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ABSTRACT 

Among the various data-driven approaches used for RUL 

prediction, Recurrent Neural Networks (RNNs) have certain 

prima facie advantages over other approaches because the 

connections between internal nodes form directed cycles, 

thus creating internal states which enables the network to 

encapsulate dynamic temporal behavior and also to properly 

handle the noise affecting the collected signals. However, 

the application of traditional RNNs is limited by the 

difficulty of optimizing their numerous internal parameters 

and the significant computational effort associated with the 

training process. In this work, we explore the use of the 

Echo State Network (ESN), a relatively new type of 

Recurrent Neural Network (RNN). One of the main 

advantages of ESN is the training procedure, which is based 

on a simple linear regression. Unlike traditional RNNs, 

ESNs can be trained with fairly little computational effort, 

while still providing the generalization capability 

characteristic of RNNs. In this paper, we use Differential 

Evolution (DE) for the optimization of the ESN architecture 

for RUL prediction of a turbofan engine working under 

variable operating conditions. A procedure for pre-

processing of the monitored signals and for identification of 

the onset of acceleration of degradation (i.e., the so-called 
elbow point in the degradation trend) will be shown. The 

datasets used to validate the approach have been taken from 

the NASA Ames Prognostics CoE Data Repository. These 

datasets were generated using a turbofan engine simulator, 

based on a detailed physical model that allows input 

variations of health-related parameters under variable 

operating conditions and records values from some specific 

sensor measurements. The results obtained on these data 

confirm the ESN’s capability to provide accurate RUL 

predictions. 

1. INTRODUCTION 

Prognostics and Health Management (PHM) can help to 

achieve the operational reliability and safety requirements of 

engineered systems in a cost-effective way. A system’s 

failure can be anticipated by an accurate prediction of the 

future evolution of a system’s degradation state, resulting in 

increasing safety and reliability while, at the same time, 

reducing the overall maintenance costs (Bonissone, Xue, & 

Subbu, 2011). Therefore, PHM is currently receiving a lot 

of attention from industries such as aerospace, military, 

transportation, and energy production (Vachtsevanos, 

Lewis, Roemer, Hess, & Wu, 2006; Pecht, 2008).  

Data-driven methods, which rely on historical data and do 

not require physics-based models, are increasingly 

becoming more attractive (Bonissone et al., 2011). Among 

data-driven techniques for Remaining Useful Life (RUL) 

prediction, Recurrent Neural Networks (RNNs) are the most 

promising due to their capability of representing the 

dynamics of the degradation evolution (Lukoševičius & 

Jaeger, 2009) and their ability to encapsulate dynamic 

temporal behavior. While feedforward Artificial Neural 

Networks (ANNs) provide only a direct functional mapping 
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between input and output data (Samanta & Al-Balushi, 

2003), the recurrent nature of RNNs, obtained by using 

feedback connections between the neurons of a layer and 

those of the preceding layers (Moustapha & Selmic, 2008), 

allow for the handling of noisy data and the processing of 

dynamic information. Several types of RNNs have been 

used in literature for prognostic purposes. In (Tse & 

Atherton, 1999), the authors developed a RNN-based 

prognostic system that used vibration data for predicting 

machine deterioration evolution. In (Samanta & Al-Balushi, 

2003), a RNN was applied to the RUL prediction of a 

helicopter drivetrain system gearbox and the results were 

compared to those provided by a Support Vector Regression 

(SVR) approach. The author of (Heimes, 2008) proposed a 

RNN, whose architecture was optimized by means of an 

evolutionary algorithm and whose weights were set using an 

Extended Kalman Filter-based algorithm, and applied it to 

the RUL prediction of turbofan engines working under 

variable operating conditions. The proposal to train an 

Infinite Impulse Response-Locally Recurrent Neural 

Network (IIR-LRNN) online for modeling the dynamics of 

a next-generation nuclear reactor was presented in (Zio, 

Broggi, & Pedroni, 2009). An Adaptive Recurrent Neural 

Network (ARNN), whose weights are adaptively optimized 

using the recursive Levenberg-Marquardt (RLM) method, 

was proposed in (Liu, Saxena, Goebel, Saha, & Wang, 

2010) and applied to the RUL prediction of Lithium-ion 

batteries. (Mahli, Yan, & Gao, 2011) proposed a modified 

RNN that was applied to the multi-step long-term prediction 

of bearing defect progression.  

The main challenges for developing practical applications of 

RNNs are: i) the slow and computationally intensive 

training procedure, which also cannot guarantee the final 

convergence of the algorithm towards an accurate and 

robust model (Lukoševičius & Jaeger, 2009); and ii) the 

lack of guidelines for the definition of the RNN architecture 

(i.e., number of hidden layers, number of neurons in the 

hidden layers, etc). 

In order to overcome these problems, a new approach for 

RNN training called Reservoir Computing (RC) was 

proposed in (Jaeger, 2001). RC involves randomly creating 

a RNN, called Reservoir, which remains unchanged during 

the training and is passively excited by the input signal, 

maintaining in its state a nonlinear transformation of the 

input history. The desired output signal is then generated as 

a linear combination of the neuron’s signals produced by the 

input excited reservoir. The coefficients of the linear 

combination are the only parameters of the network that are 

optimized by using the teacher signal as a target 

(Lukoševičius & Jaeger, 2009).  

