used to adjust (4.22). A typical shape of o-~(Ag) can be (Tscherning 
and Rapp, 1974) 

A(n  - 1) (4.23) 
crZ(Ag) = (n - 2)(n + B ) '  

where A and B are the sought parameters; an advantage of (4.23), or of similar 
forms, is that the corresponding series can be summed to give a closed expression. 

Another point to be watched in modelling the covariance function is that the 
expression (4.22) computed at the origin be never larger than the empirical esti- 
mate ~'(O), i.e. 

( ~ ) 2 - t - ~  (e )2n- i  4 1 m 
n _ o'2(Ag) <~ - - 2 i  Ag(Pi) 2 • (4.24) 

m i 

(m = number of measuring points); 

often (4.24) is in fact imposed as an equality, when the shape of the model allows 

7 In a more refined processing of the covariance function, the theoretical model is represented as two 
sums, one up to Nmax (the max degree of TM) and the other from Nm,x on; in the first sum crZ(Agr) 
represent the degree variances of the errors of TM which are modelled with some a priori formula, 
while for n > Nmax models like (4.23) are used. The relative weight between the two sums is a powerful 
parameter to shape the covariance CagAg taking the place of N in (4.22). 
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for this choice, otherwise a discontinuity in the origin is allowed, interpreted as a 
modelling noise 0 -2 . 

Once the covariance CagAg has been modelled, the crosscovariance CTag can 
also be computed analytically so that the following estimator of Tr at any point P 
is available: 

m 

/ ~  2 ( - - 1 )  Tr(P) = £ i , k  Crag(P, Pi){Cagag(Pi, Pk) + 0-~6ik} Agr(Pk) , 
1 

(4.25) 

~2~ l(-1) where by {Cagag(Pi, Pk)+ ~,,,UikS we mean the i, k element of the matrix 

inverse of {Cagag(Pi, Pk) + O'~8ik}. 
The estimator (4.25) is known to be the "best"  among linear estimators, in the 

sense that it minimizes the mean square estimation error  of Tr(P) in that class of 
estimators. 

One of the serious drawbacks of an estimate like (4.25) was the big amount of 
calculations necessary to compute it, which was limiting its application to the 
contemporary treatment of no more than 2000 - 3000 data at a time; on the other 
hand it has been shown recently that when the observation points {Pi} are gridded 
as well as the estimation points, one can exploit the particular features of the 
covariance function to speed up the computation of (4.25) in a way comparable 
to the spectral analysis realized with Fast Fourier  techniques. So this problem is 
solved at these times and collocation solutions with 20-30.000 data have already 
been performed. 

5. Restoring the Final Solution 

If we analyze what we have done in the previous paragraphs, it can be summarized 
as follows: if we have a set of m observations Ag in an area A of the earth surface 
on which we want to compute the anomalous potential T, we have started first of 
all reducing Ag to residual values by subtracting a global model accounting for the 
long wavelength component  of Ag and a topographic correction, to reduce its high 

frequency spectrum. 
These first two steps are known as the " remove"  process because it amounts to 

removing components from Ag in such a way as to be left with a local and smooth 
gravimetric signal. 

Then the residual Agr has been elaborated to provide what we called the core 
solution i.e. Tr. 

Finally what we must do to recover T is to add back to Tr those components 
of the anomalous potential corresponding to what we have subtracted in Ag: this 
process is known as "restore" .  

The whole procedure can be represented by the flow diagram in Figure 5.1. 
Local solutions of this type are then to be patched together,  until they will cover 
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L Input: Ag, T~ model, Digital elevation model i 

I I 

Q 
I 

,t .LT,--T i 
A 

LOutput: T(P) or other any point J i functionals of T at 

Fig. 5.1. The remove-restore procedure. 

all the world; at this point we could say to have accomplished our duty and to 
have solved completely the problem stated in Section 1 of this paper. 

At  present we are still far from this final goal, however things are really speeding 
up in the last years and we are well along this way. 

Naturally not everything has been solved, not even theoretically, and an intense 
research activity is still going on in the area of geoid computations so that we 
expect in the near future to have more data, more methods, more computing 
facilities to get closer to our goal. 