Among RC approaches, Echo State Network (ESN) is one 

of the most interesting due to its intrinsic dynamic 

properties, its generalization capability and its fast training 

procedure. In practice, ESN consists of a large reservoir of 

sparsely connected neurons, whose output weights are 

obtained performing a linear regression of the teacher 

outputs on the reservoir internal states, that in turn depend 

on the received input history. The obtained ESN preserves 

the modeling capability typical of RNNs, while requiring a 

considerably shorter and less computationally intensive 

training process. Of particular interest is the so-called echo 

state property, which postulates that the effect of initial 

conditions should gradually vanish as time passes (Yildiz, 

Jaeger, & Kiebel, 2012). Although ESNs have been 

extensively investigated and used for the prediction of 

chaotic time series (Jaeger & Haas, 2004; Shi & Han, 2007; 

Li, Han, & Wang, 2012), they have so far seen limited use 

for RUL prediction of industrial systems (Peng, Wang., 

Wang, Liu, & Peng, 2012), (Morando, Jemei, Gouriveau, 

Zerhoumi, & Hissel, 2013), (Fink, Zio, & Weidmann, 

2013). In (Peng et al., 2012a) the authors developed a 

prognostic model based on multiple ESN sub-models for the 

RUL prediction of turbofan engines. An ESN-based 

approach for the prediction of the RUL of industrial Fuel 

Cells was developed in (Morando et al., 2013), whereas 

(Fink et al., 2013) proposed a hybrid approach combining 

ESN and Conditional Restricted Boltzmann Machines 

(CRBM) for predicting the occurrence of railway operation 

disruptions. With respect to these works, a critical problem 

was setting the ESN architecture parameters, such as the 

size of the dynamical reservoir, the spectral radius, the 

connectivity, and input and output scaling and shifting 

factors. These parameters heavily influence the ESN 

modeling capability.  

In order to overcome this problem in non-prognostic 

applications, parameters optimization has been carried out 

using, for example, a Particle Swarm Optimization (PSO) 

algorithm in (Rabin, Hossain, Ahsan, Mollah, & Rahman, 

2013), and Genetic Algorithms (GAs) in (Ferreira & 

Ludermir, 2009) and in (Ferreira, Ludermir, & De Aquino, 

2013). 

Several types of GAs have been used for the structural 

optimization of Artificial Intelligence (AI) tools (Yan, 

Duwu, & Yongqing, 2007; Qu & Zuo, 2012; Vukicevic, 

Jovicic, Stojadinovic, Prelevic, & Filipovic, 2014), based on 

different strategies to generate variations of the parameter 

vectors and accepting a new parameter vector if and only if 

it reduces the value of the objective function of the 

optimization. This runs the risk of becoming trapped in a 

local minimum. In order to overcome this, (Storn & Price, 

1997) proposed a simple heuristic method, called 

Differential Evolution (DE), which employs the difference 

of two randomly selected parameter vectors as the source of 

random variations for a third parameter vector. This 

approach has been shown to converge with an improved 

chance of finding the global minimum, regardless of the 

initial system parameter values. A DE approach has been 

successfully applied in (Heimes, 2008) for the automatic 

tuning of the parameters of a traditional RNN used for the 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

3 

RUL prediction of turbofan engines. To the best of our 

knowledge, DE has not yet been applied to the optimization 

of an ESN architecture. 

In this work, we discuss a prognostic approach based on the 

development of an optimized ESN model. The major 

novelties of the work are: i) the optimization of the ESN 

architecture using a DE approach, and ii) the use of the ESN 

for the prediction of the RUL of a degrading system.  

The proposed approach has been verified with respect to a 

case study concerning the prediction of the RUL of a fleet of 

turbofan engines working under variable operating 

conditions. Data describing the evolution of 21 signals 

during the engine lives have been taken from the NASA 

Ames Prognostics CoE Data Repository (Saxena, Goebel, 

Simon, & Eklund, 2008). The prognostic results have been 

compared to those obtained by using other AI techniques, 

such as Extreme Learning Machine (ELM) (Huang, Zhu, & 

Siew, 2006) and the Fuzzy Similarity-based approach (FS) 

(Zio, Di Maio, & Stasi, 2010).  

The remaining part of the paper is organized as follows: 

Section 2 illustrates the proposed prognostic approach. 

Section 3 shows the case study and the available data. 

Section 4 presents the pre-processing procedure, Section 5 

illustrates the proposed approach for the elbow point 

identification. Section 6 presents the methods used within 

the proposed prognostic approach, their application to the 

case study, and compares the results to those obtained with 

other AI techniques. Finally, in Section 7, some conclusions 

and remarks are drawn. 

2. PROBLEM FORMULATION AND APPROACH 

The objective of this work is to develop a data-driven 

approach for the RUL prediction of a fleet of industrial 

components. The main challenges to be tackled are due to 

the noisy nature of real industrial data and to the intrinsic 

behavior variability among the fleet components, which can 

be caused by differences in the manufacturing process and 

in the environmental conditions. The proposed procedure is 

based on the following 3 steps: i) Pre-processing, ii) Elbow 

Point Detection, and iii) Prognostics. Figure 1 illustrates the 

proposed approach and can be summarized as follows: 

 i) Data Pre-processing: This step is applied to the 

available raw data. It entails a) data normalization, 

which reduces the effects of the variable operating 

conditions on the signals, b) data filtering, which 

reduces the noise of the normalized signals, and c) the 

selection of prognostic signals based on the computation 

of prognostic measures. The data processing methods 

will be directly illustrated in the case study reported in 

Section 4. 

 ii) Elbow point detection: This step of the procedure 

identifies the time instant at which the component 

degradation becomes observable, which we refer to as 

the elbow point. The Z-test based method used for the 

elbow point identification will be illustrated in Section 5. 

In the remaining part of the procedure, we will consider 

for each trajectory only the data subsequent to the time 

instant of the elbow point detection.  

 iii) Prognostics: This step of the procedure predicts the 

component RUL. It is based on the analysis of the 

prognostic signal values after the elbow point. The 

method relies on ESN whose architecture is optimized 

using DE. Section 6.1 will briefly illustrate the ESN 

theory, while the DE method and its application will be 

presented in Section 6.2. 

 In the following section, we discuss the turbofan 

engine data we use as a case study for illustrating 

our approach. Then we describe the prognostic 

approach shown in Figure 1 in some detail and use 

the case study as a running example to exemplify 

each of the three steps.  

 

 

 

Figure 1. Block diagram of the proposed prognostic approach. 

 



3. CASE STUDY  

The proposed approach is verified with respect to the 

prediction of the RUL of a fleet of turbofan engines working 

under continuously varying operating conditions. The data 

used in this paper have been taken from the NASA Ames 

Prognostics CoE Data Repository (Saxena et al., 2008), and 

consists of 260 run-to-failure trajectories. Each trajectory is 

a 24-dimensional time series of different length, formed by 

21 signals measured by sensors and 3 signals referring to the 

turbofan engines operating conditions (Altitude, Mach 

Number and Throttle Resolver Angle, TRA). These latter 

three signals indicate six different operating conditions, 

which significantly influence the values of the other 21 

measured signals. Table 1 summarizes the main 

characteristics of the dataset. 

Table 1. Dataset Characteristics. 

Number of Trajectories 260 

Maximum Length 378 

Minimum Length 128 

Number of Signals 21 

Number of Operating Conditions 6 

According to this, it is worth noting that methods for 

prognostics under variable operating conditions have been 

proposed by (Gasperin, Boskoski, & Juricic, 2011), (Hu, 

2015), (Heimes, 2008) and (Peng et al., 2012a). (Gasperin et 

al., 2011) proposed an algorithm for the on-line estimation 

of the parameters of a varying physics-based model, which 

is then used for the RUL prediction of a gearbox under non-

stationary operating conditions. In (Hu, 2015) a Particle 

Filter-Based approach for the estimation of the effects of the 

working condition on a physics-based degradation model 

and for the simultaneous prediction of the system RUL has 

been proposed. (Heimes, 2008) developed a RNN for the 

RUL prediction of turbofan engines working under variable 

operating conditions. Finally, in (Peng et al., 2012a), a 

prognostic approach based on multiple ESN sub-models for 

the RUL prediction of turbofan engines has been proposed. 

3.1. C-MAPPS Dataset 

These data have been generated using the Commercial 

Modular Aero-Propulsion System Simulation (C-MAPSS) 

model that receives as input an evolving health indicator 

(i.e., a parameter representing the degradation level of an 

engine component) and provides as output the values of the 

signals influenced by the corresponding input health 

condition (Frederick, De Castro, & Litt, 2007). In particular, 

the C-MAPPS simulation model allows simulating the 

effects of faults and deterioration in any of the engine 

rotating components showed in Figure 2 on the monitored 

signals (i.e., the C-MAPPS output). Unlike the data used for 

the 2008 PHM Challenge, the data considered in this work 

have been taken from the “train_FD002.txt” file of the C-

MAPPS dataset 2 (Saxena et al., 2008), which is 

characterized by the occurrence of a single failure mode 

only (i.e., the degradation of the High Pressure Compressor 

(HPC) of the engine). In order to better contextualize the 

development of the present work, it is important to point out 

that several works have been carried out on the 4 available 

CMAPPS datasets, and an exhaustive and complete survey 

about them is provided by (Ramasso & Saxena, 2014). In 

particular, this latter highlights that the majority of the 

works were considering the CMAPPS dataset 1, which is 

characterized by one operating condition and one failure 

mode. Just few works, such as (Peng, Xu, Liu, & Peng, 

2012b; Li, Qian, & Wang, 2013; Zao & Willet, 2011; 

Ramasso, 2014; Wang, 2010), took into account the 

CMAPPS datasets 2 (i.e., the dataset used in this work) and 

4, which, on the contrary, are characterized by 6 variable 

operating conditions.   

 

 

Figure 2. Turbofan Engine (Saxena et al., 2008) 

 

In order to simulate realistic data, each of the run-to-failure 

trajectories considers an engine characterized by a different 

initial level of wear. Furthermore, process and measurement 

noises have been added during the simulation: in particular, 

the process noise was added to the input health indicator and 

therefore percolated through system dynamics, whereas the 

random measurement noise was added to the output signals. 

This multistage noise contamination resulted in complex 

noise characteristics often observed in real data, thus posing 

a realistic challenge to the accurate prediction of the 

engines’ RUL. Furthermore, it is worth noting that no 

information is provided within the dataset about the real 

nature of the available signals: for example, it is not 

specified if a signal is representative of temperature, 

pressure, etc. The only provided information is about the 

engine operating conditions, which are described by three 

signals, (i.e., Altitude, Mach Number and TRA). Notice that 

the operating conditions significantly influence the values of 

the other 21 measured signals, and it may be difficult to 

distinguish the signal patterns trends that are due to 
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component degradation from those that are due to the 

changing operating conditions.  

Thus, in order to perform an initial exploration of the 

available data, we have clustered the operating conditions 

by applying the Fuzzy C-means algorithm (Bezdek, Ehrlich, 

& Full, 1984) to the three corresponding signals. This 

allowed us to identify the different behaviors of the signals 

according to the corresponding operating condition, which 

are shown in Figure 3 with respect to Signal 11, whereas 

Figure 4 shows the values of Altitude, Mach Number and 

TRA in the six clustered operating conditions. 

3.2. Dataset Partition 

First, the available dataset made of 260 trajectories is 

divided into 3 subsets: i) a training set, ii) a test set, and iii) 

a validation set. The training set, which comprises 70 

trajectories randomly selected, is used for ESN training. The 

test set, which comprises 60 trajectories randomly selected, 

is used only within the DE application for evaluating the 

prognostic performance of the network architectures. 

Finally, the validation set, comprising the remaining 130 

trajectories, is used to evaluate the prognostic performance 

on trajectories, which have never been used during the 

prognostic model development, allowing the comparison 

with the performance of other prognostic approaches. The 

partition of the dataset is shown in Table 2. 