Appendix 

We want to show in this appendix how a rigorous solution of the Laplace equation 
in the exterior of an ellipsoidal (with semimajor axis a and semiminor axis b) 
domain can be very simply approximated by a spherical formula when a per- 
turbative computation is performed to the first order in the small parameter  (first 
eccentricity) 

a 2 _ b 2 
e 2 - _ _  a2 ( ~  7 . 1 0  -3 ) ;  
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throughout this appendix, as we consider only linear terms in e 2, w e  will put also 
(second eccentricity) 

a 2 _ b 2 
e P 2 -  ~ e 2 " 

b 2 

One starting point is the Laplace equation in ellipsoidal coordinates (cf. Heiskanen 
and Moritz, 1981) 

i = G 2  + E 2  s i n  0 c o s  h 
~ u  2 + E 2 sin 0 sin h 

u cos 0 

(E = ~ a  z - b 2 = linear eccentricity, 0 ~< 0 ~< ~r, 
0 ~< h <  2~-, u ~> b) 

(A.1) 

which reads 

(u a + E  2) 02---T 2 u 0 T + 0 2 T + c o t 0 0 T +  
Ou 2 + Ou 002 O0 

U 2 + E  2 c 0 S  2 0  02T 
+ - - - 0 .  

(U 2 "l- E 2) sin 2 0 0/~ 2 

Introducing the dimensionless coordinate 

(A.2) 

b/ 
s = - (s/> 1) 

b 

and noting that 

g 2 
- -  = e t2 ~ e 2 . 
b e 

after developing (A.2) to the first order in e z, we receive 

2 0 2  T _]_ 2S OT 02T + cot 0 1 02T 
s Os z O---s + O0 ~ sin2~ 012 

m +  

e2(OZT 1 02T'] = 0 (A.3) 
+ \ T s  ~ s ~ o X U  • 

Equation (A.3) is to be integrated in the "spherical" domain (in the space s, 0, h) 
exterior to sphere s - -  1 and is quite suited to a perturbative approach, i.e. to 
looking for solutions (to the order e 2) in the  form T = To + e2T '. Since (A.3) 
reduces exactly to a spherical Laplace equation in' the triplet (s, 0, h), if we set 



THE CHALLENGE OF COMPUTING THE GEOID IN THE NINETIES 369 

e a = 0, we see that if we like to find a fundamental  set of solutions, it is reasonable 
to look for functions of  the form 

Zn m(S,  O, 1~) = Ynm(O '  "~) , Sn+l + e2T~n,m, (A.4) 

which substituted in (A.3) yield, by comparing terms in e 2, 
0 2 0 O 2 0 L  

S 2 -  T "  m ~- 28 - -  Trn ,m + - -  T "  m ~- cot T "  m ~- 
Os 2 " Os 002 " O0 " 

1 0 2 

+ T ' ,m = 
sin 2 0 3A 2 

= _ (n + 1)(n + 2) + rn 2 Ynm(O, A) 
S 2 S n + l  

(A.5) 

It  is easy to verify that a set of solutions of (A.5) is given by 

T• m = - -  (F/ + 1)(n + 2) + m 2 gnm(O, A) 
' 4n + 6 s n+3 ' 

(A.6) 

so that we are lefrt with a set of  (quasi-) solutions of (A.3) of the form 

Tnm_ Y~m I e2 (n + l)(n + 2) + m21 
, sn+~ 1 s2 4 n + 6  " 

(A.V) 

It is remarkable  that any solution 

T = ~ An,~rm,,,(s, O, A) (A.8) 

reduces on the boundary  s = 1 to a simple development  in a series of spherical 
harmonics,  the coefficients of which 

T(O, A) = ~ anrngnm(O , ,,~) (A.9) 

can be obtained by the ordinary orthogonali ty relations of the sequence {Ynm(O, A)} 
with respect to the "a rea"  measure  sin 0 dO dA. From an,n the true coefficients Anm 
can be computed  by the relation 

Anm I1 e 2 ( n + l ) ( n + 2 ) + m 2 ]  -1 = - a . . . .  ( a .10)  
4 n + 6  

If  we had now to sum (A.8) only on the ellipsoidal surface s = 1, by using (A.10) 

and (A.7) we see that we go back to (A.9),  i.e. we can simply forget about  the 
ellipsoidal shape and per form a simple spherical analysis (determination of anm) 
and synthesis (summation of (A.9)).  Since however  we often need our model  
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(A.8) for instance at the earth 's  surface, we can use (A.10) and (A.7) with s 

properly varying in accordance with the "height"  of the computat ion point. 
On the other hand s = u/b can depart  f rom 1 only for at most  10 -3 as long as 

we remain at the earth 's  surface; whence terms like e2/s 2 can be significantly put 

equal to e 2 when we neglect eg-terms, so that our solution becomes simply 

r = Y.m(0, a) a.m 
sn+l (A.11) 

The function resembles strictly a "spherical"  solution, were it not for the interpre- 

tation of the coordinates (s, 0, A). 
In particular if we go back to (A.1),  divide by b, square and sum, we get 

using 

?.2 

S 2 -I- e 2 sin 2 0 = b2, 

(s 2 + e 2) sin 2 0 - p2 _ x 2 + y2 
b 2 b 2 

in this relation and reordering we find 

p2 Z 2 
s 2 = ~ + ~  ( p 2 = x  2 + y 2 ) .  (A.12) 