Table 2. Dataset Partition 

Dataset 
Number of 

Trajectories 

Original 260 

Training Set 70 

Test Set 60 

Validation Set 130 

 

 
Figure 3. Values of Signal 11 in the 6 operating conditions 

 

Figure 4. Values of Mach Number, Altitude, and TRA in the 

6 operating conditions. 

4. DATA PREPROCESSING 

A three-step data preprocessing procedure has been applied 

to i) take out the influence of the operating conditions on the 

signal behavior, ii) reduce the signal noise, and iii) select the 

“prognostic signals”, i.e., identify from among the 21 

measured signals those containing information useful for the 

prognostic task and, thus, to be used as ESN inputs. With 

respect to step i), signal values have been normalized taking 

into account signal ranges in the different operating 

conditions. Considering NTR run-to-failure trajectories, 

comprising S signals, and C different possible operating 

conditions varying during the whole life of the component, 

data are normalized by applying: 

c
s

c
s

c
snorm

s

tx
tx






)(
)(         (1) 

where )(txnorm
s  represents the s-th normalized signal at the 

time instant t, )(txc
s the s-th signal measured when the 

system is in the c-th operating condition, and c
s  and c

s  

are the mean and the standard deviation values of the s-th 

signal in the c-th operating condition.  

These parameter values have been computed taking into 

account all the NTR =70 trajectories belonging to the training 

set. With respect to step ii), noise has been reduced by 

applying an exponential filter. For ease of comprehension, 

the effects of steps i) and ii) of the data preprocessing 

procedure are shown in Figure 5.  
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Figure 5. (Upper-left): Original behavior of Signal 11; 

(Upper-right): Normalized behavior of Signal 11; (Bottom): 

Filtered behavior of Signal 11. 

 

The upper-left plot in Figure 5 shows the original behavior 

of Signal 11 during one transient. The upper-right plot 

shows the normalized behavior of Signal 11. Finally, the 

bottom plot shows the de-noising effects of the filtering step 

of the procedure.  

4.1. Selection of Prognostic Signals 

With respect to step iii), the idea is to evaluate how well the 

signal represents the degradation process in order to 

eliminate those signals which do not adequately represent 

the degradation process and, thus, can reduce the ESN 

accuracy by carrying misleading and/or meaningless 

information. To this end, we consider the three prognostic 

measures of Monotonicity, Prognosability, and Trendability 

as proposed in (Coble, 2010). 

Monotonicity is defined as: 

,
1

#

1

#
Mono s























nnTRN
T

dx
dneg

T

dx
dpos

mean        (2) 

which is the average difference between negative slopes and 

positive slopes of the s-th signal within the NTR trajectories. 

A Monotonicity value close to 1 indicates a very monotonic 

signal, whereas a value close to 0 indicates a non-monotonic 

signal.  

 

 

 

The Prognosability measure is defined as: 
























Healthy
sμ

fail
sμ

fail
sσ

s expProgno                     (3) 

This measure focuses on the values of the s-th signal at the 

times of the components failures, and indicates how much 

they are spread with respect to the average variation of the 

signal during its whole life. Prognosability measures close 

to 1 tell that the failure values of the considered signals are 

similar, whereas measures close to 0 indicate that the failure 

values of the considered signals are very different between 

each other, thus complicating the prognostic task. Finally, 

Trendability of the s-th signal is defined as the minimum 

value of the correlation coefficients computed among all the 

NTR trajectories: 

 ijcorrcoeffminTrend s  .,..,1, , TRNjiji                  (4) 

Intuitively, trendability represents how much the trajectories 

of the same signal are characterized by similar functional 

behavior. This measure can be used in this case study, since 

we are considering a fleet of components affected by the 

same failure mode, which is expected to be described by a 

similar functional behavior of the signals.  

In order to evaluate different features considered for a 

specific task, the three prognostic measures have been 

aggregated into one parameter indicating the signal 

representativeness of the degradation process: 

Trend,PrognMonoRepdeg  tpm www        (5) 

where wm, wp, and wt represent the weights of Monotonicity, 

Prognosability, and Trendability, respectively. In this work, 

in order to give more importance to the Prognosability, wp 

has been set equal to 0.8, whereas wm and wt  have been set 

equal to 0.05 and to 0.15, respectively. Notice that, 

depending on the objective of the study, different weights 

can be used. For example, if one were to consider 

components such as batteries, which may experience some 

degree of self-repair during their non-use periods, then using 

monotonicity of the degradation feature might not lead to 

desired results. Once the representativeness of the 

degradation process of a signal has been evaluated, the best 

set of features for the prognostic task can be identified. 

Imposing a selection threshold equal to 0.8 (i.e., a signal is 

selected only if Repdeg > 0.8), we have been able to identify 

the 6 most significant signals (out of the 21 signals available 

per trajectory), which correspond to Signals 2, 3, 4, 11, 15 

and 17. Figure 6 shows the run-to-failure evolution of the 6 

selected signals in trajectory #157.  
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Figure 6. Run-to-failure evolution of the 6 selected signals 

in trajectory #157. 

5. ELBOW POINT DETECTION 

The premise of this work is that there is an accelerated 

degradation phase which is succinctly different from the 

phase of “ordinary” degradation. Such an acceleration can 

be brought on by a fault condition or by late-phase 

degradation mechanisms (which typically have properties of 

exponential growth). In either case, since the beginning of 

the accelerated degradation phase manifests at random time, 

in order to properly focus on the underlying physical 

relationship between the evolution behavior of the 

degrading signals and the corresponding decreasing 

component RUL, one needs to detect the onset of the 

accelerated degradation process. To that end one needs to 

find the elbow point in the signals, i.e. the time instant at 

which the degradation changes from an ordinary 

degradation phase to an accelerated degradation phase. 