Substituting in this last expression the well known relations, involving the geo- 

graphical latitude 4~, 

p2 = ( g  + h) 2 cos 2 ~b ( g  = a(1 - e 2 sin 2 ~b) -*/2) 

z 2 = [(1 - e2)N + h] 2 sin 2 4 ,  

developing to the first order in e 2 and neglecting terms of the type (h/a) • e 2 and 

similar, we arrive at the noteworthy relation 

This shows essentially that to the first order  of approximation in e 2 our solution 

T can be put in the form (cf. Heck,  1991; Jekeli, 1988) 

R ,n+l 
r = £ anmY m(0, A) / 
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wi th  R be ing  any rad ius  b e t w e e n  a and  b, 8 for  ins tance  the  m e a n  rad ius  of  the  

ea r th  R = ~/a2b. 

O u r  conclus ion  is tha t  essen t ia l ly  a spher ica l  a p p r o x i m a t i o n  shows to be  also a 

g o o d  e l l ipso ida l  a p p r o x i m a t i o n ,  to the  level  of  e 2 t e rms ,  on  cond i t i on  tha t  the  

spher ica l  c o o r d i n a t e  r is t a k e n  as r = R + h, wi th  h be ing  the e l l ipso ida l  he igh t  of  

po in ts  in space  and  to  use  the  e l l ipso ida l  co la t i tude  0. N a t u r a l l y  the  same  compu-  

t a t ion  can (and  o f t en  has  to)  be  p u s h e d  fu r the r  to  h igher  power s  in e2; m o r e o v e r  

the  t r ans i t ion  f rom the  e l l ipso ida l  co l a t i t ude  to  the  geog raph ic  l a t i tude  wou ld  

i m m e d i a t e l y  cause  a t e r m  of  the  o r d e r  of  e 2 to a ppe a r .  

References 

Jekeli C.: 1988, 'The Exact Transformation Between Ellipsoidal and Spherical Harmonic Expansion', 
Man. Geod. 13(2). 

Heck, B.: 1991, 'On the Linearized Boundary Value Problems of Physical Geodesy', OSU Report N. 
407, February 1991. 

Heiskanen, W. A. and Moritz, H.: 1981, Physical Geodesy, Repr. Inst. of Physical Geodesy TUG, 
Graz. 

Moritz, H. : 1980, Advanced Physical Geodesy, H. Wichmann Verlag, Karlsruhe. 
Rapp, R. H.: 1989, 'Combination of Satellite, Altimetric and Terrestrial Gravity Data', in Theory of 

Satellite Geodesy and Gravity Field Determination, Lecture Notes in Earth Science. Springer Verlag. 
Rapp, R. H. and Pavlis, N. K.: 1990, 'The Development and Analysis of Geopotential Coefficient 

Models to Spherical Harmonic Degree 360', Jour. of Geophysical Research, 95(13), Dec. 10. 
Sacerdote, F. and Sansb, F.: 1991, 'Spectral Calculus and Moving Average Operators on the Sphere', 

Contribution to Geodetic Theory and Methodology, IAG Sect IV Report, XX Gen. Assembly of 
IUGG, Vienna. 

Sans6, F., Barzaghi, R. and Tscherning, C. C.: 1986, 'Choice of Norm for the Density Distribution 
of the Earth', Geophys. J.R. astr. Soc. 87(1). 

Sansb, F.: 1986, Statistical Methods in Physical Geodesy', in Mathematical and Numerical Techniques 
in Physical Geodesy. Lecture Notes in Earth Sciences N. 7, (H. Stinkel (ed.)) Springer Verlag. 

Schwarz, K. P., Sideris, M. G. and Forsberg, R.: 1990, 'The Use of FFT Techniques in Physical 
Geodesy', Geophy. Jour. International N. 100. 

Thong, N. C. and Grafarend, E. W.: 1989, 'A Spheroidal Harmonic Model of the Terrestrial Gravi- 
tational Field', Man. Geod., 14(5). 

Tscherning, C. C. and Rapp, R. H.: 1974, 'Closed Covariance Function Expressions for Gravity 
Anomalies, Geoid Undulations and Deflections of the Vertical Implied by Anomaly Degree Variance 
Models', O.S.U. Report N. 208, Columbus. 

Wieser, M.: 1987, Das globale digitale H6henmodell TUG 87; Inter. Bericht der Ab.f.Mat. und 
Datenverarbeitende Geod. TUG, Graz. 

8 fact s = 1 ,  h =o l+hRRa__= 1 ,h ,R O( e2)  I+ R 