Here, the 6 selected signals have been averaged to reduce 

the noise and the Z-Test proposed in (Daigle, 

Roychoudhury, Biswas, Koutsoukos, Patterson-Hine, & 

Poll, 2010) has been applied for change detection. This 

heuristic solution allows obtaining a satisfactory detection 

of the elbow point for each trajectory. In the remaining part 

of the paper, every time we refer to a specific trajectory, we 

consider only the data subsequent to the detected elbow 

point time instant and prognostics is applied only after the 

identification of the elbow point. Figure 7 shows the 

identified elbow point for the average of the six prognostic 

signals present in trajectory #157, which is represented by 

the dashed vertical line.  

 

 
Figure 7. Elbow point identification for trajectory #157. 

6. PROGNOSTICS 

We use ESN for predicting the RUL. In the following, we 

first describe Echo State Networks, and then talk about how 

Differential Evolution can be used for optimizing the 

architecture of the ESN. 

6.1. Echo State Networks 

In this section, we briefly describe the ESN used for 

carrying out the prognostic step. Input to the model are 

measurements of signals correlated to the component 

degradation state, whereas the model output is the 

component RUL.  

Figure 8 shows the generic architecture of an ESN, where 

the reservoir, i.e., a RNN used as a nonlinear temporal 

expansion function, is separated from the readout, which is 

the only part of the ESN to be trained (Lukoševičius & 

Jaeger, 2009). Some guidelines for producing good 

reservoirs are presented in (Jaeger, 2001) and (Jaeger, 2002) 

where, motivated by the intuitive goal of producing a rich 

set of dynamics, it is suggested to generate big, sparsely- 

and randomly-connected reservoirs. In practice, this means 

that the reservoir dimension N should be sufficiently large, 

with a number of connections ranging from tens to 

thousands, dependent on the complexity of the task. The 

weight matrix W is sparse, with connectivity value C, i.e. 

the fraction of internal neurons connected to each other that 

can vary from several to 50. Also, the weights of the 

connections are usually randomly generated from a uniform 

distribution symmetric around the zero value.  
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Figure 8. Basic architecture of the ESN (Peng et al., 2012a). 

 

In this work we consider a discrete-time ESN with L input 

units receiving at time t the current signal measurements 

u(t)=(u1(t),…,uL(t)); N internal network units whose internal 

states are represented by x(t)=(x1(t),…,xN(t)); and one output 

unit producing the output signals y(t)=RUL(t). The 

activation of internal units x(t) at time t is obtained using:  

x(t) =f (Winu(t) +Wx(t -1) +Wback y(t -1)),                     (6) 

where f= (f1… fN) are the internal units activation functions, 

which are typically sigmoidal, Win= (
in
ijw ) is the N×L input 

weights matrix, W=( ijw ) is the N×N internal weights 

matrix, and Wback=(
back
ijw ) is a N×M output feedback 

weights matrix. The input weights Win and the output 

feedback weights Wback are usually dense and randomly 

generated from a uniform distribution. In order to deal with 

a specific task, both Win and Wback can be scaled: the scaling 

of Win (IS) and shifting of the input (IF) depend on how 

much nonlinearity of the processing unit the task needs. If 

the inputs are close to 0, the sigmoidal neurons tend to 

operate with activations close to 0, where they are 

essentially linear, while inputs far from 0 tend to drive them 

more towards saturation where they exhibit more 

nonlinearity; the same idea drives the choice of the output 

scaling (OS) and shifting (OF), whose values affect the 

range of the trained Wout and might lead to an unstable 

condition. Finally, the scaling of Wback (OFB) is, in practice, 

limited by a threshold at which the ESN starts to exhibit an 

unstable behavior, i.e., the output feedback loop starts to 

amplify the output entering into a diverging generative 

mode (Jaeger, 2001). 

 

The output equation of ESN is: 

y(t)=fout (Wout (u(t),x(t),y(t-1))),         (7) 

where fout=(fout
1… fout

M) are the output unit activation 

functions, which are typically linear, and Wout= (
out
ijw ) is 

the M×(L+N+M) output weights matrix.  

ESN training attempts to find optimal values for Wout and is 

performed according to the procedure reported in Appendix 

A, which is based on the use of a Least Squares linear 

regression to minimize the error between the network output 

and a target signal on a set of training data. An important 

characteristic of ESNs is the echo state property (Jaeger, 

2001), which states that the effect of a previous state x(t) 

and a previous input u(t) on a future state x(t+k) should 

vanish gradually as time passes, and not persist or even get 

amplified. For most practical purposes, the echo state 

property is assured if the reservoir weight matrix W is scaled 

so that its spectral radius (SR) (W) (i.e., the largest absolute 

eigenvalue of W) satisfies (W)< 1. Once the ESN has been 

trained, it can be used to predict the output y(t) by applying 

Eq. (6) first, and then Eq. (7) to the input u(t).  

Example: ESN Input Creation 

The ESN input are the 6 selected signals and 6 synthetic 

signals, n
sx , which simulate the component behavior in 

healthy conditions. These 6 synthetic signals have been 

created according to the following equation: 

 n,Healthy
s

Healthyn
s

n

s
,σν(t)~ Nttx 0             )()( ,            (8) 

where Healthyn
s

, represents the average of the s-th signal 

during the healthy state of the n-th component degradation 

trajectory (i.e., before the detection of the elbow point) and 
Healthyn

s
, represents the standard deviation of the s-th signal 

in the healthy state. 

The reason behind the use of these 6 synthetic signals is to 

facilitate the ESN in identifying the difference between the 

current and the expected signal values in healthy conditions, 

which is an indicator of the component degradation and can 

help in the prediction of the component RUL. 

6.2. Differential Evolution for ESN Architecture 

Optimization 

A difficulty that is typically encountered during the 

development of ESN is the setting of the parameters 

characterizing the architecture of the network, such as the 

size of dynamical reservoir N, the spectral radius SR, the 

connectivity C, the input units scaling IS, the input units 

shift IF, the output units feedback OFB, the output units 

scaling OS and the output units shift OF. According to 

(Jaeger, 2002), “the success of the modeling task of an ESN 

depends crucially on the nature of the excited dynamic” that 

depends on the network structure. Somewhat unsatisfying is 

that (Jaeger, 2002) also states that “the successful 

application of an ESN approach involves a good judgment 

on the dynamic excited inside the reservoir”, and this 

judgment ability can only grow with the experimenter’s 
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personal experience. In order to overcome this difficulty, in 

this work we propose to apply Differential Evolution (DE) 

for the optimization of the ESN architecture and of the 

network parameters, thus allowing a more methodical 

determination of the ESN architecture. 

Multi-Objective Differential Evolution  

DE is a parallel, direct, genetic-algorithm-based search 

method which utilizes a population of NP parameter vectors 

xi,G, i = 1, 2, . . ., NP, called chromosomes, for an iterative 

search of optimal solutions with respect to some objective 

functions. The initial vector population is sampled randomly 

from a uniform probability distribution covering the 

parameter domain space. The objective of the method is to 

identify the best chromosomes, i.e., the best parameters 

vectors that lead to the optimal values of the objective 

functions. Depending on the application, the DE can be 

single-objective, or multi-objective. In practice, the DE 

approach is based on a three-step procedure: i) mutation, 

which generates new parameter vectors by adding the 

weighted difference between two population vectors to a 

third vector, where each of these three vectors has been 

randomly selected; ii) crossover, which mixes the mutated 

vector parameters with those of another predetermined 

vector, the target vector, to yield the so-called trial vector; 

and iii) selection, which evaluates the objective functions of 

the trial vector and, if their values are better than those 

obtained with the target vector, keeps the trial vector in the 

population for the new generation in replacement of the 

target one. Since each chromosome in the population must 

serve once as the target vector to be compared to a trial 

vector, NP competitions take place in one generation. 

Details on DE theory and application can be found in 

Appendix B and in (Storn & Price, 1997). 

DE Application 

We resort to a DE Multi-Objective (MO) approach 

considering three different prognostic performance 

indicators as objective functions of the optimization: i) the 

Cumulative Relative Accuracy (CRA) (Saxena, Celaya, 

Saha, Saha, & Goebel, 2010), ii) the Alpha-Lambda () 

metric (Saxena et al., 2010), and iii) the Steadiness Index 

(SI) (Olivares, Cerda Muñoz, Orchard, & Silva, 2013). In 

the following paragraphs, the objective functions are 

defined with reference to the RUL prediction of a single 

degradation trajectory. Then, in the application, the three 

global objective functions are calculated (as averages) over 

a set of test trajectories. 

The Cumulative Relative Accuracy is the normalized 

weighted sum of Relative Accuracy (RA) values, computed 

at specific t time instances.  

   ,
1




RAirw
p

CRA
pi



                      (9) 

where w(r(i)) is a weight factor function of the RUL, p is 

the set of all time instants at which a RUL prediction is 

made for a degradation trajectory, | p | is the cardinality of 

the set and RA  is defined as the relative error of the RUL 

prediction at time t In this work, all the weight factors 

w(r(i)) have been set equal to 1, p  is constructed using 9 

time instants corresponding to 10%, 20%,…, 90% of the 

component life, and RA is defined by: 

,

ˆ






RUL

RULLUR
RA


                                                      (10) 

where 
LUR ˆ is the predicted RUL at time t  and RUL is 

the ground truth for RUL at time t  Small values of RA

indicate more accurate predictions. 

α-λ Metric: The α-λ metric is defined as a binary metric that 

evaluates whether the prediction accuracy at specific time 

instant t  falls within specified α-bounds, which are 

expressed as percentage of the actual RULλ at t . 

 
   





 


Otherwise

RULLURRULif
t

   0

1ˆ1    1 



  (11) 

where refers to the t  𝜖  p instant at which the 

prediction is performed and is the percentage value 

defining the acceptance confidence bounds. In this work, the 

value has been set equal to 20%. Furthermore, it has to be 

pointed out that, for a single prediction, the α-λ accuracy 

results in a binary vector of 9 elements: therefore, in this 

work we consider the average of the 9 obtained elements as 

the value of the considered objective function to be 

maximized: 

 

.
1

1
 










p

t
p

        (12) 

Steadiness Index: the SI measures the volatility of the 

expected value of the failure time prediction �̅�. It is defined 

by: 

,)var( :)( tttt TSI                                                     (13) 

where t is the length of a sliding time window. In order to 

focus on the stability of the end-of-life prediction over the 

whole component life, in this paper we take t equal to the 

trajectory length.   

The three metrics selected in this paper have been chosen 

due to their representativeness of the ESN prediction 

accuracy and stability. In fact, the   metric indicates 

how many times, on average, the RUL prediction falls 

within two relative confidence bounds; the CRA metric 

provides an average estimation of the RUL prediction 

relative error; and finally, the SI metric provides an 
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indication of how stable is the prediction of the component 

end of life during the whole monitoring process. Notice that 

the CRA metric, differently from the   metric, 

quantifies the amount of the error and, being a relative 

measure, tends to enlarge errors made at the end of the 

system life. Since   and CRA estimate the RUL 

accuracy from a different point of view, we require the 

optimization of both of them. Steadiness is optimized to 

facilitate maintenance decisions, which would be hampered 

by unstable RUL predictions. 

Example: DE Application and Best Solution 

Identification 

We have applied the DE algorithm for identifying the best 

ESN architecture for our three prognostic objectives. To this 

end, we have considered a DE population of NP=200 

chromosomes formed by 8 parameters representing the ESN 

architecture and varying in the ranges reported in Table 3. 

 Table 3. ESN Parameters Search Space 

Parameter Min Value Max Value 

N 10 700 

SR 0.05 1 

C 0.01 0.5 

IS 10-7 1 

IF -1 1 

OFB 10-7 1 

OS 10-7 1 

OF -1 1 

Figure 9 illustrates the Pareto front corresponding to the DE 

last population: each solution of the Pareto front is optimal, 

since no other superior solutions have been obtained when 

all the three objectives (i.e., CRA,   and SI) are 

considered (Zitzler & Thiele, 1999). 

In order to identify a trade-off solution among those 

belonging to the Pareto front, we resorted to the TOPSIS 

method (Chen & Hwang, 1992), based on the computation 

of the solution relative closeness to the optimal ideal 

solution (Opricovic & Tzeng, 2004). Notice that the selected 

compromise solution, which is represented in the three 

subfigures of Figure 9 by the squared marker (and which 

will be considered in the remaining part of the paper) is 

characterized by the second best SI, the third best CRA, and 

by the second worst  value: however, regardless of the 

single objective function, the selected solution is the closest 

to the ideal one. The values of the parameters characterizing 

the ESN, which has been selected as best compromise 

solution, are reported in Table 4. 

 
Figure 9. Bi-directional representation of the Pareto front of 

the optimal solutions. 

Notice that the selected ESN is characterized by a small 

number of reservoir neurons (N), is relatively highly 

connected (C), has a large spectral radius value (SR), and 

the effects of the output feedback into the reservoir (OFB) 

have been limited by scaling them with a low factor. The 

obtained ESN parameters, especially the limited number of 

neurons and the high connectivity value, imply that the 

network properties required for accomplishing the 

prognostic task in the case considered do not entail large 

non-linear and dynamical capability (Jaeger, 2002). 
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Table 4. Structure parameters of the best compromise 

network 

N SR C IS IF OFB OS OF 

15 0.92 0.43 0.45 -0.99 3.5∙10-5 3.8∙10-3 0.69 

6.3. RUL Prediction 

After the identification of the parameters reported in Table 

4, a 10-fold Cross Validation (CV) has been performed in 

order to robustly evaluate the predictive performance of the 

ESN with respect to the three prognostic metrics described 

in Section 6.2. The ESN predictive performance is also 

compared to that of an Extreme Learning Machine-based 

(ELM) (Huang et al., 2006; Fink, Weidmann, & Zio, 2014) 

and a Fuzzy Similarity-based approach (FS) (Zio et al., 

2010). ELM has been chosen for the comparison since the 

concept behind it is similar to that of ESN, but they do not 

exploit recurrent connections (Huang et al., 2006), whereas 

the FS-based approaches has been chosen because it has 

been shown to be able to provide satisfactory RUL 

predictions in several different prognostic applications 

(Bonissone & Varma, 2005; Zio et al., 2010). In order to 

compare the prognostic performance of these methods, we 

resorted to the same prognostic metrics used during the DE 

Optimization described in Section 6.2, which have been 

used also in (Peng et al., 2012b) and (Li et al., 2013). It has 

to be pointed out that, differently from the PHM Challenge 

2008, in this work we considered only the training part of 

the CMAPPS dataset 2, which consists only of run-to-

failure trajectories. Furthermore, since we had the 

possibility to evaluate the prognostic performance at any 

time of the validation trajectories, we considered the overall 

performance of the developed prognostic model, without 

resorting to the timeliness measure, which on the contrary 

has been used for the final performance evaluation of the 

PHM Challenge 2008 (Ramasso & Saxena, 2014) and 

which considers only the RUL prediction at a single 

prefixed time for each degradation trajectory. Table 5 

reports the results of the comparison: for each method we 

reported the metrics average value computed over the 10 

CV iterations and its standard deviation. Notice that the 

proposed DE-ESN approach outperforms both the FS and 

the ELM approaches in all the considered prognostic 

metrics. In particular, the CRA value shows that the ESN 

provides an average relative error on the RUL prediction 

which is 5% lower than that of the FS, and 11% lower than 

that of the ELM; the SI value shows that the stability of the 

component end-of-life prediction provided by the ESN is 

the most satisfactory, although it is close to that provided by 

the FS. Finally, with respect to the metric, the average 

value shows that the ESN approach is able to provide RUL 

predictions that, in 38% of cases lie within relative 

boundaries equal to the 20% of the corresponding real RUL, 

whereas the same values for both the FS and the ELM 

performance are significantly lower. An analysis of the  

metric shows that even if the performance of the three 

investigated methods are comparable at the beginning of the 

components life (i.e., with respect to t10%, t20% and t30% time 

instants), the ESN RUL predictions are clearly 

outperforming those of the other two methods when time 

instants closer to the component end of life, such as t60%, 

t70% and t80%, are considered. This confirms the superiority of 

the proposed DE-ESN method with respect to both ELM 

and FS, for this case study.  

Table 5. Comparison among the prognostic performances 

provided by DE-ESN, FS, and ELM 

 DE-ESN FS ELM 

Relative 

Accuracy 
 0.37 ± 0.03 0.42 ± 0.03 0.48 ± 0.04 

Steadiness  12.4 ± 1.2 12.7 ± 0.7 15.3 ± 2.2 



10% 0.44 ± 0.03 0.43 ± 0.04  0.43 ± 0.03 

20% 0.43 ± 0.04 0.45 ± 0.04 0.41 ± 0.04 

30% 0.43 ± 0.03 0.43 ± 0.05 0.38 ± 0.03 

40% 0.38 ± 0.04 0.38 ± 0.03 0.34 ± 0.03 

50% 0.39 ± 0.05 0.36 ± 0.03 0.29 ± 0.04 

60% 0.39 ± 0.04 0.31 ± 0.03 0.27 ± 0.04 

70% 0.40 ± 0.04 0.28 ± 0.03 0.26 ± 0.04 

80% 0.37 ± 0.04 0.26 ± 0.04 0.25 ± 0.03 

90% 0.23 ± 0.03 0.18 ± 0.04 0.19 ± 0.03 

Average

 
 

0.38 ± 0.04 0.34 ± 0.04 0.31 ± 0.04 

Figure 10 shows the three RUL predictions obtained for a 

representative degradation trajectory of the validation set. 

As expected, the ESN RUL prediction (i.e., the solid line) is 

closer to the true RUL (i.e., the dotted straight line) than that 

provided by both ELM (the dashed line), which is largely 

overestimating, and FS (the dashed-dotted line), which is 

slightly overestimating. Nonetheless, it should be noted that 

– compared to the FS – the ESN method has higher 

variability throughout the prediction interval. 

 
Figure 10. RUL prediction of trajectory #157 obtained with 

ESN, FS, and ELM. 
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7. CONCLUSION AND FUTURE WORK 

In this work, we have proposed an approach for the 

development of a prognostic model for industrial 

components working in variable operating conditions, based 

on ESN for RUL prediction. ESN has been chosen due to 

the capability of dealing with time-varying signals, its 

generalization capability, and ability to handle noisy data. 

The ESN training procedure is considerably shorter and less 

computationally intensive than that of other recursive 

models such as RNN. In order to overcome the main 

drawbacks of ESN, i.e., the need of expert opinion for the 

design of its architecture and the setting of its several 

characteristic parameters, we have proposed to use a DE 

algorithm for the automatic optimization of the ESN. In fact, 

although the ESN creation requires the expert setting of 

several parameters, the proposed procedure relying on the 

DE optimization allows the user to obtain an ESN tailored 

and optimized for the specific task. The approach has been 

applied to a case study concerning the RUL prediction of 

turbofan engines, taken from the NASA Ames Prognostics 

CoE Data Repository, and the performance of the proposed 

method has been compared to those provided by an ELM-

based and a FS-based approach. The results show the 

superior capability of the ESN in generalizing the behavior 

of similar degrading components, resulting in more 

accurate, stable and reliable predictions of the components’ 

RUL. As part of future work, we would like to look into the 

variability characteristics of the output, extend this approach 

to handle multiple faults, and apply this approach to the test 

data that was provided as part of the PHM 2008 Data 

Challenge. Furthermore, we aim to develop an ensemble 

strategy for the component RUL prediction: the idea is to 

exploit different ESN models that, being tailored to different 

characteristics of the available trajectories, allow for better 

focus on the characteristics of the monitored trajectory, 

resulting in a more accurate and robust RUL prediction. 
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Appendix A – ESN Training Procedure  

ESN Training Procedure can be described as follows 

(Jaeger, 2001) 

Assume a teacher input u(t) and a teacher output d(t). 

 Generate an untrained network, where Win, W, and Wback 

are randomly established. 

 Define a matrix ||/ max1 WW  , where max is the 

spectral radius of W, then the spectral radius of W1 will 

be (W1)=1. 

 Initialize the network parameters, i.e. the size of 

dynamical reservoir N, the spectral radius SR, the 

connectivity C, the input units scaling IS, the input units 

shift IF, the output units feedback OFB, the output units 

scaling OS, and the output units shift OF.  

 For times t=0...T, drive the network by feeding the input 

u(t) and by teacher-forcing the teacher output d(t-1). 

Collect the input unit and the network state into a state 

collecting matrix B. In the end, one has obtained a state 

collecting matrix of size (T -1)∙(L+N). Considering an 

ESN with linear output weights, collect the teacher 

output d(t) into a teacher collection matrix C, to end up 

with a teacher collecting matrix of size (T  -1) ∙M.  

 To obtain the output weights apply the Least Squares 

theory to the obtained matrixes:  
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(Wout)Tr=B-1C,                         (1A) 

where Tr denotes transpose: transpose (Wout)Tr to Wout to 

obtain the desired trained output weights. 

Appendix B – DE Algorithm 

DE’s basic strategy can be described as follows (Storn & 

Price, 1997): 

 

Mutation 

For each target vector xi,G, i = 1, 2, . . ., NP, a mutant vector 

is generated according to: 

vi,G+1 = xr1,G + F∙(xr2,G - xr3,G) ,                   (1B) 

where the random indexes r1, r2, and r3 ∈ {1, 2, . . , NP} are 

integer and mutually different, and the parameter F, which 

is a real and constant factor which controls the amplification 

of the differential variation (xr2,G - xr3,G), is positive.  

Crossover 

In order to increase the diversity of the perturbed parameter 

vectors, crossover is introduced. To this end, the trial vector: 

ui,G+1 = (u1i,G+1, u2i,G+1, . . , uDi,G+1)                    (2B) 

is formed according to:  
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where j = 1, 2, . . , D; randb(j) is the j-th evaluation of a 

uniform random number generator with outcome 𝜖  (0, 1). 

CR is the crossover constant 𝜖  (0, 1) which has to be 

determined by the user;  rnbr(i) is a randomly chosen index 

𝜖 {1, 2, …, D} which ensures that ui,G+1 gets at least one 

parameter from vi,G+1 (Storn & Price, 1997).  

Selection 

To decide whether or not the trial vector ui,G+1 should 

become a member of generation G+1, its corresponding 

fitness function is compared to that corresponding to the 

target vector xi,G: if vector ui,G+1 yields a smaller fitness 

function value than xi,G, then xi,G+1 is set equal to ui,G+1; 

otherwise, the old value xi,G is retained (Storn & Price, 

1997).

 


